Ejemplo n.º 1
0
def main():
    try:
        file = sys.argv[1] if len(sys.argv) >1 else "./models/c101.txt"
        print "Running for instance " + file
        instance = Instance(readFile(file), 25)
        print "Generating routes..."
        measure(lambda : instance.generateRoutes(10000))

        # Create a new model
        m = Model("roteamento")
        
        R = [x for x in range(len(instance.routes))]
        J = [x for x in range(1, len(instance.customers))]
        x = {}   
        routes = instance.routes

        # Create variables
        for i in R:   
            x[i] = m.addVar(lb=0, ub=1, vtype="I", name="x%s"%(i))
        m.update()   

        # Set objective
        m.setObjective(quicksum(routes[i].distance*x[i] for i in R), GRB.MINIMIZE)
        m.update()   

        # Add constraint
        for i in range(1, len(instance.customers)):               
            m.addConstr(quicksum(int(routes[j].isInRoute(i)) * x[j] for j in R) == 1, "Cliente esta na rota x%s"%(i))
        m.update()

        m.addConstr(quicksum(x[i] for i in R) <= instance.vehicles, "Max veiculos")
        m.update()
        
        # Optimize model
        m.write("Modelo.lp")
        m.optimize()

        resultado = []
        soma = 0
        for i in range(len(m.getVars())):
            if(m.getVars()[i].x > 0):
                resultado.append(i)
                soma+= instance.routes[i].distance
        
        print "\nRoutes:" 
        for r in resultado:
            print instance.routes[r].getId()

        print "\nDistance:", soma

    except GurobiError as e:
        print('Error code ' + str(e.errno) + ": " + str(e))

    except AttributeError as e:
        print('Encountered an attribute error', e)
Ejemplo n.º 2
0
def closest_node_in_meters(node, nodes):
    nodes = np.asarray(nodes)

    lat1 = node[0]
    lon1 = node[1]

    dist_2 = []

    for existingNode in nodes:
        lat2 = existingNode[0]
        lon2 = existingNode[1]
        dist_2.append(measure(lat1,lon1,lat2,lon2))

    dist_2 = np.array(dist_2)

    return np.argmin(dist_2), np.min(dist_2)
Ejemplo n.º 3
0
def splitData(gps, numFrames, maxDistanceBetweenPoints):

    goodSequences = []

    for year in gps:
        lats = gps[year]['lat']
        lons = gps[year]['lon']
        panoids = gps[year]['panoid']
        orientation = gps[year]['orientation']

        tmpSequence = []

        if isinstance(
                lats, list
        ):  # We have to check if there are multiple observations from a given year.

            for i in range(1, len(lats)):

                distanceFromPreviousPoint = measure(lats[i - 1], lons[i - 1],
                                                    lats[i], lons[i])

                if distanceFromPreviousPoint < maxDistanceBetweenPoints:

                    # temporally append previous point
                    tmpSequence.append([
                        year, lats[i - 1], lons[i - 1], panoids[i - 1],
                        orientation[i - 1]
                    ])

                    if len(tmpSequence) == numFrames:

                        # Append the sequence to the acceptable sequences according to split
                        goodSequences.append(tmpSequence)
                        tmpSequence = []

                else:  # Since the points are order it will mean that it was not possible to find a sufficiently long sequence. Therefore we reset.

                    tmpSequence = []

    return goodSequences
Ejemplo n.º 4
0
def findSequencesWithDifferentTimeAndSamePlace(
        sequenceSplits, numDates, maxDistanceBetweenStartingPoints,
        usedPanoids, numFrame):
    # For each sequence for all the sequences with different dates
    # and add all the sequence with are close to each other to a list

    finalSequences = []

    for outer in range(len(sequenceSplits)):

        unique = True
        for i in range(len(sequenceSplits[outer])):
            panoidOuter = sequenceSplits[outer][i][3]
            if panoidOuter in usedPanoids:
                unique = False

        if unique:

            yearOfOuter = sequenceSplits[outer][0][0]
            firstLatOuter = sequenceSplits[outer][0][1]
            firstLonOuter = sequenceSplits[outer][0][2]

            tmpUsedPanoids = []

            for i in range(len(sequenceSplits[outer])):
                panoidOuter = sequenceSplits[outer][i][3]

                tmpUsedPanoids.append(panoidOuter)

            tmp = []
            usedYears = []
            usedYears.append(yearOfOuter)
            tmp.append(sequenceSplits[outer])
            # we might as well already append it. Either we look everything through and dont find a matching sequence, and then it doesn't matter if we have it here.

