Ejemplo n.º 1
0
def test_testing_convolution(text_vectorizer, class_vectorizer, classif_level, classif_type, dataset_location):
    load_standard_sets = True
    root_location = fh.get_root_location('data/convolutional_outcome/')

    sets_location = fh.join_paths(root_location, "model_sets")
    checkpoint_path = fh.join_paths(root_location, "model_checkpoints")
    model_path = fh.link_paths(checkpoint_path, 'convolution_model')
    weights_path = fh.link_paths(checkpoint_path, 'convolution_weights')

    # load sets and settings
    model_name = text_vectorizer+'/'+class_vectorizer+'/NN'
    # train_data, test_data, val_data, train_labels, test_labels, val_labels, settings = ch.load_sets(sets_location, '2020-01-08T22:28:44.757410')
    # classes, n_classes, vocab_processor, len_vocabulary = settings

    # only for test
    train_data, test_data, val_data, train_labels, test_labels, val_labels, _ = ch.load_sets(sets_location)

    # it could be that a label is only in the test/data data, might be a problem
    sequence_length = train_data.shape[1]
    # calculates metrics with testing data
    model, predictions = pmh.run_cnn_test(_,
                                   train_data, train_labels, test_data, test_labels, val_data, val_labels,
                                   model_path, weights_path, False)
    binary_predictions = mh.get_binary_0_5(predictions)

    # display testing metrics
    metrics = mh.get_sequential_metrics(test_labels, predictions, binary_predictions)
    mh.display_sequential_metrics('testing convolution sequence', metrics)

    classifier_name, layers = ch.get_sequential_classifier_information(model)
    ch.save_results(classifier_name+' Test', metrics, layers, model_name, classif_level, classif_type, dataset_location)
Ejemplo n.º 2
0
def apply_word2vec_word_averaging(data_frame):
    print('###  word2vec_word_averaging_vectorizer  ###')
    helper_word2vec = wmh.Word2VecHelper()
    text_tokenized = data_frame.apply(lambda row : helper_word2vec.w2v_tokenize_text(row['text']), axis=1).values
    if False:
        try:
            path_ = fh.join_paths(current_path[:current_path.rfind('/', 0, current_path.rfind('/', 0, -1)-1)], "/data/GoogleNews-vectors-negative300.bin")
            print("google vectors : ", path_)
            wv = gensim.models.KeyedVectors.load_word2vec_format(path_, binary=True)
        except:
            print("unable to find word2vec model from google, downloading...")
            wv = gensim.models.KeyedVectors.load_word2vec_format("https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz", binary=True)
            print("done...")
    else:
        model_path = fh.join_paths(current_path[:current_path.rfind('/', 0, current_path.rfind('/', 0, -1)-1)], "data/vectorizer_models")
        model = wmh.get_word2vec_model(text_tokenized, model_path)
        wv = model.wv
    wv.init_sims(replace=True)
    return helper_word2vec.word_averaging_list(wv, text_tokenized)
Ejemplo n.º 3
0
def test_basic_LSTM(data_frame, text_vectorizer, classif_level, classif_type, dataset_location):
    print('### LSTM Doing Testing ###')

    root_location = fh.get_root_location('data/lstm_outcome/')

    doc2vec_model_location = fh.link_paths(fh.join_paths(root_location, "doc2vec_model/vocab_model/"), "doc2vec_model")
    model_location = link_paths(join_paths(root_location, "lstm_model"), "lstm_model")
    sets_location = join_paths(root_location, "model_sets")

    save_results = True
    load_model = True

    # date problem
    X_train, X_test, X_val, y_train, y_test, y_val, settings = load_sets(sets_location)
    classes, n_classes, vocab_processor, len_vocabulary = settings

    training_docs_list = X_train['patent_id']
    test_docs_list = X_test['patent_id']
    val_docs_list = X_val['patent_id']

    sequence_size, embedding_size = 1, 150
    X_data, Xv_data, Xt_data = ch.get_df_data(3, training_docs_list, val_docs_list, test_docs_list, sequence_size, embedding_size, doc2vec_model_location)

    #####
    print(X_data.shape)
    input_size, output_size = X_data.shape[2], n_classes

    if load_model:
        model = tf.keras.models.load_model(model_location)

    min_delta, patience = 0.00001, 15
    early_stopper = keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=min_delta, patience=patience, verbose=1, mode='auto')
    metrics_callback = MetricsCNNCallback(Xv_data, y_val, patience)

    metrics, predictions, val_metrics = run_lstm(model,
                                                X_data, y_train, Xt_data, y_test, Xv_data, y_val,
                                                batch_size, [early_stopper, metrics_callback], queue_size,
                                                training_docs_list, val_docs_list)
    binary_predictions = mh.get_binary_0_5(predictions)

    print('\nGenerating Testing Metrics')
    metrics = mh.get_sequential_metrics(y_val, predictions, binary_predictions)
    mh.display_sequential_metrics(metrics)

    if save_results:
        classifier_name, parameters = ch.get_sequential_classifier_information(model)
        model_name = text_vectorizer+'/'+class_vectorizer+'/'+classifier_name
        ch.save_results(classifier_name+'_LSTM', metrics, parameters, model_name, classif_level, classif_type, dataset_location)

