Ejemplo n.º 1
0
	def build_caffe2_model_file(model, file_name, inputs_spec: dict, output_spec: dict):
		with open(CAFFE2_MODEL_PREDICT_FILE_NAME, 'wb') as f:
			f.write(model.net._net.SerializeToString())
		init_net = caffe2_pb2.NetDef()
		for param in model.params:
			op = core.CreateOperator(
				"GivenTensorFill",
				[],
				[param],
				arg=[
					utils.MakeArgument("shape", workspace.FetchBlob(param).shape),
					utils.MakeArgument("values", workspace.FetchBlob(param))
				]
			)
			init_net.op.extend([op])
		init_net.op.extend([core.CreateOperator(
				"ConstantFill",
				[],
				[inputs_spec['inputs']['0']['name']],
				shape=tuple(inputs_spec['inputs']['0']['shape'])
			)]
		)
		with open(CAFFE2_MODEL_INIT_FILE_NAME, 'wb') as f:
			f.write(init_net.SerializeToString())

		FileHelper.write_to_file(INPUT_SPEC_FILE_NAME, json.dumps(inputs_spec))
		FileHelper.write_to_file(OUTPUT_SPEC_FILE_NAME, json.dumps(output_spec))
		FileHelper.write_files_to_tar(
			file_name + '.caffe2',
			SerializationHelper.get_list_of_model_file_content('caffe2')
		)
		os.remove(CAFFE2_MODEL_INIT_FILE_NAME)
		os.remove(CAFFE2_MODEL_PREDICT_FILE_NAME)
		os.remove(INPUT_SPEC_FILE_NAME)
		os.remove(OUTPUT_SPEC_FILE_NAME)
Ejemplo n.º 2
0
	def build_sklearn_model_file(model, file_name, inputs_spec: dict, output_spec: dict):
		joblib.dump(model, SKLEARN_MODEL_FILE_NAME)
		FileHelper.write_to_file(INPUT_SPEC_FILE_NAME, json.dumps(inputs_spec))
		FileHelper.write_to_file(OUTPUT_SPEC_FILE_NAME, json.dumps(output_spec))
		FileHelper.write_files_to_tar(
			file_name + '.sklearn',
			SerializationHelper.get_list_of_model_file_content('sklearn')
		)
		os.remove(SKLEARN_MODEL_FILE_NAME)
		os.remove(INPUT_SPEC_FILE_NAME)
		os.remove(OUTPUT_SPEC_FILE_NAME)