            for inner in range(len(sequenceSplits)):
                yearOfInner = sequenceSplits[inner][0][0]

                # If any of the panoids are already used, we don't want to use the sequence.

                unique = True
                for i in range(len(sequenceSplits[inner])):
                    panoidInner = sequenceSplits[inner][i][3]
                    if panoidInner in usedPanoids:
                        unique = False

                    if panoidInner == "HCB210nwx_o9tMyHJ-rhfQ" and unique != False:
                        stop = True

                # If it is a unique path combination. This condition is necessary to avoid doublicates
                if unique:
                    if numFrame == 20:
                        stop = True
                    # If we have two sequence with different dates
                    if yearOfInner not in usedYears:

                        firstLatInner = sequenceSplits[inner][0][1]
                        firstLonInner = sequenceSplits[inner][0][2]

                        distance = measure(firstLatInner, firstLonInner,
                                           firstLatOuter, firstLonOuter)

                        # And the distance between the first observations are smaller than a distance
                        if distance < maxDistanceBetweenStartingPoints:

                            tmp.append(sequenceSplits[inner])
                            usedYears.append(yearOfInner)

                            for i in range(len(sequenceSplits[inner])):
                                panoidInner = sequenceSplits[inner][i][3]

                                tmpUsedPanoids.append(panoidInner)

                            if len(tmp) == (numDates):

                                finalSequences.append(tmp)
                                tmp = []

                                for panoid in tmpUsedPanoids:
                                    usedPanoids.append(panoid)

                                tmpUsedPanoids = []

    return finalSequences, usedPanoids
Ejemplo n.º 5
0
def mainFunction(cityName):

    print(cityName)

    continueWithCity = True
    plotInterpolationResults = False
    plotPanoidsPositionResults = False
    plotChosenSequences = False
    download = True
    testing = False

    chains = ["mcdonalds", "cinema", "stadium"]

    baseDirectory = '/home/frederik/Desktop/dataset/{}/'.format(cityName)

    xxs = np.linspace(-0.1, 0.1, 100)

    for xx in xxs:

        cityCoords = [[19.409084 + xx, -99.145136 + xx],
                      [42.357978 + xx, -71.060782 + xx],
                      [40.414523 + xx, -3.705759 + xx],
                      [51.521473 + xx, -0.105750 + xx],
                      [48.852287 + xx, 2.346714 + xx],
                      [-26.178069 + xx, 28.056847 + xx],
                      [37.879586 + xx, -122.270670 + xx],
                      [-22.896383 + xx, -43.277966 + xx],
                      [35.67332 + xx, 139.775610 + xx],
                      [-33.898333 + xx, 151.099035 + xx]]

        if cityName == 'Mexico City':
            cityCoord = cityCoords[0]
            apiKey = 'AIzaSyDi0_vwJYxxAWk_bHJnYb7DTvPYpk2YzGs'

        elif cityName == 'Boston':
            cityCoord = cityCoords[1]
            apiKey = 'AIzaSyDm-RuA_Fu6rzebvaN5CuD4znZvh4-x-Cc'

        elif cityName == 'Madrid':
            cityCoord = cityCoords[2]
            apiKey = 'AIzaSyDi0_vwJYxxAWk_bHJnYb7DTvPYpk2YzGs'

        elif cityName == 'London':
            cityCoord = cityCoords[3]
            apiKey = 'AIzaSyDXmwm0xlivvdNj2JB2aBMSCCCmD3sSW9g'

        elif cityName == 'Paris':
            cityCoord = cityCoords[4]
            apiKey = 'AIzaSyDXmwm0xlivvdNj2JB2aBMSCCCmD3sSW9g'

        elif cityName == 'Johannesburg':
            cityCoord = cityCoords[5]
            apiKey = 'AIzaSyDi0_vwJYxxAWk_bHJnYb7DTvPYpk2YzGs'

        elif cityName == "San Francisco":
            apiKey = 'AIzaSyDm-RuA_Fu6rzebvaN5CuD4znZvh4-x-Cc'
            cityCoord = cityCoords[6]

        elif cityName == "Rio de Janeiro":
            apiKey = 'AIzaSyBXldN3BcrGE3aTsbkHjoPCPa4RDlHatHE'
            cityCoord = cityCoords[7]

        elif cityName == "Tokyo":
            apiKey = 'AIzaSyCVM-TJNV4rU_i1tuq6enXi-ySYH4ruIl4'
            cityCoord = cityCoords[8]

        elif cityName == "Sydney":
            apiKey = 'AIzaSyDm-RuA_Fu6rzebvaN5CuD4znZvh4-x-Cc'
            cityCoord = cityCoords[9]

        lat = cityCoord[0]
        lon = cityCoord[1]

        numFrames = np.array(range(30, 4,
                                   -1))  # max 50 frames and min 5 frames
        numDates = 4
        maxDistanceBetweenPoints = 20  # m
        maxDistanceBetweenStartingPoints = 30  # m

