Ejemplo n.º 1
0
Archivo: auto.py Proyecto: dfdx/cdbn
def run_autoencoder():
    imfiles = glob.glob('cropped/*.pgm')
    X = np.vstack([np.array(Image.open(fname).convert('L')).flatten()
                   for fname in imfiles])
    # digits = datasets.load_digits()
    # X = np.asarray(digits.data, 'float32')
    rbm = train_rbm(X, n_components=100, n_iter=5)
    images = [comp.reshape(192, 168) for comp in rbm.components_]
    images = images[:10]
    hlp.smartshow(images)
    
Ejemplo n.º 2
0
def run_autoencoder():
    imfiles = glob.glob('cropped/*.pgm')
    X = np.vstack([
        np.array(Image.open(fname).convert('L')).flatten() for fname in imfiles
    ])
    # digits = datasets.load_digits()
    # X = np.asarray(digits.data, 'float32')
    rbm = train_rbm(X, n_components=100, n_iter=5)
    images = [comp.reshape(192, 168) for comp in rbm.components_]
    images = images[:10]
    hlp.smartshow(images)
Ejemplo n.º 3
0
def run_auto():
    X = load_data('gender/male')
    X = X.astype(np.float32) / 256
    rbm = BernoulliRBM(random_state=0, verbose=True)
    rbm.learning_rate = 0.06
    rbm.n_iter = 20
    rbm.n_components = 2000
    rbm.fit(X)
    cimgs = [comp.reshape(100, 100) for comp in rbm.components_]
    smartshow(cimgs[:12])
    return rbm
Ejemplo n.º 4
0
def run_deep():
    X = load_data('gender/male')
    X = X.astype(np.float32) / 256
    rbm1 = BernoulliRBM(n_components=10000, n_iter=20, learning_rate=0.05,
                        random_state=0, verbose=True)
    rbm2 = BernoulliRBM(n_components=200, n_iter=20, learning_rate=0.05,
                        random_state=0, verbose=True)
    model = Pipeline(steps=[('rbm1', rbm1), ('rbm2', rbm)])
    model.fit(X)
    cimgs = [comp.reshape(100, 100) for comp in model.steps[1][1].components_]
    smartshow(cimgs[:12])
    return model