Ejemplo n.º 1
0
    def test_constructor(self):
        """Test the constructor of the Variable class."""

        binned_values = [(1, 2), (2, 3), (3, 4)]
        unbinned_values = [1, 2, 3, 4]
        binned_values_wrong_length = [(1, 2, 3), (4, 5, 6)]

        # Should work fine: Binned
        try:

            _var = Variable("testvar", is_binned=True, values=binned_values)
        except ValueError:
            self.fail("Variable constructor raised unexpected ValueError.")

        # Should work fine: Unbinned
        try:
            _var = Variable("testvar", is_binned=False, values=unbinned_values)
        except ValueError:
            self.fail("Variable constructor raised unexpected ValueError.")

        # Wrong type of argument
        with self.assertRaises(ValueError):
            _var = Variable("testvar", is_binned=True, values=unbinned_values)

        # Other way around
        with self.assertRaises(ValueError):
            _var = Variable("testvar", is_binned=False, values=binned_values)

        # Tuples, but wrong length
        with self.assertRaises(ValueError):
            _var = Variable("testvar",
                            is_binned=False,
                            values=binned_values_wrong_length)
Ejemplo n.º 2
0
    def test_scale_values(self):
        '''Test behavior of Uncertainty.scale_values function'''
        values = list(range(0, 300, 1))
        uncertainty = [x + random.uniform(0, 2) for x in values]

        testvar = Variable("testvar")
        testvar.is_binned = False
        testvar.units = "GeV"
        testvar.values = values

        testunc = Uncertainty("testunc")
        testunc.is_symmetric = True
        testunc.values = uncertainty
        testvar.uncertainties.append(testunc)

        assert testvar.values == values
        self.assertTrue(testunc.values == uncertainty)

        for factor in [random.uniform(0, 10000) for x in range(100)]:
            # Check that scaling works
            testvar.scale_values(factor)
            scaled_values = [factor * x for x in values]
            scaled_uncertainty = [factor * x for x in uncertainty]
            self.assertTrue(all(test_utilities.float_compare(x, y)
                                for x, y in zip(testvar.values, scaled_values)))
            self.assertTrue(all(test_utilities.float_compare(x, y)
                                for x, y in zip(testunc.values, scaled_uncertainty)))

            # Check that inverse also works
            testvar.scale_values(1. / factor)
            self.assertTrue(all(test_utilities.float_compare(x, y)
                                for x, y in zip(testvar.values, values)))
            self.assertTrue(all(test_utilities.float_compare(x, y)
                                for x, y in zip(testunc.values, uncertainty)))
Ejemplo n.º 3
0
    def test_scale_values(self):
        '''Test behavior of Variable.scale_values function'''
        values = list(zip(range(0, 5, 1), range(1, 6, 1)))

        testvar = Variable("testvar")
        testvar.is_binned = True
        testvar.units = "GeV"
        testvar.values = values

        self.assertTrue(testvar.values == values)

        for factor in [random.uniform(0, 10000) for x in range(100)]:
            # Check that scaling works
            testvar.scale_values(factor)
            scaled_values = [(factor * x[0], factor * x[1]) for x in values]
            assert (all(
                test_utilities.tuple_compare(x, y)
                for x, y in zip(testvar.values, scaled_values)))

            # Check that inverse also works
            testvar.scale_values(1. / factor)
            self.assertTrue(
                all(
                    test_utilities.tuple_compare(x, y)
                    for x, y in zip(testvar.values, values)))
Ejemplo n.º 4
0
    def test_write_yaml(self):
        """Test write_yaml() for Table."""

        test_table = Table("Some Table")
        test_variable = Variable("Some Variable")
        test_table.add_variable(test_variable)
        try:
            test_table.write_yaml("test_output")
        except TypeError:
            self.fail("Table.write_yaml raised an unexpected TypeError.")
        with self.assertRaises(TypeError):
            test_table.write_yaml(None)
Ejemplo n.º 5
0
    def test_write_yaml(self):
        """Test write_yaml() for Table."""

        test_table = Table("Some Table")
        test_variable = Variable("Some Variable")
        test_table.add_variable(test_variable)
        testdir = tmp_directory_name()
        self.addCleanup(shutil.rmtree, testdir)
        try:
            test_table.write_yaml(testdir)
        except TypeError:
            self.fail("Table.write_yaml raised an unexpected TypeError.")
        with self.assertRaises(TypeError):
            test_table.write_yaml(None)
        self.doCleanups()
Ejemplo n.º 6
0
    def test_add_variable(self):
        """Test the add_variable function."""

        # Verify that the type check works
        test_table = Table("Some variable")
        test_variable = Variable("Some variable")
        test_uncertainty = Uncertainty("Some Uncertainty")
        try:
            test_table.add_variable(test_variable)
        except TypeError:
            self.fail("Table.add_variable raised an unexpected TypeError.")

        with self.assertRaises(TypeError):
            test_table.add_variable(5)
        with self.assertRaises(TypeError):
            test_table.add_variable([1, 3, 5])
        with self.assertRaises(TypeError):
            test_table.add_variable("a string")
        with self.assertRaises(TypeError):
            test_table.add_variable(test_uncertainty)
Ejemplo n.º 7
0
    def test_yaml_output(self):
        """Test yaml dump"""
        tmp_dir = tmp_directory_name()

        # Create test dictionary
        testlist = [("x", 1.2), ("x", 2.2), ("y", 0.12), ("y", 0.22)]
        testdict = defaultdict(list)
        for key, value in testlist:
            testdict[key].append(value)

        # Create test submission
        test_submission = Submission()
        test_table = Table("TestTable")
        x_variable = Variable("X", is_independent=True, is_binned=False)
        x_variable.values = testdict['x']
        y_variable = Variable("Y", is_independent=False, is_binned=False)
        y_variable.values = testdict['y']
        test_table.add_variable(x_variable)
        test_table.add_variable(y_variable)
        test_submission.add_table(test_table)
        test_submission.create_files(tmp_dir)

        # Test read yaml file
        table_file = os.path.join(tmp_dir, "testtable.yaml")
        try:
            with open(table_file, 'r') as testfile:
                testyaml = yaml.safe_load(testfile)
        except yaml.YAMLError as exc:
            print(exc)

        # Test compare yaml file to string
        testtxt = (
            "dependent_variables:\n- header:\n    name: Y\n  values:\n" +
            "  - value: 0.12\n  - value: 0.22\nindependent_variables:\n" +
            "- header:\n    name: X\n  values:\n  - value: 1.2\n  - value: 2.2\n"
        )
        with open(table_file, 'r') as testfile:
            testyaml = testfile.read()

        self.assertEqual(str(testyaml), testtxt)
        self.addCleanup(os.remove, "submission.tar.gz")
        self.addCleanup(shutil.rmtree, tmp_dir)
        self.doCleanups()
Ejemplo n.º 8
0
def make_table():
    params = [
        'r_ggH_0J_low', 'r_ggH_0J_high', 'r_ggH_1J_low', 'r_ggH_1J_med',
        'r_ggH_1J_high', 'r_ggH_2J_low', 'r_ggH_2J_med', 'r_ggH_2J_high',
        'r_ggH_BSM_low', 'r_ggH_BSM_med', 'r_ggH_BSM_high',
        'r_qqH_low_mjj_low_pthjj', 'r_qqH_low_mjj_high_pthjj',
        'r_qqH_high_mjj_low_pthjj', 'r_qqH_high_mjj_high_pthjj', 'r_qqH_VHhad',
        'r_qqH_BSM', 'r_WH_lep_low', 'r_WH_lep_med', 'r_WH_lep_high',
        'r_ZH_lep', 'r_ttH_low', 'r_ttH_medlow', 'r_ttH_medhigh', 'r_ttH_high',
        'r_ttH_veryhigh', 'r_tH'
    ]

    # Load results + xsbr data
    inputXSBRjson = "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Plots/jsons/xsbr_theory_stage1p2_extended_125p38.json"
    inputExpResultsJson = '/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Plots/expected_UL_redo.json'
    inputObsResultsJson = '/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Plots/observed_UL_redo.json'
    inputMode = "stage1p2_extended"

    translatePOIs = LoadTranslations("translate/pois_%s.json" % inputMode)
    with open(inputXSBRjson, "r") as jsonfile:
        xsbr_theory = json.load(jsonfile)
    observed = CopyDataFromJsonFile(inputObsResultsJson, inputMode, params)
    expected = CopyDataFromJsonFile(inputExpResultsJson, inputMode, params)
    mh = float(re.sub("p", ".",
                      inputXSBRjson.split("_")[-1].split(".json")[0]))

