def train():
    epochs = 40
    # int values smaller 32
    batch_sizes = [10]
    # list of lists of relative number of nodes for intermediate layers
    # [] .. No intermediate layer
    # [0.5] .. One intermediate layers with 50% of nodes of the input layer
    # Output layer has always one node
    layers_list = [[], [0.5], [0.6, 0.3], [0.7, 0.5, 0.2]]
    # Possible values: 'relu', 'sigmoid', 'tanh', 'softmax', ...
    activations = ["relu"]
    # Possible values fdat.read_train_data(), sdat.read_train_data()
    trainsets = [fdat.read_train_data()]

    for batch_size in batch_sizes:
        for layers in layers_list:
            for activation in activations:
                for ts in trainsets:
                    complexity = len(layers)
                    layer_configs = [hlp.LayerConfig(size) for size in layers]
                    model_config = hlp.ModelConfig(activation=activation,
                                                   optimizer='adam',
                                                   loss='mean_squared_error',
                                                   layers=layer_configs)
                    input_size = ts.x.shape[1]
                    model = DeepModel(
                        f'{activation}_{complexity}',
                        lambda: hlp.create_model(model_config, input_size))
                    training = Training(id=f'bs{batch_size}',
                                        batch_size=batch_size,
                                        deepModel=model,
                                        epochs=epochs,
                                        trainset=ts)
                    plot_loss_during_training(training=training)
    def cv_one(nn: NN) -> float:
        x_train, x_test, y_train, y_test = ms.train_test_split(
            trainset.x, trainset.y)
        print("-- x train", x_train.shape)
        print("-- y train", y_train.shape)
        print("-- x test", x_test.shape)
        print("-- y test", y_test.shape)

        layer_configs = [hlp.LayerConfig(size) for size in nn.layers]
        model_config = hlp.ModelConfig(activation=nn.activation,
                                       optimizer='adam',
                                       loss='mean_squared_error',
                                       layers=layer_configs)
        model = hlp.create_model(model_config, x_train.shape[1])
        history = model.fit(x_train,
                            y_train,
                            epochs=run_config.epochs,
                            batch_size=run_config.batch_size)
        for loss in history.history['loss']:
            print(f'-- {loss:.6f}')

        err = model.evaluate(x_test, y_test)
        return err
Ejemplo n.º 3
0
# Get unique characters.
chars = helpers.get_unique_characters(text)
# Get length of unique chars.
chars_length = len(chars)

# Create sequences that are the input values and the next characters that are the labels.
values, labels = helpers.create_sequences(text, SEQUENCE_LENGTH, SEQUENCE_STEP)

char_to_index, index_to_char = helpers.create_dictionaries(chars)

# Convert to one hot arrays.
x, y = helpers.convert_to_one_hot(values, SEQUENCE_LENGTH, chars_length,
                                  char_to_index, labels)

# Create model.
model = helpers.create_model(SEQUENCE_LENGTH, chars_length)

# Train the model and save it to the disk.
model.fit(x, y, batch_size=512, epochs=EPOCHS)
model.save_weights("model_weights.h5")
# Uncomment the next line to use existing model weights. But you need to comment the two lines above.
# You need to have already run it at least once to save the first model weights.
# model.load_weights("model_weights.h5")

# Create a first 80 chars seed.
print('_____________')
seed = u"Σύρε να ειπής της μάννας σου να μη σε καταρειέται\nνα πέσεις στο βουνό και να σου".lower(
)
sys.stdout.write(unicode(seed).encode('utf8'))
for i in range(400):
    x = np.zeros((1, SEQUENCE_LENGTH, chars_length))
Ejemplo n.º 4
0
    if os.path.exists(TRAINING_MODEL_PATH):
        print(
            "Model already exists. If you continue this model will be ovewritten. Type 'yes' to continue. "
            "Type 'no' to exit and keep existing model.")
        resume = ""
        while resume not in ("yes", "no"):
            resume = input("yes/no: ")
        if resume == "no":
            sys.exit()
        else:
            print(
                "Starting training from scratch. Existing model will be overwritten."
            )
    training_model = helpers.create_model(batch_size=BATCH_SIZE,
                                          input_length=SEQ_LENGTH,
                                          num_chars=num_chars,
                                          batch_momentum=batch_momentum,
                                          rnn_depth=RNN_DEPTH,
                                          dropout=DROPOUT_R)
    training_model.compile(
        loss=helpers.sparse_softmax_cross_entropy_with_logits,
        optimizer=Nadam())
    print("Model compiled and ready for training. Here is its summary:")
    print(training_model.summary())
    predict_model = helpers.create_model(batch_size=1,
                                         input_length=1,
                                         num_chars=num_chars,
                                         rnn_depth=RNN_DEPTH)

    generator = helpers.GenerateJoke(char_dict)
    #now a loop
    epoch = 0
Ejemplo n.º 5
0
def main(config, tr_stream, dev_stream, use_bokeh=False):

    logger.info('Building RNN encoder-decoder')
    cost, samples, search_model = create_model(config)
    #cost, samples, search_model = create_multitask_model(config)

    logger.info("Building model")
    cg = ComputationGraph(cost)
    training_model = Model(cost)

