Ejemplo n.º 1
0
    def __init__(self, squad_json, vocab_file, cache_file, batch_size,
                 max_seq_length, num_inputs):
        # Whenever you specify a custom constructor for a TensorRT class,
        # you MUST call the constructor of the parent explicitly.
        forward.IPyBatchStream.__init__(self)

        self.cache_file = cache_file

        # Every time get_batch is called, the next batch of size batch_size will be copied to the device and returned.
        self.data = dp.read_squad_json(squad_json)
        self.max_seq_length = max_seq_length
        self.batch_size = batch_size
        self.current_index = 0
        self.num_inputs = num_inputs
        self.tokenizer = tokenization.BertTokenizer(vocab_file=vocab_file,
                                                    do_lower_case=True)
        self.doc_stride = 128
        self.max_query_length = 64
        self.maxbatch = 500
Ejemplo n.º 2
0
    def __init__(self, squad_json, vocab_file, cache_file, batch_size, max_seq_length, num_inputs):
        # Whenever you specify a custom constructor for a TensorRT class,
        # you MUST call the constructor of the parent explicitly.
        trt.IInt8LegacyCalibrator.__init__(self)

        self.cache_file = cache_file

        # Every time get_batch is called, the next batch of size batch_size will be copied to the device and returned.
        self.data = dp.read_squad_json(squad_json)
        self.max_seq_length = max_seq_length
        self.batch_size = batch_size
        self.current_index = 0
        self.num_inputs = num_inputs
        self.tokenizer = tokenization.BertTokenizer(vocab_file=vocab_file, do_lower_case=True)
        self.doc_stride = 128
        self.max_query_length = 64

        # Allocate enough memory for a whole batch.
        self.device_inputs = [cuda.mem_alloc(self.max_seq_length * trt.int32.itemsize * self.batch_size) for binding in range(3)]