    # Make table of results
    table = Table("STXS stage 1.2 minimal merging scheme")
    table.description = "Results of the minimal merging scheme STXS fit. The best fit cross sections are shown together with the respective 68% C.L. intervals. The uncertainty is decomposed into the systematic and statistical components. The expected uncertainties on the fitted parameters are given in brackets. Also listed are the SM predictions for the cross sections and the theoretical uncertainty in those predictions."
    table.location = "Results from Figure 20 and Table 13"
    table.keywords["reactions"] = ["P P --> H ( --> GAMMA GAMMA ) X"]

    pois = Variable("STXS region", is_independent=True, is_binned=False)
    poiNames = []
    for poi in params:
        poiNames.append(str(Translate(poi, translatePOIs)))
    pois.values = poiNames

    # Dependent variables

    # SM predict
    xsbr_sm = Variable("SM predicted cross section times branching ratio",
                       is_independent=False,
                       is_binned=False,
                       units='fb')
    xsbr_sm.add_qualifier("SQRT(S)", 13, "TeV")
    xsbr_sm.add_qualifier("ABS(YRAP(HIGGS))", '<2.5')
    xsbr_sm.add_qualifier("MH", '125.38', "GeV")
    theory = Uncertainty("Theory", is_symmetric=False)
    xsbr_vals = []
    xsbr_hi_th, xsbr_lo_th = [], []
    for poi in params:
        xsbr_vals.append(xsbr_theory[poi]['nominal'])
        xsbr_hi_th.append(xsbr_theory[poi]['High01Sigma'])
        xsbr_lo_th.append(-1 * abs(xsbr_theory[poi]['Low01Sigma']))
    xsbr_sm.values = np.round(np.array(xsbr_vals), 3)
    theory.values = zip(np.round(np.array(xsbr_lo_th), 3),
                        np.round(np.array(xsbr_hi_th), 3))
    xsbr_sm.add_uncertainty(theory)

    # Observed cross section
    xsbr = Variable("Observed cross section times branching ratio",
                    is_independent=False,
                    is_binned=False,
                    units='fb')
    xsbr.add_qualifier("SQRT(S)", 13, "TeV")
    xsbr.add_qualifier("ABS(YRAP(HIGGS))", '<2.5')
    xsbr.add_qualifier("MH", '125.38', "GeV")
    # Add uncertainties
    tot = Uncertainty("Total", is_symmetric=False)
    stat = Uncertainty("Stat only", is_symmetric=False)
    syst = Uncertainty("Syst", is_symmetric=False)

    xsbr_vals = []
    xsbr_hi_tot, xsbr_lo_tot = [], []
    xsbr_hi_stat, xsbr_lo_stat = [], []
    xsbr_hi_syst, xsbr_lo_syst = [], []
    for poi in params:
        xsbr_vals.append(xsbr_theory[poi]['nominal'] * observed[poi]['Val'])
        xsbr_hi_tot.append(
            abs(xsbr_theory[poi]['nominal'] * observed[poi]['ErrorHi']))
        xsbr_lo_tot.append(
            -1 * abs(xsbr_theory[poi]['nominal'] * observed[poi]['ErrorLo']))
        xsbr_hi_stat.append(
            abs(xsbr_theory[poi]['nominal'] * observed[poi]['StatHi']))
        xsbr_lo_stat.append(
            -1 * abs(xsbr_theory[poi]['nominal'] * observed[poi]['StatLo']))
        xsbr_hi_syst.append(
            abs(xsbr_theory[poi]['nominal'] * observed[poi]['SystHi']))
        xsbr_lo_syst.append(
            -1 * abs(xsbr_theory[poi]['nominal'] * observed[poi]['SystLo']))

    tot.values = zip(np.round(np.array(xsbr_lo_tot), 3),
                     np.round(np.array(xsbr_hi_tot), 3))
    stat.values = zip(np.round(np.array(xsbr_lo_stat), 3),
                      np.round(np.array(xsbr_hi_stat), 3))
    syst.values = zip(np.round(np.array(xsbr_lo_syst), 3),
                      np.round(np.array(xsbr_hi_syst), 3))

    xsbr.values = np.round(np.array(xsbr_vals), 3)
    xsbr.add_uncertainty(tot)
    xsbr.add_uncertainty(stat)
    xsbr.add_uncertainty(syst)

    # Observed ratio to SM
    xsbrr = Variable("Observed ratio to SM",
                     is_independent=False,
                     is_binned=False,
                     units='')
    xsbrr.add_qualifier("SQRT(S)", 13, "TeV")
    xsbrr.add_qualifier("ABS(YRAP(HIGGS))", '<2.5')
    xsbrr.add_qualifier("MH", '125.38', "GeV")
    # Add uncertainties
    totr = Uncertainty("Total", is_symmetric=False)
    statr = Uncertainty("Stat only", is_symmetric=False)
    systr = Uncertainty("Syst", is_symmetric=False)

    xsbr_vals = []
    xsbr_hi_tot, xsbr_lo_tot = [], []
    xsbr_hi_stat, xsbr_lo_stat = [], []
    xsbr_hi_syst, xsbr_lo_syst = [], []
    for poi in params:
        xsbr_vals.append(observed[poi]['Val'])
        xsbr_hi_tot.append(abs(observed[poi]['ErrorHi']))
        xsbr_lo_tot.append(-1 * abs(observed[poi]['ErrorLo']))
        xsbr_hi_stat.append(abs(observed[poi]['StatHi']))
        xsbr_lo_stat.append(-1 * abs(observed[poi]['StatLo']))
        xsbr_hi_syst.append(abs(observed[poi]['SystHi']))
        xsbr_lo_syst.append(-1 * abs(observed[poi]['SystLo']))

    totr.values = zip(np.round(np.array(xsbr_lo_tot), 3),
                      np.round(np.array(xsbr_hi_tot), 3))
    statr.values = zip(np.round(np.array(xsbr_lo_stat), 3),
                       np.round(np.array(xsbr_hi_stat), 3))
    systr.values = zip(np.round(np.array(xsbr_lo_syst), 3),
                       np.round(np.array(xsbr_hi_syst), 3))

    xsbrr.values = np.round(np.array(xsbr_vals), 3)
    xsbrr.add_uncertainty(totr)
    xsbrr.add_uncertainty(statr)
    xsbrr.add_uncertainty(systr)

    # Expected cross section
    xsbr_exp = Variable("Expected cross section times branching ratio",
                        is_independent=False,
                        is_binned=False,
                        units='fb')
    xsbr_exp.add_qualifier("SQRT(S)", 13, "TeV")
    xsbr_exp.add_qualifier("ABS(YRAP(HIGGS))", '<2.5')
    xsbr_exp.add_qualifier("MH", '125.38', "GeV")
    # Add uncertainties
    tot_exp = Uncertainty("Total", is_symmetric=False)
    stat_exp = Uncertainty("Stat only", is_symmetric=False)
    syst_exp = Uncertainty("Syst", is_symmetric=False)

    xsbr_vals = []
    xsbr_hi_tot, xsbr_lo_tot = [], []
    xsbr_hi_stat, xsbr_lo_stat = [], []
    xsbr_hi_syst, xsbr_lo_syst = [], []
    for poi in params:
        xsbr_vals.append(xsbr_theory[poi]['nominal'])
        xsbr_hi_tot.append(
            abs(xsbr_theory[poi]['nominal'] * expected[poi]['ErrorHi']))
        xsbr_lo_tot.append(
            -1 * abs(xsbr_theory[poi]['nominal'] * expected[poi]['ErrorLo']))
        xsbr_hi_stat.append(
            abs(xsbr_theory[poi]['nominal'] * expected[poi]['StatHi']))
        xsbr_lo_stat.append(
            -1 * abs(xsbr_theory[poi]['nominal'] * expected[poi]['StatLo']))
        xsbr_hi_syst.append(
            abs(xsbr_theory[poi]['nominal'] * expected[poi]['SystHi']))
        xsbr_lo_syst.append(
            -1 * abs(xsbr_theory[poi]['nominal'] * expected[poi]['SystLo']))

    tot_exp.values = zip(np.round(np.array(xsbr_lo_tot), 3),
                         np.round(np.array(xsbr_hi_tot), 3))
    stat_exp.values = zip(np.round(np.array(xsbr_lo_stat), 3),
                          np.round(np.array(xsbr_hi_stat), 3))
    syst_exp.values = zip(np.round(np.array(xsbr_lo_syst), 3),
                          np.round(np.array(xsbr_hi_syst), 3))

    xsbr_exp.values = np.round(np.array(xsbr_vals), 3)
    xsbr_exp.add_uncertainty(tot_exp)
    xsbr_exp.add_uncertainty(stat_exp)
    xsbr_exp.add_uncertainty(syst_exp)