    print('end testing step')
Ejemplo n.º 4
0
def save_sets(sets_location, train_data, test_data, val_data, train_labels, test_labels, val_labels, settings):
    try:
        date = datetime.datetime.now().isoformat()
        actual_sets_location = fh.join_paths(sets_location, date)
        with open(fh.link_paths(actual_sets_location, 'training_set '+date+'.pkl'), "wb") as f:
            pkl.dump([train_data, train_labels], f)
        with open(fh.link_paths(actual_sets_location, 'testing_set '+date+'.pkl'), "wb") as f:
            pkl.dump([test_data, test_labels], f)
        with open(fh.link_paths(actual_sets_location, 'validation_set '+date+'.pkl'), "wb") as f:
            pkl.dump([val_data, val_labels], f)
        with open(fh.link_paths(actual_sets_location, 'settings '+date+'.pkl'), "wb") as f:
            pkl.dump(settings, f)
    except:
        print('A problem occurred while saving the sets!')
Ejemplo n.º 5
0
def train_testing_convolution(data_frame, text_vectorizer, class_vectorizer):
    save_standard_sets = True
    root_location = fh.get_root_location('data/convolutional_outcome/')

    sets_location = fh.join_paths(root_location, "model_sets")
    checkpoint_path = fh.join_paths(root_location, "model_checkpoints")
    model_path = fh.link_paths(checkpoint_path, 'convolution_model')
    weights_path = fh.link_paths(checkpoint_path, 'convolution_weights')

    # get sets
    model_name = text_vectorizer+'/'+class_vectorizer+'/NN'
    standard_results = ch.apply_df_vectorizer(data_frame, text_vectorizer, class_vectorizer, model_name)
    train_data, test_data, train_labels, test_labels, classes, n_classes, vocab_processor, len_vocabulary = standard_results
    train_data, val_data, train_labels, val_labels = ch.get_train_test_from_data(train_data, train_labels)

    # save sets
    # ch.save_sets(sets_location, train_data, test_data, val_data, train_labels, test_labels, val_labels,
    #           [classes, n_classes, vocab_processor, len_vocabulary])

    # this is for test
    train_data, test_data, val_data, train_labels, test_labels, val_labels, _ = ch.load_sets(sets_location)

    # it could be that a label is only in the test/data data, might be a problem
    sequence_length = train_data.shape[1]
    # define the model
    model = pmh.get_cnn_test(len_vocabulary, n_classes, sequence_length)

    # calculates metrics with validating data
    model, val_predictions = pmh.run_cnn_test(model,
                                   train_data, train_labels, val_data, val_labels, val_data, val_labels,
                                   model_path, weights_path, True)
    binary_val_predictions = mh.get_binary_0_5(val_predictions)
    print(val_labels.shape)
    print(val_predictions.shape)
    # display validation metrics
    metrics = mh.get_sequential_metrics(val_labels, val_predictions, binary_predictions)
    mh.display_sequential_metrics('validation convolution sequence', metrics)
Ejemplo n.º 6
0
def load_sets(sets_location, date='01-01-2020'):
    try:
        actual_sets_location = fh.join_paths(sets_location, date)
        print(actual_sets_location, date, fh.link_paths(actual_sets_location, 'training_set '+date+'.pkl'))
        with open(fh.link_paths(actual_sets_location, 'training_set '+date+'.pkl'), "rb") as f:
            train_data, train_labels = pkl.load(f)
        with open(fh.link_paths(actual_sets_location, 'testing_set '+date+'.pkl'), "rb") as f:
            test_data, test_labels = pkl.load(f)
        with open(fh.link_paths(actual_sets_location, 'validation_set '+date+'.pkl'), "rb") as f:
            val_data, val_labels = pkl.load(f)
        with open(fh.link_paths(actual_sets_location, 'settings '+date+'.pkl'), "rb") as f:
            settings = pkl.load(f)
            # classes, n_classes, vocab_processor, len_vocabulary = pkl.load(f)
        return train_data, test_data, val_data, train_labels, test_labels, val_labels, settings
    except:
        print('A problem occurred while loading the sets!')
        return None, None, None, None, None, None, None
Ejemplo n.º 7
0
def test_LSTM_from_web(data_frame, text_vectorizer, class_vectorizer, classif_level, classif_type, dataset_location):
    print('### LSTM Doing Testing ###')

    root_location = fh.get_root_location('data/lstm_outcome/')

    nn_parameter_search_location = fh.join_paths(root_location, "nn_fhv_parameter_search")
    doc2vec_model_location = fh.link_paths(fh.join_paths(root_location, "doc2vec_model/vocab_model/"), "doc2vec_model")

    save_results = True

    sequence_size = 1
    EMBEDDING_SIZE = 150

    model_name = text_vectorizer+'/'+class_vectorizer+'/LSTM'
    results = ch.apply_df_vectorizer(data_frame, text_vectorizer, class_vectorizer, model_name)
    X_train, X_test, y_train, y_test, classes, n_classes, vocab_processor, len_vocabulary = results

