Ejemplo n.º 1
0
 def forward(self, img, volatile=False):
     # BDWH -> HBWD -> HBsD
     b, d, w, h = img.size()
     seq = img.permute(3, 0, 2, 1).contiguous().view(h, b * w, d)
     bs = b * w
     h0 = Variable(helpers.typeas(torch.zeros(1, bs, self.noutput), img),
                   volatile=volatile)
     c0 = Variable(helpers.typeas(torch.zeros(1, bs, self.noutput), img),
                   volatile=volatile)
     # HBsD -> HBsD
     assert seq.size() == (h, b * w, d), (seq.size(), (h, b * w, d))
     post_lstm, _ = self.lstm(seq, (h0, c0))
     assert post_lstm.size() == (h, b * w, self.noutput), (post_lstm.size(),
                                                           (h, b * w,
                                                            self.noutput))
     # HBsD -> BsD -> BWD
     final = post_lstm.select(0, h - 1).view(b, w, self.noutput)
     assert final.size() == (b, w, self.noutput), (final.size(),
                                                   (b, w, self.noutput))
     # BWD -> BDW
     final = final.permute(0, 2, 1).contiguous()
     assert final.size() == (b, self.noutput, w), (final.size(),
                                                   (b, self.noutput,
                                                    self.noutput))
     return final
Ejemplo n.º 2
0
 def forward(self, seq, volatile=False):
     seq = bdl2lbd(seq)
     l, bs, d = seq.size()
     assert d == self.ninput, seq.size()
     h0 = Variable(helpers.typeas(torch.zeros(self.ndir, bs, self.noutput),
                                  seq),
                   volatile=volatile)
     c0 = Variable(helpers.typeas(torch.zeros(self.ndir, bs, self.noutput),
                                  seq),
                   volatile=volatile)
     post_lstm, _ = self.lstm(seq, (h0, c0))
     return lbd2bdl(post_lstm)
Ejemplo n.º 3
0
 def forward(self, seq):
     volatile = not isinstance(seq, Variable) or seq.volatile
     seq = bdl2lbd(seq)
     l, b, d = seq.size()
     assert d == self.ninput, (d, self.ninput)
     h0 = Variable(helpers.typeas(torch.zeros(1, b, self.noutput), seq),
                   volatile=volatile)
     c0 = Variable(helpers.typeas(torch.zeros(1, b, self.noutput), seq),
                   volatile=volatile)
     assert seq.size() == (l, b, d)
     post_lstm, _ = self.lstm(seq, (h0, c0))
     assert post_lstm.size() == (l, b, self.noutput)
     final = post_lstm.select(0, l - 1).view(b, self.noutput)
     return final
Ejemplo n.º 4
0
 def forward(self, img):
     volatile = not isinstance(img, Variable) or img.volatile
     b, d, h, w = img.size()
     # BDHW -> WHBD -> WB'D
     seq = img.permute(3, 2, 0, 1).contiguous().view(w, h * b, d)
     # WB'D
     h0 = helpers.typeas(torch.zeros(self.ndir, h * b, self.noutput), img)
     c0 = helpers.typeas(torch.zeros(self.ndir, h * b, self.noutput), img)
     h0 = Variable(h0, volatile=volatile)
     c0 = Variable(c0, volatile=volatile)
     seqresult, _ = self.lstm(seq, (h0, c0))
     # WB'D' -> BD'HW
     result = seqresult.view(w, h, b,
                             self.noutput * self.ndir).permute(2, 3, 1, 0)
     return result
Ejemplo n.º 5
0
def ctc_align(prob, target):
    """Perform CTC alignment on torch sequence batches (using ocrolstm).

    Inputs are in BDL format.
    """
    import cctc
    assert dlh.sequence_is_normalized(prob), prob
    assert dlh.sequence_is_normalized(target), target
    # inputs are BDL
    prob_ = dlh.novar(prob).permute(0, 2, 1).cpu().contiguous()
    target_ = dlh.novar(target).permute(0, 2, 1).cpu().contiguous()
    # prob_ and target_ are both BLD now
    assert prob_.size(0) == target_.size(0), (prob_.size(), target_.size())
    assert prob_.size(2) == target_.size(2), (prob_.size(), target_.size())
    assert prob_.size(1) >= target_.size(1), (prob_.size(), target_.size())
    result = torch.rand(1)
    cctc.ctc_align_targets_batch(result, prob_, target_)
    return dlh.typeas(result.permute(0, 2, 1).contiguous(), prob)