    # Expected ratio to SM
    xsbrr_exp = Variable("Expected ratio to SM",
                         is_independent=False,
                         is_binned=False,
                         units='')
    xsbrr_exp.add_qualifier("SQRT(S)", 13, "TeV")
    xsbrr_exp.add_qualifier("ABS(YRAP(HIGGS))", '<2.5')
    xsbrr_exp.add_qualifier("MH", '125.38', "GeV")
    # Add uncertainties
    totr_exp = Uncertainty("Total", is_symmetric=False)
    statr_exp = Uncertainty("Stat only", is_symmetric=False)
    systr_exp = Uncertainty("Syst", is_symmetric=False)

    xsbr_vals = []
    xsbr_hi_tot, xsbr_lo_tot = [], []
    xsbr_hi_stat, xsbr_lo_stat = [], []
    xsbr_hi_syst, xsbr_lo_syst = [], []
    for poi in params:
        xsbr_vals.append(1.00)
        xsbr_hi_tot.append(abs(expected[poi]['ErrorHi']))
        xsbr_lo_tot.append(-1 * abs(expected[poi]['ErrorLo']))
        xsbr_hi_stat.append(abs(expected[poi]['StatHi']))
        xsbr_lo_stat.append(-1 * abs(expected[poi]['StatLo']))
        xsbr_hi_syst.append(abs(expected[poi]['SystHi']))
        xsbr_lo_syst.append(-1 * abs(expected[poi]['SystLo']))

    totr_exp.values = zip(np.round(np.array(xsbr_lo_tot), 3),
                          np.round(np.array(xsbr_hi_tot), 3))
    statr_exp.values = zip(np.round(np.array(xsbr_lo_stat), 3),
                           np.round(np.array(xsbr_hi_stat), 3))
    systr_exp.values = zip(np.round(np.array(xsbr_lo_syst), 3),
                           np.round(np.array(xsbr_hi_syst), 3))

    xsbrr_exp.values = np.round(np.array(xsbr_vals), 3)
    xsbrr_exp.add_uncertainty(totr_exp)
    xsbrr_exp.add_uncertainty(statr_exp)
    xsbrr_exp.add_uncertainty(systr_exp)

    # Add variables to table
    table.add_variable(pois)
    table.add_variable(xsbr_sm)
    table.add_variable(xsbr)
    table.add_variable(xsbrr)
    table.add_variable(xsbr_exp)
    table.add_variable(xsbrr_exp)

    # Add figure
    table.add_image(
        "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/stxs_dist_stage1p2_minimal.pdf"
    )

    return table
Ejemplo n.º 9
0
submission.add_record_id(1865855, "inspire")

#FIGURE 2 UPPER LEFT
fig2_ul = Table("Figure 2 (upper left)")
fig2_ul.description = "Distribution of the transverse momentum of the diphoton system for the $\mathrm{W}\gamma\gamma$ electron channel. The predicted yields are shown with their pre-fit normalisations. The observed data, the expected signal contribution and the background estimates are presented with error bars showing the corresponding statistical uncertainties."
fig2_ul.location = "Data from Figure 2 on Page 6 of the preprint"
fig2_ul.keywords["observables"] = ["Diphoton pT"]
fig2_ul.keywords["reactions"] = [
    "P P --> W GAMMA GAMMA --> ELECTRON NU GAMMA GAMMA"
]

fig2_ul_in = np.loadtxt("input/fig2_ul.txt", skiprows=1)

#diphoton pT
fig2_ul_pt = Variable("$p_T^{\gamma\gamma}$",
                      is_independent=True,
                      is_binned=False,
                      units="GeV")
fig2_ul_pt.values = fig2_ul_in[:, 0]

#Data
fig2_ul_Data = Variable("Data",
                        is_independent=False,
                        is_binned=False,
                        units="Events per bin")
fig2_ul_Data.values = fig2_ul_in[:, 1]
fig2_ul_Data_stat = Uncertainty("stat", is_symmetric=True)
fig2_ul_Data_stat.values = fig2_ul_in[:, 2]
fig2_ul_Data.add_uncertainty(fig2_ul_Data_stat)

#Wgg
fig2_ul_Wgg = Variable("$\mathrm{W}\gamma\gamma$",
figure2.description = "The measured and predicted inclusive fiducial cross sections in fb. The experimental measurement includes both statistical and systematics uncertainties. The theoretical prediction includes both the QCD scale and PDF uncertainties."
figure2.location = "Data from Figure 2"

figure2.keywords["observables"] = ["SIG"]
figure2.keywords["phrases"] = [
    "Electroweak", "Cross Section", "Proton-Proton", "Z boson production"
]
figure2.keywords["reactions"] = ["PP -> Z"]

figure2_load = np.loadtxt("HEPData/inputs/smp18003/cross_section_results.txt",
                          dtype='string',
                          skiprows=2)

print(figure2_load)

figure2_data = Variable("", is_independent=True, is_binned=False, units="")
figure2_data.values = [str(x) for x in figure2_load[:, 0]]

figure2_yields1 = Variable("Cross Section",
                           is_independent=False,
                           is_binned=False,
                           units="")
figure2_yields1.digits = 0
figure2_yields1.values = [int(x) for x in figure2_load[:, 1]]
figure2_yields1.add_qualifier("", "Cross Section (fb)")

figure2_yields2 = Variable("Positive uncertainty",
                           is_independent=False,
                           is_binned=False,
                           units="")
figure2_yields2.digits = 0
Ejemplo n.º 11
0
def convertUnfoldingHistToYaml( rootfile, label, variable, unit ):

    tab = Table(label)

    reader = RootFileReader(rootfile)

    data = reader.read_hist_1d("unfoled_spectrum")
    simP8 = reader.read_hist_1d("fiducial_spectrum")
    simHpp = reader.read_hist_1d("fiducial_spectrum_Hpp")
    simH7 = reader.read_hist_1d("fiducial_spectrum_H7")
    totalUncUp = reader.read_hist_1d("totalUncertainty_up")
    mcstatUncUp = reader.read_hist_1d("mcStat_up")
    matrixUncUp = reader.read_hist_1d("totalMatrixVariationUnc_up")
    statUncUp = reader.read_hist_1d("stat_up")

    totunc = []
    reltotunc = []
    statunc = []
    relstatunc = []
    for i, i_up in enumerate(totalUncUp["y"]):
        tot = data["y"][i]
        utot = (i_up - tot)**2
        utot += (mcstatUncUp["y"][i] - tot)**2
        utot += matrixUncUp["y"][i]**2
        utot = sqrt(utot)
        ustat = statUncUp["y"][i] - tot
        totunc.append(utot)
        statunc.append(ustat)
        reltotunc.append(utot*100./tot)
        relstatunc.append(ustat*100./tot)

    xbins = Variable( variable, is_independent=True, is_binned=True, units=unit)
    xbins.values = data["x_edges"]
    ydata = Variable( "Observed", is_independent=False, is_binned=False)
    ydata.values = data["y"]
    ydata.add_qualifier("SQRT(S)","13","TeV")
    ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$")


    yunc = Uncertainty( "total" )
    yunc.is_symmetric = True
    yunc.values = totunc

    ystatunc = Uncertainty( "stat" )
    ystatunc.is_symmetric = True
    ystatunc.values = statunc

#    ydata.uncertainties.append(ystatunc)
#    ydata.uncertainties.append(yunc)


    ysimP8 = Variable( "Simulation MG5_aMC + Pythia8", is_independent=False, is_binned=False)
    ysimP8.values = simP8["y"]
    ysimP8.add_qualifier("SQRT(S)","13","TeV")
    ysimP8.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ysimH7 = Variable( "Simulation MG5_aMC + Herwig7", is_independent=False, is_binned=False)
    ysimH7.values = simH7["y"]
    ysimH7.add_qualifier("SQRT(S)","13","TeV")
    ysimH7.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ysimHpp = Variable( "Simulation MG5_aMC + Herwig++", is_independent=False, is_binned=False)
    ysimHpp.values = simHpp["y"]
    ysimHpp.add_qualifier("SQRT(S)","13","TeV")
    ysimHpp.add_qualifier("LUMINOSITY","137","fb$^{-1}$")

    tab.add_variable(xbins)
    tab.add_variable(ydata)
    tab.add_variable(ysimP8)
    tab.add_variable(ysimH7)
    tab.add_variable(ysimHpp)

    return tab
Ejemplo n.º 12
0
def convertSRHistToYaml( rootfile, label, variable, unit ):

    tab = Table(label)

    reader = RootFileReader(rootfile)

    data = reader.read_hist_1d("dataAR")
    gen = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat0")
    had = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat134")
    misID = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat2")
    qcd = reader.read_hist_1d("QCD")
    uncUp = reader.read_hist_1d("totalUncertainty_up")
    uncDown = reader.read_hist_1d("totalUncertainty_down")

    rootfile = ROOT.TFile(rootfile,"READ")
    statHist = rootfile.Get("dataAR")

    unc = []
    statunc = []
    relunc = []
    tot = []
    for i, i_up in enumerate(uncUp["y"]):
        stat = statHist.GetBinError(i+1)
        u = abs(i_up-uncDown["y"][i])*0.5
        sim = sum([ gen["y"][i], had["y"][i], misID["y"][i], qcd["y"][i] ])
        unc.append(u)
        statunc.append(stat)
        tot.append(sim)
        relunc.append(u*100./sim)