    X_train, X_val, y_train, y_val = ch.get_train_test_from_data(X_train, y_train)

    training_docs_list = X_train['patent_id']
    test_docs_list = X_test['patent_id']
    val_docs_list = X_val['patent_id']

    X_data, Xv_data, Xt_data = ch.get_df_data(3, training_docs_list, val_docs_list, test_docs_list, sequence_size, EMBEDDING_SIZE, doc2vec_model_location)
    GLOBAL_VARS.DOC2VEC_MODEL_NAME, GLOBAL_VARS.MODEL_NAME = wmh.set_parameters_lstm_doc2vec(nn_parameter_search_location, classif_level, classif_type)

    NN_INPUT_NEURONS, NN_SEQUENCE_SIZE, NN_OUTPUT_NEURONS = pmh.get_lstm_shapes(X_data, n_classes)
    NN_BATCH_SIZE, PARTS_LEVEL, NN_MAX_EPOCHS, QUEUE_SIZE = pmh.get_lstm_basic_parameters()
    params = pmh.get_lstm_testing_parameters()
    lstm_output_size,w_dropout_do,u_dropout_do, stack_layers, conv_size, conv_filter_length, conv_max_pooling_length = params
    EARLY_STOPPER_MIN_DELTA, EARLY_STOPPER_PATIENCE = pmh.get_early_stopping_parameters()

    TEST_METRICS_FILENAME = '{}_level_{}_standard_nn_test_metrics_dict.pkl'

    test_metrics_dict = dict()
    test_metrics_path = fh.link_paths(fh.link_paths(nn_parameter_search_location, GLOBAL_VARS.MODEL_NAME), TEST_METRICS_FILENAME.format(classif_type, PARTS_LEVEL))

    param_results_path = fh.link_paths(fh.link_paths(nn_parameter_search_location, GLOBAL_VARS.MODEL_NAME), NN_PARAMETER_SEARCH_PREFIX.format(classif_type, classif_level, NN_BATCH_SIZE))

    param_results_dict = pickle.load(open(param_results_path, 'rb'))
    GLOBAL_VARS.NN_MODEL_NAME = 'lstm_size_{}_w-drop_{}_u-drop_{}_stack_{}_conv_{}'.format(lstm_output_size,
                                                                                            w_dropout_do,
                                                                                            u_dropout_do,
                                                                                            stack_layers,
                                                                                            str(conv_size)
                                                                                            )
    if conv_size:
        GLOBAL_VARS.NN_MODEL_NAME += '_conv-filter-length_{}_max-pooling-size_{}'.format(conv_filter_length,
                                                                                         conv_max_pooling_length)
    if GLOBAL_VARS.NN_MODEL_NAME not in param_results_dict.keys():
        print("Can't find model: {}".format(GLOBAL_VARS.NN_MODEL_NAME))
        raise Exception()

    if fh.ensure_exists_path_location(test_metrics_path):
        test_metrics_dict = pickle.load(open(fh.link_paths(fh.link_paths(nn_parameter_search_location, GLOBAL_VARS.MODEL_NAME), TEST_METRICS_FILENAME.format(classif_type,PARTS_LEVEL)), 'rb'))
        if GLOBAL_VARS.NN_MODEL_NAME in test_metrics_dict.keys():
            print("Test metrics already exist for: {}".format(GLOBAL_VARS.NN_MODEL_NAME))
            test_metrics = test_metrics_dict[GLOBAL_VARS.NN_MODEL_NAME]

            print("** Test Metrics: Cov Err: {:.3f}, Avg Labels: {:.3f}, \n\t\t Top 1: {:.3f}, Top 3: {:.3f}, Top 5: {:.3f}, \n\t\t F1 Micro: {:.3f}, F1 Macro: {:.3f}".format(
                test_metrics['coverage_error'], test_metrics['average_num_of_labels'],
                test_metrics['top_1'], test_metrics['top_3'], test_metrics['top_5'],
                test_metrics['f1_micro'], test_metrics['f1_macro']))
            raise Exception()

    print('***************************************************************************************')
    print(GLOBAL_VARS.NN_MODEL_NAME)

    model = pmh.get_keras_rnn_model(NN_INPUT_NEURONS, NN_SEQUENCE_SIZE, NN_OUTPUT_NEURONS,
                                   lstm_output_size, w_dropout_do, u_dropout_do, stack_layers, conv_size,
                                   conv_filter_length, conv_max_pooling_length)

    # get model best weights
    weights = param_results_dict[GLOBAL_VARS.NN_MODEL_NAME]['best_weights']
    model.set_weights(weights)

    print('Evaluating on Test Data using best weights')
    _, ytp, ytp_binary = pmh.predict_generator(None, model, Xt_data, y_test, NN_BATCH_SIZE, QUEUE_SIZE, test_docs_list)

    print('Generating Test Metrics')
    test_metrics = mh.get_sequential_metrics(y_test, ytp, ytp_binary)
    mh.display_sequential_metrics(test_metrics)

    if save_results:
        classifier_name, parameters = ch.get_sequential_classifier_information(model)
        ch.save_results(classifier_name+'_LSTM', test_metrics, parameters, model_name, classif_level, classif_type, dataset_location)