        # This enables os to continue with the same city eventhough the program is stopped.
        if continueWithCity:
            uniqueLabelCounter, totalDownloadedSequences, totalDownloadedSequencesKm, totalDownloadedSequencesPerLength = getCityInfo(
                baseDirectory)
            usedPanoids = getUsedPanoids(baseDirectory)

        else:
            uniqueLabelCounter = 0  # Used to label data such that each point in a radius of 15 m gets the same label.
            totalDownloadedSequencesKm = 0  # How many km we have downloaded
            totalDownloadedSequences = 0  # How many sequences we have download
            totalDownloadedSequencesPerLength = np.zeros(
                len(numFrames)
            )  # How many sequences per length: f.eks 1 sequence of 5 frame, 2 sequence of 6 frames, ...
            usedPanoids = []

        routePoints = generateRoutes(chains, lat, lon, apiKey)
        print(cityName)

        for i, from_ in enumerate(routePoints):
            for j, to_ in enumerate(routePoints):

                if i != j:

                    if measure(
                            from_[0], from_[1], to_[0], to_[1]
                    ) > 1000:  # distance between points must be more than 1 km

                        # This enables os to continue with the same city eventhough the program is stopped.
                        currentFolders = os.listdir(baseDirectory)

                        if 'from: {0} to: {1}'.format(
                                str(from_), str(to_)) not in currentFolders:
                            print(i, j, len(routePoints), cityName)
                            #t0 = time.time()

                            #print("Downloading street view images from " + str(from_) + " to "+ str(to_))

                            directory = baseDirectory + 'from: {0} to: {1}/'.format(
                                str(from_), str(to_))

                            os.makedirs(directory)

                            if not testing:
                                lats, lons, pos = getGeoCoordinates(
                                    from_, to_, apiKey)

                                labelPos = pos[:, :2]

                                labels = list(
                                    range(uniqueLabelCounter,
                                          uniqueLabelCounter + len(labelPos)))
                                uniqueLabelCounter += len(labels)
                                #t1 = time.time()
                                #print("We have the geo-coordinates of this route. It took " + str(t1-t0) + " seconds" )

                                if plotInterpolationResults:
                                    plt = plotInterpolation(
                                        pos, lats, lons, True)
                                    plt.show()

                                #######
                                # Note that it takes a long time to get the panoids...
                                ######

                                pointsOfInterest = getPointsOfInterest(pos)

                                #t2 = time.time()
                                #print("We have the points of interest of this route. It took " + str(t2 - t1) + " seconds")

                                ###########
                                # Sort by date
                                ##########

                                gps = sortPointsOfInterestByDate(
                                    pointsOfInterest, pos)

                                if plotPanoidsPositionResults:
                                    plotPanoidsPosition(gps, pos)

                                #t3 = time.time()
                                #print("We have the sorted the points of this route. It took " + str(t3 - t2) + " seconds")

                            # For testing and debugging
                            #else:
                            #    gps = getGPS()

                            allSequences = []

                            for i, numFrame in enumerate(numFrames):
                                #########
                                # Get sequences
                                #########

                                sequences, usedPanoids = getSequences(
                                    gps, numFrame, numDates,
                                    maxDistanceBetweenPoints,
                                    maxDistanceBetweenStartingPoints,
                                    usedPanoids)

                                totalDownloadedSequencesPerLength[
                                    i] = totalDownloadedSequencesPerLength[
                                        i] + len(sequences)

                                for sequence in sequences:
                                    allSequences.append(sequence)

                            #t4 = time.time()

                            #if not testing:
                            #    print("We have gotten the sequences this route. It took " + str(t4 - t3) + " seconds")

                            #############
                            # Download images
                            ##############

                            displayResults(allSequences, download, directory,
                                           apiKey, cityCoord, labels, labelPos,
                                           cityName)

                            #t5 = time.time()

                            #print("We have the download the images this route. It took " + str(t5 - t4) + " seconds")

                            #print("The total time of this route was " + str(t5 - t0))

                            totalDownloadedSequences += len(allSequences)

                            distance, distancesOfEachSequence, framesOfEachSequence = calculateDistanceOfSequences(
                                allSequences)
                            totalDownloadedSequencesKm += distance

                            print(cityName)
                            print("We have now downloaded at total of " +
                                  str(totalDownloadedSequences) +
                                  " sequences!")
                            print("We have now downloaded at total of " +
                                  str(totalDownloadedSequencesKm) +
                                  " km of sequences!")