    xbins = Variable( variable, is_independent=True, is_binned=True, units=unit)
    xbins.values = data["x_edges"]
    ydata = Variable( "Observed", is_independent=False, is_binned=False)
    ydata.values = data["y"]
    ydata.add_qualifier("CHANNEL","l+jets")
    ydata.add_qualifier("SQRT(S)","13","TeV")
    ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ytot = Variable( "Total simulation", is_independent=False, is_binned=False)
    ytot.values = tot
    ytot.add_qualifier("CHANNEL","l+jets")
    ytot.add_qualifier("SQRT(S)","13","TeV")
    ytot.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ygen = Variable( "Genuine $\gamma$", is_independent=False, is_binned=False)
    ygen.values = gen["y"]
    ygen.add_qualifier("CHANNEL","l+jets")
    ygen.add_qualifier("SQRT(S)","13","TeV")
    ygen.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yhad = Variable( "Hadronic $\gamma$", is_independent=False, is_binned=False)
    yhad.values = had["y"]
    yhad.add_qualifier("CHANNEL","l+jets")
    yhad.add_qualifier("SQRT(S)","13","TeV")
    yhad.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ymisID = Variable( "Misid. e", is_independent=False, is_binned=False)
    ymisID.values = misID["y"]
    ymisID.add_qualifier("CHANNEL","l+jets")
    ymisID.add_qualifier("SQRT(S)","13","TeV")
    ymisID.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yqcd = Variable( "Multijet", is_independent=False, is_binned=False)
    yqcd.values = qcd["y"]
    yqcd.add_qualifier("CHANNEL","l+jets")
    yqcd.add_qualifier("SQRT(S)","13","TeV")
    yqcd.add_qualifier("LUMINOSITY","137","fb$^{-1}$")

    yunc = Uncertainty( "syst" )
    yunc.is_symmetric = True
    yunc.values = unc

    ystatunc = Uncertainty( "stat" )
    ystatunc.is_symmetric = True
    ystatunc.values = statunc

    ydata.uncertainties.append(ystatunc)
    ytot.uncertainties.append(yunc)

    tab.add_variable(xbins)
    tab.add_variable(ydata)
    tab.add_variable(ytot)
    tab.add_variable(ygen)
    tab.add_variable(yhad)
    tab.add_variable(ymisID)
    tab.add_variable(yqcd)

    return tab
Ejemplo n.º 13
0
def convertMlgHistToYaml( rootfile, label, variable, channel ):

    tab = Table(label)

    reader = RootFileReader(rootfile)

    data = reader.read_hist_1d("dataAR")
    misID = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat2")
    wg = reader.read_hist_1d("WG_centralnoChgIsoNoSieiephotoncat0")
    zg = reader.read_hist_1d("ZG_centralnoChgIsoNoSieiephotoncat0")
    other = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat0")
    had = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat134")
    qcd = reader.read_hist_1d("QCD")

    uncUp = reader.read_hist_1d("totalUncertainty_up")
    uncDown = reader.read_hist_1d("totalUncertainty_down")

    rootfile = ROOT.TFile(rootfile,"READ")
    statHist = rootfile.Get("dataAR")

    unc = []
    statunc = []
    relunc = []
    tot = []
    for i, i_up in enumerate(uncUp["y"]):
        stat = statHist.GetBinError(i+1)
        u = abs(i_up-uncDown["y"][i])*0.5
        all = [ misID["y"][i], wg["y"][i], zg["y"][i], other["y"][i], had["y"][i], qcd["y"][i] ]
        sim = sum(all)
        unc.append(u)
        statunc.append(stat)
        tot.append(sim)
        relunc.append(u*100./sim)

    xbins = Variable( variable, is_independent=True, is_binned=True, units="GeV")
    xbins.values = data["x_edges"]
    ydata = Variable( "Observed", is_independent=False, is_binned=False)
    ydata.values = data["y"]
    ydata.add_qualifier("CHANNEL",channel)
    ydata.add_qualifier("SQRT(S)","13","TeV")
    ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ytot = Variable( "Total simulation", is_independent=False, is_binned=False)
    ytot.values = tot
    ytot.add_qualifier("CHANNEL",channel)
    ytot.add_qualifier("SQRT(S)","13","TeV")
    ytot.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ymisID = Variable( "Misid. e", is_independent=False, is_binned=False)
    ymisID.values = misID["y"]
    ymisID.add_qualifier("CHANNEL",channel)
    ymisID.add_qualifier("SQRT(S)","13","TeV")
    ymisID.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yhad = Variable( "Hadronic $\gamma$", is_independent=False, is_binned=False)
    yhad.values = had["y"]
    yhad.add_qualifier("CHANNEL",channel)
    yhad.add_qualifier("SQRT(S)","13","TeV")
    yhad.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ywg = Variable( "W$\gamma$", is_independent=False, is_binned=False)
    ywg.values = wg["y"]
    ywg.add_qualifier("CHANNEL",channel)
    ywg.add_qualifier("SQRT(S)","13","TeV")
    ywg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yzg = Variable( "Z$\gamma$", is_independent=False, is_binned=False)
    yzg.values = zg["y"]
    yzg.add_qualifier("CHANNEL",channel)
    yzg.add_qualifier("SQRT(S)","13","TeV")
    yzg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yother = Variable( "Other", is_independent=False, is_binned=False)
    yother.values = other["y"]
    yother.add_qualifier("CHANNEL",channel)
    yother.add_qualifier("SQRT(S)","13","TeV")
    yother.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yqcd = Variable( "Multijet", is_independent=False, is_binned=False)
    yqcd.values = qcd["y"]
    yqcd.add_qualifier("CHANNEL",channel)
    yqcd.add_qualifier("SQRT(S)","13","TeV")
    yqcd.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
#    yunc = Variable( "Total systematic uncertainty", is_independent=False, is_binned=False)
#    yunc.values = unc
#    yunc.add_qualifier("SQRT(S)","13","TeV")
#    yunc.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    #yrelunc = Variable( "Rel. uncertainty (%)", is_independent=False, is_binned=False)
    #yrelunc.values = relunc

    yunc = Uncertainty( "syst" )
    yunc.is_symmetric = True
    yunc.values = unc

    ystatunc = Uncertainty( "stat" )
    ystatunc.is_symmetric = True
    ystatunc.values = statunc

    ydata.uncertainties.append(ystatunc)
    ytot.uncertainties.append(yunc)

    tab.add_variable(xbins)
    tab.add_variable(ydata)
    tab.add_variable(ytot)
    tab.add_variable(ymisID)
    tab.add_variable(ywg)
    tab.add_variable(yzg)
    tab.add_variable(yother)
    tab.add_variable(yhad)
    tab.add_variable(yqcd)
#    tab.add_variable(yunc)

    return tab
Ejemplo n.º 14
0
		stat = reader.read_hist_2d(fig["name_stat"])
	else:
		print("ERROR: {}, type not recognized!".format(fig["figure_name"]))
	
	if fig["type_syst"].lower() in ["tgraph", "tgrapherrors", "tgraphasymmerrors"]:
		syst = reader.read_graph(fig["name_syst"])
	elif fig["type_syst"].lower() == "th1":
		syst = reader.read_hist_1d(fig["name_syst"])
	elif fig["type_syst"].lower() == "th2":
		syst = reader.read_hist_2d(fig["name_syst"])
	else:
		print("WARNING: {}, systematic errors not found!".format(fig["figure_name"]))

	# read points
	if fig["type_stat"].lower() == "th2":
		x1 = Variable(fig["x1_name"], is_independent=True, is_binned=False, units=fig["x1_units"])
		x1.values = stat["x"]
		x2 = Variable(fig["x2_name"], is_independent=True, is_binned=False, units=fig["x2_units"])
		x2.values = stat["y"]
		y = Variable(fig["y_name"], is_independent=False, is_binned=False, units=fig["y_units"])
		y.values = stat["z"]
	else:
		x1 = Variable(fig["x1_name"], is_independent=True, is_binned=False, units=fig["x1_units"])
		x1.values = stat["x"]
		y = Variable(fig["y_name"], is_independent=False, is_binned=False, units=fig["y_units"])
		y.values = stat["y"]

	if fig["type_stat"].lower() == "tgraphasymmerrors":
		y_stat = Uncertainty("stat. uncertainty", is_symmetric=False)
		y_stat.values = stat["dy"]
		y.add_uncertainty(y_stat)
Ejemplo n.º 15
0
    "Top", "Quark", "Photon", "lepton+jets", "semileptonic", "Cross Section",
    "Proton-Proton Scattering", "Inclusive", "Differential"
]
#tableF4b.keywords()
submission.add_table(tableF4b)