        test_metrics_dict[GLOBAL_VARS.NN_MODEL_NAME] = test_metrics
        pickle.dump(test_metrics_dict, open(test_metrics_path, 'wb'))
Ejemplo n.º 8
0
def train_LSTM_from_web(data_frame, text_vectorizer, class_vectorizer, classif_level, classif_type, dataset_location):
    print('### LSTM Doing Training ###')

    root_location = fh.get_root_location('data/lstm_outcome/')

    exports_location = fh.join_paths(root_location, "exported_data/")
    matrices_save_location = fh.join_paths(root_location, "fhv_matrices/")
    nn_parameter_search_location = fh.join_paths(root_location, "nn_fhv_parameter_search")
    doc2vec_model_location = fh.link_paths(fh.join_paths(root_location, "doc2vec_model/vocab_model/"), "doc2vec_model")

    load_existing_results = True # it was True
    save_results = True

    sequence_size = 1
    EMBEDDING_SIZE = 150

    model_name = text_vectorizer+'/'+class_vectorizer+'/LSTM'
    results = ch.apply_df_vectorizer(data_frame, text_vectorizer, class_vectorizer, model_name)
    X_train, X_val, y_train, y_val, classes, n_classes, vocab_processor, len_vocabulary = results

    training_docs_list = X_train['patent_id']
    val_docs_list = X_val['patent_id']

    X_data, Xv_data, _ = ch.get_df_data(2, training_docs_list, val_docs_list, None, sequence_size, EMBEDDING_SIZE, doc2vec_model_location)
    GLOBAL_VARS.DOC2VEC_MODEL_NAME, GLOBAL_VARS.MODEL_NAME = wmh.set_parameters_lstm_doc2vec(nn_parameter_search_location, classif_level, classif_type)

    # print(X_data.shape) # 64, 1, 200
    # print(Xt_data.shape) # 20, 1, 200
    # print(Xv_data.shape) # 16, 1, 200

    NN_INPUT_NEURONS, NN_SEQUENCE_SIZE, NN_OUTPUT_NEURONS = pmh.get_lstm_shapes(X_data, n_classes)
    NN_BATCH_SIZE, PARTS_LEVEL, NN_MAX_EPOCHS, QUEUE_SIZE = pmh.get_lstm_basic_parameters()
    param_sampler = pmh.get_lstm_training_parameters()
    EARLY_STOPPER_MIN_DELTA, EARLY_STOPPER_PATIENCE = pmh.get_early_stopping_parameters()

    param_results_dict = dict()
    param_results_path = fh.link_paths(fh.join_paths(nn_parameter_search_location, GLOBAL_VARS.MODEL_NAME), NN_PARAMETER_SEARCH_PREFIX.format(classif_type, classif_level, NN_BATCH_SIZE))
    index = param_results_path.rfind('/')
    fh.create_folder(fh.link_paths(fh.join_paths(nn_parameter_search_location, GLOBAL_VARS.MODEL_NAME), NN_PARAMETER_SEARCH_PREFIX.format(classif_type, classif_level, NN_BATCH_SIZE))[:index])

    ###########
    # print(X_data.shape)
    # input_size, sequence_size, output_size = X_data.shape[2], X_data.shape[0], n_classes
    # NN_BATCH_SIZE, PARTS_LEVEL, NN_MAX_EPOCHS, QUEUE_SIZE = 1, 2, 200, 100

    # lstm_output_sizes = [500, 1000]
    # w_dropout_options = [0., 0.5]
    # u_dropout_options = [0., 0.5]
    # stack_layers_options = [1, 2, 3]

    # lstm_output_size, w_dropout_do, u_dropout_do, stack_layers = 500, 0.0, 0.0, 1
    # conv_size, conv_filter_length, max_pooling_length = 128, 2, 2

    # EARLY_STOPPER_MIN_DELTA, EARLY_STOPPER_PATIENCE = 0.00001, 15

    # import tensorflow as tf
    # from tensorflow import keras
    # from keras.layers import Input, Dense, Dropout, Activation
    # from keras.models import Model, Sequential
    # from keras.layers.convolutional import MaxPooling1D, Convolution1D
    # from keras.layers.recurrent import LSTM

    # model = Sequential()

    # # model.add(Convolution1D(nb_filter=conv_size, input_shape=(sequence_size, input_size),
    # #                             filter_length=conv_filter_length, border_mode='same', activation='relu'))
    # # model.add(MaxPooling1D(pool_length=max_pooling_length))