    # apply dropout for regularization
    if config['dropout'] < 1.0:
        # dropout is applied to the output of maxout in ghog
        logger.info('Applying dropout')
        dropout_inputs = [
            x for x in cg.intermediary_variables
            if x.name == 'maxout_apply_output'
        ]
        cg = apply_dropout(cg, dropout_inputs, config['dropout'])

    # Set extensions
    logger.info("Initializing extensions")
    extensions = [
        FinishAfter(after_n_batches=config['finish_after']),
        TrainingDataMonitoring([cost], after_batch=True),
        Printing(after_batch=True),
        CheckpointNMT(config['saveto'], every_n_batches=config['save_freq'])
    ]

    # Add sampling
    if config['hook_samples'] >= 1:
        logger.info("Building sampler")
        extensions.append(
            Sampler(model=search_model,
                    data_stream=tr_stream,
                    src_vocab=config['src_vocab'],
                    trg_vocab=config['trg_vocab'],
                    phones_vocab=config['phones'],
                    hook_samples=config['hook_samples'],
                    every_n_batches=config['sampling_freq'],
                    src_vocab_size=config['src_vocab_size']))

    # Add early stopping based on f1
    if config['f1_validation'] is not None:
        logger.info("Building f1 validator")
        extensions.append(
            F1Validator(samples=samples,
                        config=config,
                        model=search_model,
                        data_stream=dev_stream,
                        normalize=config['normalized_f1'],
                        every_n_batches=config['f1_val_freq']))

    # Reload model if necessary
    if config['reload']:
        extensions.append(LoadNMT(config['saveto']))

    # Set up training algorithm
    logger.info("Initializing training algorithm")
    algorithm = GradientDescent(cost=cost,
                                parameters=cg.parameters,
                                step_rule=CompositeRule([
                                    StepClipping(config['step_clipping']),
                                    eval(config['step_rule'])(),
                                    RemoveNotFinite()
                                ]),
                                on_unused_sources='warn')

    # Initialize main loop
    logger.info("Initializing main loop")
    main_loop = MainLoop(model=training_model,
                         algorithm=algorithm,
                         data_stream=tr_stream,
                         extensions=extensions)

    # Train!
    main_loop.run()
Ejemplo n.º 6
0
def ncc_section_range(start_section, end_section, path_template):
    img_in_out_mip = [(6, 6), (6, 7), (7, 8)]
    for img_in_mip, img_out_mip in img_in_out_mip:
        pyramid_name = "ncc_m{}".format(img_out_mip)
        if img_out_mip == 6:
            cv_src_path = path_template + 'm6_normalized'
            cv_dst_path = path_template + 'ncc/ncc_m{}'.format(img_out_mip)
        elif img_out_mip in [7, 8]:
            cv_src_path = path_template + 'ncc/ncc_m{}'.format(img_in_mip)
            cv_dst_path = path_template + 'ncc/ncc_m{}'.format(img_out_mip)
        else:
            raise Exception("Unkown mip")

        cv_src = cv.CloudVolume(cv_src_path,
                                mip=img_in_mip,
                                fill_missing=True,
                                bounded=False,
                                progress=False)
        cv_dst = cv.CloudVolume(cv_dst_path,
                                mip=img_out_mip,
                                fill_missing=True,
                                bounded=False,
                                progress=False,
                                parallel=5,
                                info=deepcopy(cv_src.info),
                                non_aligned_writes=True)
        cv_dst.info['data_type'] = 'float32'
        cv_dst.commit_info()

        cv_xy_start = [0, 0]

        crop = 256
        if img_in_mip == 6:
            cv_xy_start = [256 * 0, 1024 * 0]
            cv_xy_end = [8096, 8096]  #[1024 * 8 - 256*0, 1024 * 8 - 256*0]
            patch_size = 8096 // 4
        elif img_in_mip == 7:
            cv_xy_start = [256 * 0, 1024 * 0]
            cv_xy_end = [4048, 4048]  #[1024 * 8 - 256*0, 1024 * 8 - 256*0]
            patch_size = 4048 // 2
        elif img_in_mip == 8:
            cv_xy_end = [2024, 2048]  #[1024 * 8 - 256*0, 1024 * 8 - 256*0]
            patch_size = 2024

        global_start = 0
        scale_factor = 2**(img_out_mip - img_in_mip)

        encoder = create_model(
            "model", checkpoint_folder="./models/{}".format(pyramid_name))

        for z in range(start_section, end_section):
            print("MIP {} Section {}".format(img_out_mip, z))
            s = time.time()

            cv_src_data = cv_src[cv_xy_start[0]:cv_xy_end[0],
                                 cv_xy_start[1]:cv_xy_end[1], z].squeeze()
            src_data = torch.cuda.FloatTensor(cv_src_data)
            src_data = src_data.unsqueeze(0)

            in_shape = src_data.shape

            dst = torch.zeros((1, in_shape[-2] // scale_factor,
                               in_shape[-1] // scale_factor),
                              device=src_data.device)