###
### SF table
###
tabSF = Table("Table 4")

tabSF.description = "Extracted scale factors for the contribution from misidentified electrons for the three data-taking periods, and the Z$\gamma$, W$\gamma$ simulations."
tabSF.location = "Table 4"

sfType = Variable("Scale factor",
                  is_independent=True,
                  is_binned=False,
                  units="")
sfType.values = [
    "Misidentified electrons (2016)", "Misidentified electrons (2017)",
    "Misidentified electrons (2018)", "Z$\gamma$ normalization",
    "W$\gamma$ normalization"
]
value = Variable("Value", is_independent=False, is_binned=False, units="")
value.values = [2.25, 2.00, 1.52, 1.01, 1.13]
value.add_qualifier("SQRT(S)", "13", "TeV")
value.add_qualifier("LUMINOSITY", "137", "fb$^{-1}$")
unc = Uncertainty("total")
unc.is_symmetric = True
unc.values = [0.29, 0.27, 0.17, 0.10, 0.08]
value.uncertainties.append(unc)
Ejemplo n.º 16
0
table2.location = "Data from Table 2"

table2.keywords["observables"] = ["Uncertainty"]
table2.keywords["reactions"] = ["P P --> W W j j", "P P --> W Z j j"]
table2.keywords["phrases"] = [
    "Same-sign WW", "WZ", "Georgi-Machacek", "Charged Higgs", "VBF"
]

data2 = np.loadtxt("HEPData/inputs/hig20017/systematics.txt",
                   dtype='string',
                   skiprows=2)

print(data2)

table2_data = Variable("Source of uncertainty",
                       is_independent=True,
                       is_binned=False,
                       units="")
table2_data.values = [str(x) for x in data2[:, 0]]

table2_yields0 = Variable("Uncertainty",
                          is_independent=False,
                          is_binned=False,
                          units="")
table2_yields0.values = [float(x) for x in data2[:, 1]]
table2_yields0.add_qualifier("Source of uncertainty",
                             "$\Delta \mu$ for background-only")
table2_yields0.add_qualifier("SQRT(S)", 13, "TeV")
table2_yields0.add_qualifier("L$_{\mathrm{int}}$", 137, "fb$^{-1}$")

table2_yields1 = Variable("Uncertainty",
                          is_independent=False,
table.location = "Data from additional Figure 1"

table.keywords["observables"] = ["ACC", "EFF"]
table.keywords["reactions"] = [
    "P P --> GRAVITON --> W+ W-", "P P --> WPRIME --> W+/W- Z0"
]

data = np.loadtxt("hepdata_lib/examples/example_inputs/effacc_signal.txt",
                  skiprows=2)

print(data)

### Variable
from hepdata_lib import Variable
d = Variable("Resonance mass",
             is_independent=True,
             is_binned=False,
             units="GeV")
d.values = data[:, 0]

BulkG = Variable("Efficiency times acceptance",
                 is_independent=False,
                 is_binned=False,
                 units="")
BulkG.values = data[:, 1]
BulkG.add_qualifier("Efficiency times acceptance", "Bulk graviton --> WW")
BulkG.add_qualifier("SQRT(S)", 13, "TeV")

Wprime = Variable("Efficiency times acceptance",
                  is_independent=False,
                  is_binned=False,
                  units="")
Ejemplo n.º 18
0
### Table
from hepdata_lib import Table
from hepdata_lib import Variable
from hepdata_lib import RootFileReader

### Begin covariance mumu dressed
# Create a reader for the input file
reader_covariance_mm_Pt = RootFileReader(
    "HEPData/inputs/smp17010/folders_dressedleptons/output_root/matrix03__XSRatioSystPt.root"
)
# Read the histogram
data_covariance_mm_Pt = reader_covariance_mm_Pt.read_hist_2d(
    "covariance_totsum_0")
# Create variable objects
x_covariance_mm_Pt = Variable("Bin X", is_independent=True, is_binned=True)
x_covariance_mm_Pt.values = data_covariance_mm_Pt["x_edges"]
y_covariance_mm_Pt = Variable("Bin Y", is_independent=True, is_binned=False)
y_covariance_mm_Pt.values = data_covariance_mm_Pt["y"]
z_covariance_mm_Pt = Variable("covariance Matrix",
                              is_independent=False,
                              is_binned=False)
z_covariance_mm_Pt.values = data_covariance_mm_Pt["z"]

table_covariance_XSRatio_mm_Pt = Table("cov matr norm xs aux 1a")
table_covariance_XSRatio_mm_Pt.description = "Covariance matrix for normalized cross sections using dressed level leptons for all bins used in bins of Z pt in the dimuon final state."
table_covariance_XSRatio_mm_Pt.location = "Supplementary material"
for var in [x_covariance_mm_Pt, y_covariance_mm_Pt, z_covariance_mm_Pt]:
    table_covariance_XSRatio_mm_Pt.add_variable(var)
submission.add_table(table_covariance_XSRatio_mm_Pt)
Ejemplo n.º 19
0
def make_table():
    params = ['r_ggH', 'r_VBF', 'r_VH', 'r_top']

    # Load results + xsbr data
    inputMode = "mu"
    translatePOIs = LoadTranslations("translate/pois_%s.json" % inputMode)
    with open(
            "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/correlations_mu.json",
            "r") as jf:
        correlations = json.load(jf)
    with open(
            "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/correlations_expected_mu.json",
            "r") as jf:
        correlations_exp = json.load(jf)

    # Make table of results
    table = Table("Correlations: production mode signal strength")
    table.description = "Observed and expected correlations between the parameters in the production mode signal strength fit."
    table.location = "Results from additional material"
    table.keywords["reactions"] = ["P P --> H ( --> GAMMA GAMMA ) X"]

    pois_x = Variable("Parameter (x)", is_independent=True, is_binned=False)
    pois_y = Variable("Parameter (y)", is_independent=True, is_binned=False)
    c = Variable("Observed correlation", is_independent=False, is_binned=False)
    c.add_qualifier("SQRT(S)", 13, "TeV")
    c.add_qualifier("MH", '125.38', "GeV")
    c_exp = Variable("Expected correlation",
                     is_independent=False,
                     is_binned=False)
    c_exp.add_qualifier("SQRT(S)", 13, "TeV")
    c_exp.add_qualifier("MH", '125.38', "GeV")

    poiNames_x = []
    poiNames_y = []
    corr = []
    corr_exp = []
    for ipoi in params:
        for jpoi in params:
            poiNames_x.append(str(Translate(ipoi, translatePOIs)))
            poiNames_y.append(str(Translate(jpoi, translatePOIs)))
            # Extract correlation coefficient
            corr.append(correlations["%s__%s" % (ipoi, jpoi)])
            corr_exp.append(correlations_exp["%s__%s" % (ipoi, jpoi)])
    pois_x.values = poiNames_x
    pois_y.values = poiNames_y
    c.values = np.round(np.array(corr), 3)
    c_exp.values = np.round(np.array(corr_exp), 3)

    # Add variables to table
    table.add_variable(pois_x)
    table.add_variable(pois_y)
    table.add_variable(c)
    table.add_variable(c_exp)

    # Add figure
    table.add_image(
        "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/perproc_mu_corr.pdf"
    )

    return table
Ejemplo n.º 20
0
    def test_make_dict(self):
        """Test the make_dict function."""
        # pylint: disable=no-self-use
        var = Variable("testvar")

        # With or without units
        for units in ["", "GeV"]:
            var.units = units

            # Binned
            var.is_binned = False
            var.values = [1, 2, 3]
            var.make_dict()

            # Unbinned
            var.is_binned = True
            var.values = [(0, 1), (1, 2), (2, 3)]
            var.make_dict()

        # With symmetric uncertainty
        unc1 = Uncertainty("unc1")
        unc1.is_symmetric = True
        unc1.values = [random.random() for _ in range(len(var.values))]
        var.add_uncertainty(unc1)
        var.make_dict()

        # With asymmetric uncertainty
        unc2 = Uncertainty("unc2")
        unc2.is_symmetric = False
        unc2.values = [(-random.random(), random.random())
                       for _ in range(len(var.values))]
        var.add_uncertainty(unc2)
        var.make_dict()