    # model.add(LSTM(lstm_output_size, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=False,
    #                input_dim=input_size, dropout_W=w_dropout_do, dropout_U=u_dropout_do,
    #                implementation=1,
    #                return_sequences=False if 1 == stack_layers else True,
    #                go_backwards=False, stateful=False, unroll=False,
    #                name='lstm_{}_w-drop_{}_u-drop_{}_layer_{}'.format(lstm_output_size, str(u_dropout_do),
    #                                                                   str(w_dropout_do), str(1))))
    # # model.add(LSTM(lstm_output_size, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=False,
    # #                input_dim=input_size, dropout_W=w_dropout_do, dropout_U=u_dropout_do,
    # #                implementation=1,
    # #                return_sequences=False if 2 == stack_layers else True,
    # #                go_backwards=False, stateful=False, unroll=False,
    # #                name='lstm_{}_w-drop_{}_u-drop_{}_layer_{}'.format(lstm_output_size, str(u_dropout_do),
    # #                                                                   str(w_dropout_do), str(2))))
    # # model.add(LSTM(lstm_output_size, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=False,
    # #                input_dim=input_size, dropout_W=w_dropout_do, dropout_U=u_dropout_do,
    # #                implementation=1,
    # #                return_sequences=False if 3 == stack_layers else True,
    # #                go_backwards=False, stateful=False, unroll=False,
    # #                name='lstm_{}_w-drop_{}_u-drop_{}_layer_{}'.format(lstm_output_size, str(u_dropout_do),
    # #                                                                   str(w_dropout_do), str(3))))
    # model.add(Dense(output_size, activation='sigmoid', name='sigmoid_output'))
    # model.compile(optimizer='rmsprop', loss='binary_crossentropy')

    # input_matrix = fh.join_paths(matrices_save_location, GLOBAL_VARS.MODEL_NAME)
    # early_stopper = keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=EARLY_STOPPER_MIN_DELTA,
    #                                               patience=EARLY_STOPPER_PATIENCE, verbose=1, mode='auto')
    # metrics_callback = mh.MetricsCallback(input_matrix, classif_type, PARTS_LEVEL, NN_BATCH_SIZE, is_mlp=False)

    # history, yvp, yvp_binary = pmh.fit_predict_generator(model, X_data, y_train, Xv_data, y_val, training_docs_list, val_docs_list, early_stopper, metrics_callback, NN_BATCH_SIZE, NN_MAX_EPOCHS, QUEUE_SIZE)

    # validation_metrics = mh.get_sequential_metrics(y_val, yvp, yvp_binary)
    # mh.display_sequential_metrics(validation_metrics)
    # ###########



    # useful to skip all the already tested models
    if load_existing_results:
        param_results_path = fh.link_paths(fh.join_paths(nn_parameter_search_location, GLOBAL_VARS.MODEL_NAME),
                                           NN_PARAMETER_SEARCH_PREFIX.format(classif_type, classif_level, NN_BATCH_SIZE))
        if fh.ensure_exists_path_location(param_results_path):
            print('Loading Previous results in {}'.format(param_results_path))
            param_results_dict = pickle.load(open(param_results_path, 'rb'))
        else:
            print('No Previous results exist in {}'.format(param_results_path))

    for params in param_sampler:
        start_time = time.time()
        lstm_output_size = params['lstm_output_size']
        w_dropout_do = params['w_dropout']
        u_dropout_do = params['u_dropout']
        stack_layers = params['stack_layers']
        conv_size = params['conv_size']
        conv_filter_length = params['conv_filter_length']
        conv_max_pooling_length = params['conv_max_pooling_length']

        GLOBAL_VARS.NN_MODEL_NAME = 'lstm_size_{}_w-drop_{}_u-drop_{}_stack_{}_conv_{}'.format(
            lstm_output_size, w_dropout_do, u_dropout_do, stack_layers, str(conv_size))

        if conv_size:
            GLOBAL_VARS.NN_MODEL_NAME += '_conv-filter-length_{}_max-pooling-size_{}'.format(conv_filter_length,
                                                                                             conv_max_pooling_length)
        if GLOBAL_VARS.NN_MODEL_NAME in param_results_dict.keys():
            print("skipping: {}".format(GLOBAL_VARS.NN_MODEL_NAME))
            continue

        # creating the actual keras model
        model = pmh.get_keras_rnn_model(NN_INPUT_NEURONS, NN_SEQUENCE_SIZE, NN_OUTPUT_NEURONS,
                                       lstm_output_size, w_dropout_do, u_dropout_do, stack_layers, conv_size,
                                       conv_filter_length, conv_max_pooling_length)

        classifier_name, parameters = ch.get_sequential_classifier_information(model)
        model_name = text_vectorizer+'/'+class_vectorizer+'/'+classifier_name

        input_matrix = fh.join_paths(matrices_save_location, GLOBAL_VARS.MODEL_NAME)
        early_stopper = keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=EARLY_STOPPER_MIN_DELTA,
                                                      patience=EARLY_STOPPER_PATIENCE, verbose=1, mode='auto')
        metrics_callback = mh.MetricsCallback(input_matrix, classif_type, PARTS_LEVEL, NN_BATCH_SIZE, is_mlp=False)

        history, yvp, yvp_binary = pmh.fit_predict_generator(model, X_data, y_train, Xv_data, y_val, training_docs_list, val_docs_list, early_stopper, metrics_callback, NN_BATCH_SIZE, NN_MAX_EPOCHS, QUEUE_SIZE)

        print('\nGenerating Validation Metrics')
        validation_metrics = mh.get_sequential_metrics(y_val, yvp, yvp_binary)
        mh.display_sequential_metrics(classifier_name, validation_metrics)