                            for i, index in enumerate(
                                    totalDownloadedSequencesPerLength):
                                print(
                                    "There are " + str(index) +
                                    " sequences of " +
                                    str((len(totalDownloadedSequencesPerLength)
                                         - i) + 4) + " frames")

                            print()

                            dumpUsedPanoids(usedPanoids, baseDirectory)
                            dumpCityInfo(uniqueLabelCounter,
                                         totalDownloadedSequences,
                                         totalDownloadedSequencesKm,
                                         totalDownloadedSequencesPerLength,
                                         baseDirectory)

                            # Create summary file from path

                            summaryArray = {}

                            summaryArray['name'] = 'from: {0} to: {1}'.format(
                                str(from_), str(to_))
                            summaryArray['numberOfSequenceSets'] = len(
                                allSequences)
                            summaryArray['totalKm'] = distance

                            sequenceDetails = {}

                            for idx, sequenceSet in enumerate(allSequences):
                                dates = getYearsOfSequenceSet(
                                    directory +
                                    'sequenceSet{}/dates.txt'.format(idx))

                                context = {}

                                context['frames'] = framesOfEachSequence[idx]
                                context['km'] = distancesOfEachSequence[idx]
                                context['dates'] = dates

                                sequenceDetails["sequence{}".format(
                                    idx)] = context

                            summaryArray['sequenceSets'] = sequenceDetails

                            # Dump result to json file
                            with open(directory + '/description.json',
                                      'w') as fp:
                                json.dump(summaryArray, fp, indent=4)
Ejemplo n.º 6
0
Archivo: demo.py Proyecto: zcz736/VASC
                    annealing=False,
                    batch_size=batch_size,
                    prefix=PREFIX,
                    label=label,
                    scale=config['scale'],
                    patience=config['patience'] 
                )
#            res_file = PREFIX+'_res.h5'
#            res_data = h5py.File( name=res_file,mode='r' )
#            dim2 = res_data['RES5']
#            print(np.max(dim2))
        
        print(res.shape)
        k = len( np.unique(label) )
        cl,_ = clustering( res,k=k)
        dm = measure( cl,label )
        
#            res_data.close()
        ### analysis results
        # plot loss
        
        # plot 2-D visulation
        fig = print_2D( points=res,label=label,id_map=id_map )
#        fig.savefig('embryo.eps')
#        fig = print_2D( points=res_data['RES5'],label=label,id_map=id_map )
#        fig.show()
#        res_data.close()
#        time.sleep(30)
        #res_data.close()
    # plot NMI,ARI curve
#    
Ejemplo n.º 7
0
    totalDownloadedSequencesPerLength = np.zeros(
        len(numFrames)
    )  # How many sequences per length: f.eks 1 sequence of 5 frame, 2 sequence of 6 frames, ...
    usedPanoids = []

for city in cities:
    lat = city[0]
    lon = city[1]

    routePoints = generateRoutes(chains, lat, lon, apiKey)
    print(routePoints)
    for i, from_ in enumerate(routePoints):
        for j, to_ in enumerate(routePoints):
            if i != j:
                if measure(
                        from_[0], from_[1], to_[0], to_[1]
                ) > 1000:  # distance between points must be more than 1 km

                    # This enables os to continue with the same city eventhough the program is stopped.
                    currentFolders = os.listdir(baseDirectory)

                    if 'from: {0} to: {1}'.format(
                            str(from_), str(to_)) not in currentFolders:

                        t0 = time.time()

                        print("Downloading street view images from " +
                              str(from_) + " to " + str(to_))

                        directory = baseDirectory + 'from: {0} to: {1}/'.format(
                            str(from_), str(to_))
Ejemplo n.º 8
0
            m.addConstr(quicksum(int(routes[j].isInRoute(i)) * x[j] for j in R) == 1, "Cliente esta na rota x%s"%(i))
        m.update()

        m.addConstr(quicksum(x[i] for i in R) <= instance.vehicles, "Max veiculos")
        m.update()
        