        # With qualifiers (which only apply to dependent variables)
        var.is_independent = False
        var.add_qualifier("testqualifier1", 1, units="GeV")
        var.add_qualifier("testqualifier2", 1, units="")
        var.make_dict()
Ejemplo n.º 21
0
def convertSRPlotToYaml():

    tab = Table("Figure 6")

    reader = RootFileReader("../regionPlots/SR_incl.root")

    data = reader.read_hist_1d("0dc_2016data")
    tot = reader.read_hist_1d("0dc_2016total")
    totbkg = reader.read_hist_1d("0dc_2016total_background")
    ttg = reader.read_hist_1d("0dc_2016signal")
    misID = reader.read_hist_1d("0dc_2016misID")
    had = reader.read_hist_1d("0dc_2016fakes")
    other = reader.read_hist_1d("0dc_2016other")
    wg = reader.read_hist_1d("0dc_2016WG")
    qcd = reader.read_hist_1d("0dc_2016QCD")
    zg = reader.read_hist_1d("0dc_2016ZG")

    rootfile = ROOT.TFile("../regionPlots/SR_incl.root","READ")
    totHist = rootfile.Get("0dc_2016total")
    datHist = rootfile.Get("0dc_2016data")

    unc = []
    statunc = []
    relunc = []
    for i, i_tot in enumerate(tot["y"]):
        u = totHist.GetBinError(i+1)
        ustat = datHist.GetBinError(i+1)
        unc.append(u)
        statunc.append(ustat)
        relunc.append(u*100./i_tot)

    crBinLabel = [
            "SR3, e, $M_{3}$ $<$ 280 GeV",
            "SR3, e, 280 $\leq$ $M_{3}$ $<$ 420 GeV",
            "SR3, e, $M_{3}$ $\geq$ 420 GeV",
            "SR3, $\mu$, $M_{3}$ $<$ 280 GeV",
            "SR3, $\mu$, 280 $\leq$ $M_{3}$ $<$ 420 GeV",
            "SR3, $\mu$, $M_{3}$ $\geq$ 420 GeV",
            "SR4p, e, $M_{3}$ $<$ 280 GeV",
            "SR4p, e, 280 $\leq$ $M_{3}$ $<$ 420 GeV",
            "SR4p, e, $M_{3}$ $\geq$ 420 GeV",
            "SR4p, $\mu$, $M_{3}$ $<$ 280 GeV",
            "SR4p, $\mu$, 280 $\leq$ $M_{3}$ $<$ 420 GeV",
            "SR4p, $\mu$, $M_{3}$ $\geq$ 420 GeV",
            ]
    xbins = Variable( "Bin", is_independent=True, is_binned=False)
    xbins.values = crBinLabel
    ydata = Variable( "Observed", is_independent=False, is_binned=False)
    ydata.values = data["y"]
    ydata.add_qualifier("SQRT(S)","13","TeV")
    ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ytot = Variable( "Total simulation", is_independent=False, is_binned=False)
    ytot.values = tot["y"]
    ytot.add_qualifier("SQRT(S)","13","TeV")
    ytot.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ytotbkg = Variable( "Total background", is_independent=False, is_binned=False)
    ytotbkg.values = totbkg["y"]
    ytotbkg.add_qualifier("SQRT(S)","13","TeV")
    ytotbkg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ywg = Variable( "$W\gamma$", is_independent=False, is_binned=False)
    ywg.values = wg["y"]
    ywg.add_qualifier("SQRT(S)","13","TeV")
    ywg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yzg = Variable( "$Z\gamma$", is_independent=False, is_binned=False)
    yzg.values = zg["y"]
    yzg.add_qualifier("SQRT(S)","13","TeV")
    yzg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ymisID = Variable( "Misid. e", is_independent=False, is_binned=False)
    ymisID.values = misID["y"]
    ymisID.add_qualifier("SQRT(S)","13","TeV")
    ymisID.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yhad = Variable( "Hadronic $\gamma$", is_independent=False, is_binned=False)
    yhad.values = had["y"]
    yhad.add_qualifier("SQRT(S)","13","TeV")
    yhad.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yqcd = Variable( "Multijet", is_independent=False, is_binned=False)
    yqcd.values = qcd["y"]
    yqcd.add_qualifier("SQRT(S)","13","TeV")
    yqcd.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yttg = Variable( "tt$\gamma$", is_independent=False, is_binned=False)
    yttg.values = ttg["y"]
    yttg.add_qualifier("SQRT(S)","13","TeV")
    yttg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yother = Variable( "Other", is_independent=False, is_binned=False)
    yother.values = other["y"]
    yother.add_qualifier("SQRT(S)","13","TeV")
    yother.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
#    yunc = Variable( "Total uncertainty", is_independent=False, is_binned=False)
#    yunc.values = unc
#    yunc.add_qualifier("SQRT(S)","13","TeV")
#    yunc.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    #yrelunc = Variable( "Rel. uncertainty (%)", is_independent=False, is_binned=False)
    #yrelunc.values = relunc

    yunc = Uncertainty( "syst" )
    yunc.is_symmetric = True
    yunc.values = unc

    ystatunc = Uncertainty( "stat" )
    ystatunc.is_symmetric = True
    ystatunc.values = statunc

    ydata.uncertainties.append(ystatunc)
    ytot.uncertainties.append(yunc)


    tab.add_variable(xbins)
    tab.add_variable(ydata)
    tab.add_variable(ytot)
    tab.add_variable(ytotbkg)
    tab.add_variable(yttg)
    tab.add_variable(ymisID)
    tab.add_variable(yhad)
    tab.add_variable(yother)
    tab.add_variable(ywg)
    tab.add_variable(yqcd)
    tab.add_variable(yzg)
#    tab.add_variable(yunc)

    return tab
Ejemplo n.º 22
0
def convertWJetsHistToYaml( rootfile, label, channel ):

    tab = Table(label)

    reader = RootFileReader(rootfile)

    data = reader.read_hist_1d("dataAR")
#    ttg = reader.read_hist_1d("TTG_centralall")
    top = reader.read_hist_1d("Top_centralall")
    dy = reader.read_hist_1d("DY_LO_centralall")
    wjets = reader.read_hist_1d("WJets_centralall")
#    wg = reader.read_hist_1d("WG_centralall")
#    zg = reader.read_hist_1d("ZG_centralall")
    other = reader.read_hist_1d("other_centralall")
    qcd = reader.read_hist_1d("QCD")

    uncUp = reader.read_hist_1d("totalUncertainty_up")
    uncDown = reader.read_hist_1d("totalUncertainty_down")

    rootfile = ROOT.TFile(rootfile,"READ")
    statHist = rootfile.Get("dataAR")

    unc = []
    statunc = []
    relunc = []
    tot = []
    for i, i_up in enumerate(uncUp["y"]):
        stat = statHist.GetBinError(i+1)
        u = abs(i_up-uncDown["y"][i])*0.5
#        all = [ ttg["y"][i], top["y"][i], dy["y"][i], wjets["y"][i], wg["y"][i], zg["y"][i], other["y"][i], qcd["y"][i] ]
        all = [ top["y"][i], dy["y"][i], wjets["y"][i], other["y"][i], qcd["y"][i] ]
        sim = sum(all)
        unc.append(u)
        statunc.append(stat)
        tot.append(sim)
        relunc.append(u*100./sim)

    xbins = Variable( "$m_{T}(W)$", is_independent=True, is_binned=True, units="GeV")
    xbins.values = data["x_edges"]
    ydata = Variable( "Observed", is_independent=False, is_binned=False)
    ydata.values = data["y"]
    ydata.add_qualifier("CHANNEL",channel)
    ydata.add_qualifier("SQRT(S)","13","TeV")
    ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ytot = Variable( "Total simulation", is_independent=False, is_binned=False)
    ytot.values = tot
    ytot.add_qualifier("CHANNEL",channel)
    ytot.add_qualifier("SQRT(S)","13","TeV")
    ytot.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
#    yttg = Variable( "tt$\gamma$", is_independent=False, is_binned=False)
#    yttg.values = ttg["y"]
#    yttg.add_qualifier("CHANNEL",channel)
#    yttg.add_qualifier("SQRT(S)","13","TeV")
#    yttg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ytop = Variable( "t/tt", is_independent=False, is_binned=False)
    ytop.values = top["y"]
    ytop.add_qualifier("CHANNEL",channel)
    ytop.add_qualifier("SQRT(S)","13","TeV")
    ytop.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ydy = Variable( "Drell-Yan", is_independent=False, is_binned=False)
    ydy.values = dy["y"]
    ydy.add_qualifier("CHANNEL",channel)
    ydy.add_qualifier("SQRT(S)","13","TeV")
    ydy.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ywjets = Variable( "W+jets", is_independent=False, is_binned=False)
    ywjets.values = wjets["y"]
    ywjets.add_qualifier("CHANNEL",channel)
    ywjets.add_qualifier("SQRT(S)","13","TeV")
    ywjets.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
#    ywg = Variable( "W$\gamma$", is_independent=False, is_binned=False)
#    ywg.values = wg["y"]
#    ywg.add_qualifier("CHANNEL",channel)
#    ywg.add_qualifier("SQRT(S)","13","TeV")
#    ywg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
#    yzg = Variable( "Z$\gamma$", is_independent=False, is_binned=False)
#    yzg.values = zg["y"]
#    yzg.add_qualifier("CHANNEL",channel)
#    yzg.add_qualifier("SQRT(S)","13","TeV")
#    yzg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yother = Variable( "Other", is_independent=False, is_binned=False)
    yother.values = other["y"]
    yother.add_qualifier("CHANNEL",channel)
    yother.add_qualifier("SQRT(S)","13","TeV")
    yother.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yqcd = Variable( "Multijet", is_independent=False, is_binned=False)
    yqcd.values = qcd["y"]
    yqcd.add_qualifier("CHANNEL",channel)
    yqcd.add_qualifier("SQRT(S)","13","TeV")
    yqcd.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
#    yunc = Variable( "Total systematic uncertainty", is_independent=False, is_binned=False)
#    yunc.values = unc
#    yunc.add_qualifier("SQRT(S)","13","TeV")
#    yunc.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    #yrelunc = Variable( "Rel. uncertainty (%)", is_independent=False, is_binned=False)
    #yrelunc.values = relunc