        param_results_dict[GLOBAL_VARS.NN_MODEL_NAME] = dict()
        # param_results_dict[GLOBAL_VARS.NN_MODEL_NAME]['best_validation_metrics'] = best_validation_metrics
        param_results_dict[GLOBAL_VARS.NN_MODEL_NAME]['epochs'] = len(history.history['val_loss'])
        param_results_dict[GLOBAL_VARS.NN_MODEL_NAME]['best_weights'] = metrics_callback.best_weights
        param_results_dict[GLOBAL_VARS.NN_MODEL_NAME]['best_val_loss'] = metrics_callback.best_val_loss
        param_results_dict[GLOBAL_VARS.NN_MODEL_NAME]['training_loss'] = metrics_callback.losses
        param_results_dict[GLOBAL_VARS.NN_MODEL_NAME]['validation_loss'] = metrics_callback.val_losses

        duration = time.time() - start_time
        param_results_dict[GLOBAL_VARS.NN_MODEL_NAME]['duration'] = duration

        ch.delete_variables(history, metrics_callback)

        ch.save_results(classifier_name+'_LSTM', validation_metrics, parameters, model_name, classif_level, classif_type, dataset_location)

    if save_results:
        file = open(param_results_path, 'wb')
        pickle.dump(param_results_dict, file)
def apply_fasttext(data_frame, text_vectorizer, class_vectorizer,
                   classif_level, classif_type, dataset_location):
    root_location = fh.get_root_location('data/fasttext_outcome/')

    fasttext_location = fh.join_paths(root_location, 'fasttext_models/')
    word2vec_location = fh.join_paths(root_location, 'word2vec_models/')
    timestamp = datetime.datetime.now().isoformat()

    #############################

    # unsupervised model

    # model = fasttext.train_unsupervised(input=fh.link_paths(root_location, 'training set.csv'),
    #                                   autotuneValidationFile=fh.link_paths(root_location, 'training set.csv'))

    #############################

    # supervised model

    # model = fasttext.train_supervised(input=fh.link_paths(root_location, 'training set.csv'),
    #                                   autotuneValidationFile=fh.link_paths(root_location, 'validating set.csv'), verbose=3, autotuneDuration=5000)

    #############################

    model, parameters = pmh.get_fasttext(
        fh.link_paths(root_location, 'training set.csv'))

    pmh.save_fasttext_model(
        model, fh.link_paths(fasttext_location, 'model ' + timestamp + '.bin'))
    # pmh.load_fasttext_model(fh.link_paths(fasttext_location, 'model '+timestamp+'.bin'))

    test_labels, predictions, results = pmh.predict_test_fasttext(
        model, fh.link_paths(root_location, 'testing set.csv'))

    # print('predicted labels {}, probabilities of the labels {}'.format(predictions[0], predictions[1]))

    result_top_15 = model.test(fh.link_paths(root_location, 'testing set.csv'),
                               k=15)
    result_top_8 = model.test(fh.link_paths(root_location, 'testing set.csv'),
                              k=8)
    result_top_5 = model.test(fh.link_paths(root_location, 'testing set.csv'),
                              k=5)
    result_top_3 = model.test(fh.link_paths(root_location, 'testing set.csv'),
                              k=3)
    result_top_1 = model.test(fh.link_paths(root_location, 'testing set.csv'),
                              k=1)

    classifier_name = ch.get_fasttext_classifier_information(str(model))
    model_name = text_vectorizer + '/' + class_vectorizer + '/' + classifier_name

    mh.display_directly_metrics(
        'k=-1 ' + classifier_name, -1, results[1], results[2],
        2 * (results[1] * results[2]) / (results[1] + results[2]))
    mh.display_directly_metrics(
        'k= 15 ' + classifier_name, -1, result_top_15[1], result_top_15[2],
        2 * (result_top_15[1] * result_top_15[2]) /
        (result_top_15[1] + result_top_15[2]))
    mh.display_directly_metrics(
        'k= 8 ' + classifier_name, -1, result_top_8[1], result_top_8[2],
        2 * (result_top_8[1] * result_top_8[2]) /
        (result_top_8[1] + result_top_8[2]))
    mh.display_directly_metrics(
        'k= 5 ' + classifier_name, -1, result_top_5[1], result_top_5[2],
        2 * (result_top_5[1] * result_top_5[2]) /
        (result_top_5[1] + result_top_5[2]))
    mh.display_directly_metrics(
        'k= 3 ' + classifier_name, -1, result_top_3[1], result_top_3[2],
        2 * (result_top_3[1] * result_top_3[2]) /
        (result_top_3[1] + result_top_3[2]))
    mh.display_directly_metrics(
        'k= 1 ' + classifier_name, -1, result_top_1[1], result_top_1[2],
        2 * (result_top_1[1] * result_top_1[2]) /
        (result_top_1[1] + result_top_1[2]))

    ch.save_results(classifier_name, results, parameters, model_name,
                    classif_level, classif_type, dataset_location)

    manual_metrics = mh.calculate_manual_metrics(model_name, test_labels,
                                                 predictions)
    none_average, binary_average, micro_average, macro_average = manual_metrics

    # print(model.test_label()) # path is missing

    # list_ = model.words
    # new_list = []

    # for token in list_:
    #     if len(token) in [0,1,2]:
    #         new_list.append(token)
    #     elif len(token) > 29:
    #         new_list.append(token)

    # # print(new_list)
    # print(len(new_list))

    print(model.labels)
Ejemplo n.º 10
0
def first_attempt_based_on_text_classification_paper(data_frame, text_vectorizer, class_vectorizer):
    # Parameters - can be placed at the beginning of the script
    # ==================================================

    # Data loading params
    tf.flags.DEFINE_float("dev_sample_percentage", .2, "Percentage of the training data to use for validation")
    tf.flags.DEFINE_string("positive_data_file", "./data/rt-polaritydata/rt-polarity.pos", "Data source for the positive data.")
    tf.flags.DEFINE_string("negative_data_file", "./data/rt-polaritydata/rt-polarity.neg", "Data source for the negative data.")