            for i in range(0, src_data.shape[-2] // patch_size):
                for j in range(0, src_data.shape[-1] // patch_size):

                    x = [
                        global_start + i * patch_size,
                        global_start + (i + 1) * patch_size
                    ]
                    y = [
                        global_start + j * patch_size,
                        global_start + (j + 1) * patch_size
                    ]
                    x_padded = copy.copy(x)
                    y_padded = copy.copy(y)
                    if i != 0:
                        x_padded[0] = x[0] - crop
                    if i != src_data.shape[-2] // patch_size - 1:
                        x_padded[1] = x[1] + crop
                    if j != 0:
                        y_padded[0] = y[0] - crop
                    if j != src_data.shape[-1] // patch_size - 1:
                        y_padded[1] = y[1] + crop

                    patch = src_data[..., x_padded[0]:x_padded[1],
                                     y_padded[0]:y_padded[1]].squeeze()
                    with torch.no_grad():
                        processed_patch = encoder(
                            patch.unsqueeze(0).unsqueeze(0)).squeeze()
                    if i != 0:
                        processed_patch = processed_patch[crop //
                                                          scale_factor:, :]
                    if i != src_data.shape[-2] // patch_size - 1:
                        processed_patch = processed_patch[:-crop //
                                                          scale_factor, :]
                    if j != 0:
                        processed_patch = processed_patch[:, crop //
                                                          scale_factor:]
                    if j != src_data.shape[-1] // patch_size - 1:
                        processed_patch = processed_patch[:, :-crop //
                                                          scale_factor]
                    dst[..., x[0] // scale_factor:x[1] // scale_factor, y[0] //
                        scale_factor:y[1] // scale_factor] = processed_patch
                    if torch.any(processed_patch != processed_patch):
                        raise Exception("None result occured")

            with torch.no_grad():
                if scale_factor == 2:
                    black_mask = src_data != 0
                    black_frac = float(torch.sum(black_mask == False)) / float(
                        torch.sum(src_data > -10000))
                    black_mask = torch.nn.MaxPool2d(2)(
                        black_mask.unsqueeze(0).float()) != 0
                    black_mask = black_mask.squeeze(0)
                elif scale_factor == 4:
                    black_mask = src_data != 0
                    black_frac = float(torch.sum(black_mask == False)) / float(
                        torch.sum(src_data > -10000))
                    black_mask = torch.nn.MaxPool2d(2)(
                        black_mask.unsqueeze(0).float()) != 0
                    black_mask = black_mask.squeeze(0)
                    black_mask = torch.nn.MaxPool2d(2)(
                        black_mask.unsqueeze(0).float()) != 0
                    black_mask = black_mask.squeeze(0)
                elif scale_factor == 1:
                    black_mask = (src_data > -10) * (src_data != 0)
                    black_frac = float(torch.sum(black_mask == False)) / float(
                        torch.sum(src_data > -10000))
                else:
                    raise Exception("Unimplemented")

                if torch.any(dst != dst):
                    raise Exception("None result occured")
                dst_norm = normalize(dst, mask=black_mask, mask_fill=0)
                if torch.any(dst_norm != dst_norm):
                    raise Exception("None result occured")
            cv_data = get_np(
                dst_norm.squeeze().unsqueeze(2).unsqueeze(2)).astype(
                    np.float32)

            cv_dst[cv_xy_start[0] // scale_factor:cv_xy_end[0] // scale_factor,
                   cv_xy_start[1] // scale_factor:cv_xy_end[1] // scale_factor,
                   z] = cv_data

            e = time.time()
            print(e - s, " sec")
Ejemplo n.º 7
0
indexes = [line[headers['IdAfter']]
           for line in lines]  # Keep IdAfter as the id
comments = [line[headers['Comment']] for line in lines]
texts = [line[headers['TextBefore']] for line in lines]
textdiffs = [line[headers['TextAdditions']] for line in lines]
textdiffsd = [line[headers['TextDeletions']] for line in lines]
codes = [line[headers['CodeBefore']] for line in lines]
codediffs = [line[headers['CodeAdditions']] for line in lines]
codediffsd = [line[headers['CodeDeletions']] for line in lines]
codesequences = [line[headers['CodeSequenceBefore']] for line in lines]
codesequencediffs = [line[headers['CodeSequenceAdditions']] for line in lines]
codesequencediffsd = [line[headers['CodeSequenceDeletions']] for line in lines]

# Create the models if they do not exist
if not model_exists('tfidf_comments'):
    create_model('tfidf_comments',
                 [line[headers['Comment']] for line in lines])

if not model_exists('tfidf_texts'):
    create_model('tfidf_texts', [
        line[headers['TextBefore']] + ' ' + line[headers['TextAdditions']] +
        ' ' + line[headers['TextDeletions']] for line in lines
    ])

if not model_exists('tfidf_codes'):
    create_model('tfidf_codes', [
        line[headers['CodeBefore']] + ' ' + line[headers['CodeAdditions']] +
        ' ' + line[headers['CodeDeletions']] for line in lines
    ])

# Load the models
comment_vectorizer = load_model('tfidf_comments')