    yunc = Uncertainty( "syst" )
    yunc.is_symmetric = True
    yunc.values = unc

    ystatunc = Uncertainty( "stat" )
    ystatunc.is_symmetric = True
    ystatunc.values = statunc

    ydata.uncertainties.append(ystatunc)
    ytot.uncertainties.append(yunc)

    tab.add_variable(xbins)
    tab.add_variable(ydata)
    tab.add_variable(ytot)
    tab.add_variable(ywjets)
    tab.add_variable(yqcd)
    tab.add_variable(ydy)
    tab.add_variable(ytop)
    tab.add_variable(yother)
#    tab.add_variable(ywg)
#    tab.add_variable(yzg)
#    tab.add_variable(yttg)
#    tab.add_variable(yunc)

    return tab
Ejemplo n.º 23
0
def convertCorrMatrixToYaml( rootfile, label, variablex, variabley, unit, object="output_corr_matrix_syst", var="Syst. correlation" ):

    tab = Table(label)

    reader = RootFileReader(rootfile)

    cov = reader.read_hist_2d(object)

    xbins = Variable( variablex, is_independent=True, is_binned=True, units=unit)
    xbins.values = cov["x_edges"]
    ybins = Variable( variabley, is_independent=True, is_binned=True, units=unit)
    ybins.values = cov["y_edges"]

    data = Variable( var, is_independent=False, is_binned=False, units="%")
    data.values = cov["z"]
    data.add_qualifier("SQRT(S)","13","TeV")
    data.add_qualifier("LUMINOSITY","137","fb$^{-1}$")

    tab.add_variable(xbins)
    tab.add_variable(ybins)
    tab.add_variable(data)

    return tab
def make_table():

    xparam = 'kappa_V'
    yparam = 'kappa_F'

    # Load results + xsbr data
    inputMode = "kappas"
    translatePOIs = LoadTranslations("translate/pois_%s.json" % inputMode)

    # Extract observed results
    fobs = "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Combine/runFits_UL_redo_kVkF/output_scan2D_syst_fixedMH_v2_obs_kappa_V_vs_kappa_F.root"
    f_in = ROOT.TFile(fobs)
    t_in = f_in.Get("limit")
    xvals, yvals, deltaNLL = [], [], []
    ev_idx = 0
    for ev in t_in:
        xvals.append(getattr(ev, xparam))
        yvals.append(getattr(ev, yparam))
        deltaNLL.append(getattr(ev, "deltaNLL"))

    # Convert to numpy arrays as required for interpolation
    x = np.asarray(xvals)
    y = np.asarray(yvals)
    dnll = np.asarray(deltaNLL)
    v = 2 * (deltaNLL - np.min(deltaNLL))

    # Make table of results
    table = Table("Kappas 2D: vector boson and fermion")
    table.description = "Observed likelihood surface."
    table.location = "Results from Figure 22"
    table.keywords["reactions"] = ["P P --> H ( --> GAMMA GAMMA ) X"]

    pois_x = Variable(str(Translate(xparam, translatePOIs)),
                      is_independent=True,
                      is_binned=False)
    pois_y = Variable(str(Translate(yparam, translatePOIs)),
                      is_independent=True,
                      is_binned=False)
    q = Variable("Observed -2$\\Delta$NLL",
                 is_independent=False,
                 is_binned=False)
    q.add_qualifier("SQRT(S)", 13, "TeV")
    q.add_qualifier("MH", '125.38', "GeV")

    pois_x.values = x
    pois_y.values = y
    q.values = np.round(np.array(v), 2)

    # Add variables to table
    table.add_variable(pois_x)
    table.add_variable(pois_y)
    table.add_variable(q)

    # Add figure
    table.add_image(
        "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/scan2D_syst_obs_kappa_V_vs_kappa_F.pdf"
    )

    return table
Ejemplo n.º 25
0
def convertEFTPtHistToYaml( rootfile, label, channel ):

    tab = Table(label)

    reader = RootFileReader(rootfile)

    data = reader.read_hist_1d("data")
    tot = reader.read_hist_1d("total")
    totbkg = reader.read_hist_1d("total_background")
    ttg = reader.read_hist_1d("signal")
    misID = reader.read_hist_1d("misID")
    had = reader.read_hist_1d("fakes")
    other = reader.read_hist_1d("other")
    wg = reader.read_hist_1d("WG")
    qcd = reader.read_hist_1d("QCD")
    zg = reader.read_hist_1d("ZG")

    eftbf = reader.read_hist_1d("bestFit")
    eftctZ045 = reader.read_hist_1d("ctZ0.45")
    eftctZI045 = reader.read_hist_1d("ctZI0.45")
    eftctZm045 = reader.read_hist_1d("ctZ-0.45")

    rootfile = ROOT.TFile(rootfile,"READ")
    totHist = rootfile.Get("total")
    datHist = rootfile.Get("data")

    unc = []
    statunc = []
    relunc = []
    for i, i_tot in enumerate(tot["y"]):
        u = totHist.GetBinError(i+1)
        ustat = datHist.GetBinError(i+1)
        unc.append(u)
        statunc.append(ustat)
        relunc.append(u*100./i_tot)


    xbins = Variable( "$p_{T}(\gamma)$", is_independent=True, is_binned=True, units="GeV")
    xbins.values = data["x_edges"]
    ydata = Variable( "Observed", is_independent=False, is_binned=False)
    ydata.values = data["y"]
    ydata.add_qualifier("CHANNEL",channel)
    ydata.add_qualifier("SQRT(S)","13","TeV")
    ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ytot = Variable( "Total simulation", is_independent=False, is_binned=False)
    ytot.values = tot["y"]
    ytot.add_qualifier("CHANNEL",channel)
    ytot.add_qualifier("SQRT(S)","13","TeV")
    ytot.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ytotbkg = Variable( "Total background", is_independent=False, is_binned=False)
    ytotbkg.values = totbkg["y"]
    ytotbkg.add_qualifier("CHANNEL",channel)
    ytotbkg.add_qualifier("SQRT(S)","13","TeV")
    ytotbkg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ywg = Variable( "$W\gamma$", is_independent=False, is_binned=False)
    ywg.values = wg["y"]
    ywg.add_qualifier("CHANNEL",channel)
    ywg.add_qualifier("SQRT(S)","13","TeV")
    ywg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yzg = Variable( "$Z\gamma$", is_independent=False, is_binned=False)
    yzg.values = zg["y"]
    yzg.add_qualifier("CHANNEL",channel)
    yzg.add_qualifier("SQRT(S)","13","TeV")
    yzg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    ymisID = Variable( "Misid. e", is_independent=False, is_binned=False)
    ymisID.values = misID["y"]
    ymisID.add_qualifier("CHANNEL",channel)
    ymisID.add_qualifier("SQRT(S)","13","TeV")
    ymisID.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yhad = Variable( "Hadronic $\gamma$", is_independent=False, is_binned=False)
    yhad.values = had["y"]
    yhad.add_qualifier("CHANNEL",channel)
    yhad.add_qualifier("SQRT(S)","13","TeV")
    yhad.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yqcd = Variable( "Multijet", is_independent=False, is_binned=False)
    yqcd.values = qcd["y"]
    yqcd.add_qualifier("CHANNEL",channel)
    yqcd.add_qualifier("SQRT(S)","13","TeV")
    yqcd.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yttg = Variable( "tt$\gamma$", is_independent=False, is_binned=False)
    yttg.values = ttg["y"]
    yttg.add_qualifier("CHANNEL",channel)
    yttg.add_qualifier("SQRT(S)","13","TeV")
    yttg.add_qualifier("LUMINOSITY","137","fb$^{-1}$")
    yother = Variable( "Other", is_independent=False, is_binned=False)
    yother.values = other["y"]
    yother.add_qualifier("CHANNEL",channel)
    yother.add_qualifier("SQRT(S)","13","TeV")
    yother.add_qualifier("LUMINOSITY","137","fb$^{-1}$")

    yeftbf = Variable( "SM-EFT best fit", is_independent=False, is_binned=False)
    yeftbf.values = eftbf["y"]
    yeftbf.add_qualifier("CHANNEL",channel)
    yeftbf.add_qualifier("SQRT(S)","13","TeV")
    yeftbf.add_qualifier("LUMINOSITY","137","fb$^{-1}$")

    yeftctZ045 = Variable( "$c_{tZ} = 0.45$", is_independent=False, is_binned=False,  units="($\Lambda$/TeV)$^2$")
    yeftctZ045.values = eftctZ045["y"]
    yeftctZ045.add_qualifier("CHANNEL",channel)
    yeftctZ045.add_qualifier("SQRT(S)","13","TeV")
    yeftctZ045.add_qualifier("LUMINOSITY","137","fb$^{-1}$")