    # Model Hyperparameters
    tf.flags.DEFINE_integer("embedding_dim", 128, "Dimensionality of character embedding (default: 128)")
    tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
    tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
    tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
    tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularization lambda (default: 0.0)")

    # Training parameters
    tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
    tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)")
    tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
    tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
    tf.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)")
    # Misc Parameters
    tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
    tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")

    FLAGS = tf.flags.FLAGS
    # FLAGS._parse_flags()
    # print("\nParameters:")
    # for attr, value in sorted(FLAGS.__flags.items()):
    #     print("{}={}".format(attr.upper(), value))
    # print("")

    dev_sample_percentage = FLAGS.dev_sample_percentage

    # x_train, y_train, vocab_processor, len_vocabulary, x_dev, y_dev, classe, n_classes = preprocess(data_frame, dev_sample_percentage)
    model_name = text_vectorizer+'/'+class_vectorizer+'/TextCNN'
    standard_results = ch.apply_df_vectorizer(data_frame, 'standard', 'multi_label', model_name)
    x_train, x_dev, y_train, y_dev, classes, n_classes, vocab_processor, len_vocabulary = standard_results

    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement = FLAGS.allow_soft_placement,
            log_device_placement = FLAGS.log_device_placement)
        sess = tf.Session(config = session_conf)
        with sess.as_default():
            # Code that operates on the default graph and session comes here…
            cnn = pmh.TextCNN(
                sequence_length = x_train.shape[1],
                num_classes = n_classes,
                vocab_size = (len_vocabulary),
                embedding_size = FLAGS.embedding_dim,
                filter_sizes = list(map(int, FLAGS.filter_sizes.split(","))),
                num_filters = FLAGS.num_filters)

            # define training procedure
            global_step = tf.Variable(0, name="global_step", trainable=False)
            optimizer = tf.train.AdamOptimizer(1e-4)
            grads_and_vars = optimizer.compute_gradients(cnn.loss)
            train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)

            # output directory for models and summaries
            root_location = fh.get_root_location('data/convolutional_runs/')

            timestamp = datetime.datetime.now().isoformat()
            out_dir = fh.link_paths(root_location, timestamp)
            print("Writing to {}\n".format(out_dir))

            # summaries for loss and accuracy
            loss_summary = tf.summary.scalar("loss", cnn.loss)
            acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)

            # train summaries
            train_summary_op = tf.summary.merge([loss_summary, acc_summary])
            train_summary_dir = fh.join_paths(fh.link_paths(out_dir, 'summaries'), 'train')
            train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph_def)

            # dev summaries
            dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
            dev_summary_dir = fh.join_paths(fh.link_paths(out_dir, 'summaries'), 'dev')
            dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph_def)

            # checkpointing
            checkpoint_dir = fh.link_paths(out_dir, 'checkpoints')
            checkpoint_prefix = fh.join_paths(checkpoint_dir, 'model')

            saver = tf.train.Saver(tf.all_variables())

            # write vocabulary
            try:
                vocab_processor.save(os.path.join(out_dir, "vocab"))
            except:
                pass

            # initialize all variables
            sess.run(tf.global_variables_initializer())

            def train_step(x_batch, y_batch):
                """
                A single training step
                """
                feed_dict = {
                  cnn.input_x: x_batch,
                  cnn.input_y: y_batch,
                  cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
                }
                _, step, summaries, loss, accuracy = sess.run(
                    [train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy],
                    feed_dict)
                time_str = datetime.datetime.now().isoformat()
                print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
                train_summary_writer.add_summary(summaries, step)

            def dev_step(x_batch, y_batch, writer=None):
                """
                Evaluates model on a dev set
                """
                feed_dict = {
                    cnn.input_x: x_batch,
                    cnn.input_y: y_batch,
                    cnn.dropout_keep_prob: 1.0
                    }
                step, summaries, loss, accuracy = sess.run(
                    [global_step, dev_summary_op, cnn.loss, cnn.accuracy],
                    feed_dict)
                time_str = datetime.datetime.now().isoformat()
                print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
                if writer:
                    writer.add_summary(summaries, step)