        # Optimize model
        m.write("Modelo.lp")
        m.optimize()

        resultado = []
        soma = 0
        for i in range(len(m.getVars())):
            if(m.getVars()[i].x > 0):
                resultado.append(i)
                soma+= instance.routes[i].distance
        
        print "\nRoutes:" 
        for r in resultado:
            print instance.routes[r].getId()

        print "\nDistance:", soma

    except GurobiError as e:
        print('Error code ' + str(e.errno) + ": " + str(e))

    except AttributeError as e:
        print('Encountered an attribute error', e)

measure(main)
Ejemplo n.º 9
0
Archivo: vasc.py Proyecto: zcz736/VASC
def vasc(expr,
         epoch=5000,
         latent=2,
         patience=50,
         min_stop=500,
         batch_size=32,
         var=False,
         prefix='test',
         label=None,
         log=True,
         scale=True,
         annealing=False,
         tau0=1.0,
         min_tau=0.5,
         rep=0):
    '''
    VASC: variational autoencoder for scRNA-seq datasets
    
    ============
    Parameters:
        expr: expression matrix (n_cells * n_features)
        epoch: maximum number of epochs, default 5000
        latent: dimension of latent variables, default 2
        patience: stop if loss showes insignificant decrease within *patience* epochs, default 50
        min_stop: minimum number of epochs, default 500
        batch_size: batch size for stochastic optimization, default 32
        var: whether to estimate the variance parameters, default False
        prefix: prefix to store the results, default 'test'
        label: numpy array of true labels, default None
        log: if log-transformation should be performed, default True
        scale: if scaling (making values within [0,1]) should be performed, default True
        annealing: if annealing should be performed for Gumbel approximation, default False
        tau0: initial temperature for annealing or temperature without annealing, default 1.0
        min_tau: minimal tau during annealing, default 0.5
        rep: not used
    
    =============
    Values:
        point: dimension-*latent* results
        A file named (*prefix*_*latent*_res.h5): we prefer to use this file to analyse results to the only return values.
        This file included the following keys:
            POINTS: all intermediated latent results during the iterations
            LOSS: loss values during the training procedure
            RES*i*: i from 0 to 14
                - hidden values just for reference
        We recommend use POINTS and LOSS to select the final results in terms of users' preference.
    '''

    expr[expr < 0] = 0.0

    if log:
        expr = np.log2(expr + 1)
    if scale:
        for i in range(expr.shape[0]):
            expr[i, :] = expr[i, :] / np.max(expr[i, :])

#    if outliers:
#        o = outliers_detection(expr)
#        expr = expr[o==1,:]
#        if label is not None:
#            label = label[o==1]

    if rep > 0:
        expr_train = np.matlib.repmat(expr, rep, 1)
    else:
        expr_train = np.copy(expr)

    vae_ = VASC(in_dim=expr.shape[1], latent=latent, var=var)
    vae_.vaeBuild()
    #print_summary( vae_.vae )

    points = []
    loss = []
    prev_loss = np.inf
    #tau0 = 1.
    tau = tau0
    #min_tau = 0.5
    anneal_rate = 0.0003
    for e in range(epoch):
        cur_loss = prev_loss

        #mask = np.ones( expr_train.shape,dtype='float32' )
        #mask[ expr_train==0 ] = 0.0
        if e % 100 == 0 and annealing:
            tau = max(tau0 * np.exp(-anneal_rate * e), min_tau)
            print(tau)

        tau_in = np.ones(expr_train.shape, dtype='float32') * tau
        #print(tau_in.shape)

        loss_ = vae_.vae.fit([expr_train, tau_in],
                             expr_train,
                             epochs=1,
                             batch_size=batch_size,
                             shuffle=True,
                             verbose=0)
        train_loss = loss_.history['loss'][0]
        cur_loss = min(train_loss, cur_loss)
        loss.append(train_loss)
        #val_loss = -loss.history['val_loss'][0]
        res = vae_.ae.predict([expr, tau_in])
        points.append(res[5])
        if label is not None:
            k = len(np.unique(label))

        if e % patience == 1:
            print("Epoch %d/%d" % (e + 1, epoch))
            print("Loss:" + str(train_loss))
            if abs(cur_loss - prev_loss) < 1 and e > min_stop:
                break
            prev_loss = train_loss
            if label is not None:
                try:
                    cl, _ = clustering(res[5], k=k)
                    measure(cl, label)
                except:
                    print('Clustering error')

    #
    ### analysis results
    #cluster_res = np.asarray( cluster_res )
    points = np.asarray(points)
    aux_res = h5py.File(prefix + '_' + str(latent) + '_res.h5', mode='w')
    #aux_res.create_dataset( name='EXPR',data=expr )
    #aux_res.create_dataset( name='CLUSTER',data=cluster_res )
    aux_res.create_dataset(name='POINTS', data=points)
    aux_res.create_dataset(name='LOSS', data=loss)
    count = 0
    for r in res:
        aux_res.create_dataset(name='RES' + str(count), data=r)
        count += 1
    aux_res.close()

    return res[5]