            # generate batches
            batches = batch_iter(
                list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
            # training loop. For each batch…
            for batch in batches:
                x_batch, y_batch = zip(*batch)
                train_step(x_batch, y_batch)
                current_step = tf.train.global_step(sess, global_step)
                if current_step % FLAGS.evaluate_every == 0:
                    print("\nEvaluation:")
                    dev_step(x_dev, y_dev, writer=dev_summary_writer)
                if current_step % FLAGS.checkpoint_every == 0:
                    path = saver.save(sess, checkpoint_prefix, global_step=current_step)
                    print("Saved model checkpoint to {}\n".format(path))
Ejemplo n.º 11
0
def train_doc2vec(data_frame, patent_ids, classif_level, classif_type):
    root_location = fh.get_root_location("data/lstm_outcome/")
    doc2vec_model_save_location = fh.join_paths(root_location, "doc2vec_model/")

    preprocessed_location = fh.join_paths(root_location, "preprocessed_data/separated_datasets/")
    training_preprocessed_files_prefix = fh.join_paths(preprocessed_location, "training_docs_data_preprocessed/")
    validation_preprocessed_files_prefix = fh.join_paths(preprocessed_location, "validation_docs_data_preprocessed/")
    test_preprocessed_files_prefix = fh.join_paths(preprocessed_location, "test_docs_data_preprocessed/")

    vocab_path = fh.join_paths(doc2vec_model_save_location, "vocab_model")

    training_docs_iterator = create_tuple_array(data_frame, patent_ids, text_batch_size=10000)

    #####
    tagged_data = training_docs_iterator
    cores = multiprocessing.cpu_count()
    model_dbow = Doc2Vec(dm=1, vector_size=200, window=2, negative=10, sample=1e-8, hs=0, min_count=50,
                         alpha=0.25, min_alpha=0.05, dbow_words=0, seed=1234, concat=0, workers=cores)
    model_dbow.build_vocab([x for x in tqdm(tagged_data)])

    for epoch in range(30):
        # model_dbow.train(utils_shuffle_rows([x for x in tqdm(tagged_data)]), total_examples=len(tagged_data), epochs=1)
        model_dbow.train(utils_shuffle_rows([x for x in tqdm(tagged_data)]), total_examples=len(tagged_data), epochs=1)
        model_dbow.alpha -= 0.002
        model_dbow.min_alpha = model_dbow.alpha

    date = datetime.datetime.now().isoformat()
    model_dbow.save(fh.link_paths(vocab_path, 'doc2vec_vocab_30_epochs'))
    #####

    params = wmh.get_parameters_lstm_doc2vec()
    GLOBAL_VARS.DOC2VEC_MODEL_NAME, placeholder_model_name, doc2vec_model = wmh.get_lstm_doc2vec(params, classif_level, classif_type)

    # yields a list of sentences id, text as a tuple or (id, tuple)
    # training_docs_iterator = lrh.BatchWrapper(training_preprocessed_files_prefix, text_batch_size=10000, level=classif_level,
    #                                       level_type=classif_type)
    doc2vec_model.build_vocab(documents=training_docs_iterator, progress_per=params[13])
    doc2vec_model.save(fh.link_paths(vocab_path, "doc2vec_vocab"))

    DOC2VEC_ALPHA_DECREASE = wmh.set_alpha_parameters_lstm_doc2vec(doc2vec_model)
    start_epoch = 1

    # for epoch in range(1, params[11] + 1):
    #     GLOBAL_VARS.MODEL_NAME = placeholder_model_name.format(epoch)
    #     doc2vec_folder_path = fh.join_paths(doc2vec_model_save_location, GLOBAL_VARS.MODEL_NAME)
    #     if fh.ensure_exists_path_location(fh.link_paths(doc2vec_folder_path, "doc2vec_model")):
    #         start_epoch = epoch

    # if start_epoch > 1:
    #     GLOBAL_VARS.MODEL_NAME = placeholder_model_name.format(start_epoch)
    #     doc2vec_folder_path = fh.join_paths(doc2vec_model_save_location, GLOBAL_VARS.MODEL_NAME)
    #     # if a model of that epoch already exists, we load it and proceed to the next epoch
    #     doc2vec_model = Doc2Vec.load(fh.link_paths(doc2vec_folder_path, "doc2vec_model"))
    #     start_epoch += 1

    ## The Actual Training
    for epoch in range(start_epoch, params[11] + 1):
        print("### epoch "+str(epoch)+" ###")
        # set new filename/path to include the epoch
        GLOBAL_VARS.MODEL_NAME = placeholder_model_name.format(epoch)
        doc2vec_folder_path = fh.join_paths(doc2vec_model_save_location, GLOBAL_VARS.MODEL_NAME)
        # train the doc2vec model
        # training_docs_iterator = lrh.BatchWrapper(training_preprocessed_files_prefix, text_batch_size=10000, level=classif_level,
        #                                 level_type=classif_type) # yields a list of sentences id, text as a tuple or (id, tuple)

        doc2vec_model.train(documents=training_docs_iterator, total_examples=len(training_docs_iterator),
                            report_delay=params[12], epochs=params[10])
        doc2vec_model.alpha -= DOC2VEC_ALPHA_DECREASE  # decrease the learning rate
        doc2vec_model.min_alpha = doc2vec_model.alpha  # fix the learning rate, no decay
        doc2vec_model.save(fh.link_paths(doc2vec_folder_path, "doc2vec_model"))

    if epoch != params[11]:
        print("still training epochs missing: " + str(epoch))
        sys.exit(1)