    yeftctZI045 = Variable( "$c^I_{tZ} = 0.45$", is_independent=False, is_binned=False,  units="($\Lambda$/TeV)$^2$")
    yeftctZI045.values = eftctZI045["y"]
    yeftctZI045.add_qualifier("CHANNEL",channel)
    yeftctZI045.add_qualifier("SQRT(S)","13","TeV")
    yeftctZI045.add_qualifier("LUMINOSITY","137","fb$^{-1}$")

    yeftctZm045 = Variable( "$c_{tZ} = -0.45$", is_independent=False, is_binned=False,  units="($\Lambda$/TeV)$^2$")
    yeftctZm045.values = eftctZm045["y"]
    yeftctZm045.add_qualifier("CHANNEL",channel)
    yeftctZm045.add_qualifier("SQRT(S)","13","TeV")
    yeftctZm045.add_qualifier("LUMINOSITY","137","fb$^{-1}$")

    yunc = Uncertainty( "syst" )
    yunc.is_symmetric = True
    yunc.values = unc

    ystatunc = Uncertainty( "stat" )
    ystatunc.is_symmetric = True
    ystatunc.values = statunc

    ydata.uncertainties.append(ystatunc)
    ytot.uncertainties.append(yunc)

    tab.add_variable(xbins)
    tab.add_variable(ydata)
    tab.add_variable(ytot)
    tab.add_variable(yeftbf)
    tab.add_variable(yeftctZ045)
    tab.add_variable(yeftctZI045)
    tab.add_variable(yeftctZm045)
    tab.add_variable(ytotbkg)
    tab.add_variable(yttg)
    tab.add_variable(yhad)
    tab.add_variable(ymisID)
    tab.add_variable(yother)
    tab.add_variable(ywg)
    tab.add_variable(yqcd)
    tab.add_variable(yzg)

    return tab
Ejemplo n.º 26
0
submission = Submission()

from hepdata_lib import Table
table = Table("pa all")
table.description = "description."
table.location = "upper left."
table.keywords["observables"] = ["pa"]

from hepdata_lib import RootFileReader
reader = RootFileReader("root://eosuser.cern.ch//eos/user/v/vveckaln/analysis_MC13TeV_TTJets/plots/plotter.root")
Data = reader.read_hist_1d("L_pull_angle_allconst_reco_leading_jet_scnd_leading_jet_DeltaRgt1p0/L_pull_angle_allconst_reco_leading_jet_scnd_leading_jet_DeltaRgt1p0")
Unc = reader.read_hist_1d("L_pull_angle_allconst_reco_leading_jet_scnd_leading_jet_DeltaRgt1p0/L_pull_angle_allconst_reco_leading_jet_scnd_leading_jet_DeltaRgt1p0_totalMCUncShape")

from hepdata_lib import Variable, Uncertainty

mmed = Variable("pa", is_independent=True, is_binned=False, units="rad")
mmed.values = signal["x"]

data = Variable("N", is_independent=False, is_binned=False, units="")
data.values = Data["y"]

unc = Uncertainty("Total", is_symmetric=True)
unc.values = Unc["dy"]
data.add_uncertainty(unc)

table.add_variable(mmed)
table.add_variable(data)

submission.add_table(table)

submission.create_files("example_output")
def Plot_pp_pPb_Avg_FF_and_Ratio(Comb_Dict):
    
    label_size=22
    axis_size=34
    plot_power = False
    Colors = ["red","blue"]
    Markers = ["s","o"]
    fig = plt.figure(figsize=(8,8))
    pp_sys_Error = 0
    p_Pb_sys_Error = 0
    fig.add_axes((0.1,0.3,0.88,0.6))
    for SYS,sys_col,marker in zip(reversed(Systems),reversed(Colors),reversed(Markers)):

        #Systematics
        Efficiency_Uncertainty = 0.056*Comb_Dict["%s_Combined_FF"%(SYS)]
        
        Eta_Cor = Eta_Correction #see default_value.py for value
        Eta_Cor_Uncertainty = Eta_Correction_Uncertainty*Comb_Dict["%s_Combined_FF"%(SYS)]
        if not(Apply_Eta_Correction and SYS=="p-Pb"):
            Eta_Cor_Uncertainty = 0  #2% otherwise
        
        FF_Central = Comb_Dict["%s_Combined_FF"%(SYS)] #Eta Correction is applied when creating Dictionary!
        Sys_Uncertainty = np.sqrt(Efficiency_Uncertainty**2 + Comb_Dict["%s_purity_Uncertainty"%(SYS)]**2 + Eta_Cor_Uncertainty**2)
        
        if (SYS=="pp"):
            pp_sys_Error = Sys_Uncertainty
        elif (SYS=="p-Pb"):
            p_Pb_sys_Error=Sys_Uncertainty
        #Plots
        if (SYS=="pp"):
            leg_string = SYS
        if (SYS=="p-Pb"):
            leg_string = "p$-$Pb"
        plt.errorbar(zT_centers[:NzT-ZT_OFF_PLOT], Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT],xerr=zT_widths[:NzT-ZT_OFF_PLOT]*0,
        yerr=Comb_Dict["%s_Combined_FF_Errors"%(SYS)][:NzT-ZT_OFF_PLOT],linewidth=1, fmt=marker,color=sys_col,capsize=0)#for lines

        plt.plot(zT_centers[:NzT-ZT_OFF_PLOT], Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT],marker,linewidth=0,color=sys_col,
        label=leg_string)#for legend without lines
        
        if (SYS == "pp"):
            Sys_Plot_pp = plt.bar(zT_centers[:NzT-ZT_OFF_PLOT], Sys_Uncertainty[:NzT-ZT_OFF_PLOT]+Sys_Uncertainty[:NzT-ZT_OFF_PLOT],
            bottom=Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT]-Sys_Uncertainty[:NzT-ZT_OFF_PLOT],width=zT_widths[:NzT-ZT_OFF_PLOT]*2, align='center',color=sys_col,alpha=0.3,edgecolor=sys_col)
        else:
            Sys_Plot_pp = plt.bar(zT_centers[:NzT-ZT_OFF_PLOT], Sys_Uncertainty[:NzT-ZT_OFF_PLOT]+Sys_Uncertainty[:NzT-ZT_OFF_PLOT],
            bottom=Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT]-Sys_Uncertainty[:NzT-ZT_OFF_PLOT],width=zT_widths[:NzT-ZT_OFF_PLOT]*2,align='center',color=sys_col,fill=False,edgecolor="blue")
        
        if (plot_power):
            model,p,chi2dof = Fit_FF_PowerLaw(Comb_Dict,SYS)
            plt.plot(zT_centers[:NzT-ZT_OFF_PLOT], model, sys_col,label=r"%s $\alpha = %1.2f\pm 0.1 \chi^2 = %1.2f$"%(SYS,p,chi2dof))
    
    if (Use_MC):
        plt.plot(zT_centers[:NzT-ZT_OFF_PLOT],pythia_FF,'--',color="forestgreen",label="PYTHIA 8.2 Monash")
        plt.errorbar(zT_centers[:NzT-ZT_OFF_PLOT],pythia_FF,yerr=pythia_FF_Errors,fmt='--',color="forestgreen",capsize=0) 
    
    
    plt.yscale('log')                             
    plt.ylabel(r"$\frac{1}{N_{\mathrm{\gamma}}}\frac{\mathrm{d}^3N}{\mathrm{d}z_{\mathrm{T}}\mathrm{d}|\Delta\varphi|\mathrm{d}\Delta\eta}$",fontsize=axis_size,y=0.76)
    plt.ylim(0.037,15)
    plt.yticks(fontsize=20)
    plt.xticks(fontsize=0)
    plt.xlim(0,0.65)
    plt.tick_params(which='both',direction='in',right=True,top=True,bottom=False,length=10)
    plt.tick_params(which='minor',length=5)

    #pp_sys_Error = (Comb_Dict["pp_Combined_FF"][:NzT-ZT_OFF_PLOT])*math.sqrt(Rel_pUncert["pp"]**2+0.056**2)
    #p_Pb_sys_Error = (Comb_Dict["p-Pb_Combined_FF"][:NzT-ZT_OFF_PLOT])*math.sqrt(Rel_pUncert["p-Pb"]**2+0.056**2+Eta_Cor**2)
    
    Chi2,NDF,Pval = Get_pp_pPb_List_Chi2(Comb_Dict["pp_Combined_FF"][:NzT-ZT_OFF_PLOT],
                                         Comb_Dict["pp_Combined_FF_Errors"][:NzT-ZT_OFF_PLOT],
                                         pp_sys_Error,
                                         Comb_Dict["p-Pb_Combined_FF"][:NzT-ZT_OFF_PLOT],
                                         Comb_Dict["p-Pb_Combined_FF_Errors"][:NzT-ZT_OFF_PLOT],
                                         p_Pb_sys_Error)

    leg = plt.legend(numpoints=1,frameon=True,edgecolor='white', framealpha=0.0, fontsize=label_size,handlelength=1,labelspacing=0.2,loc='lower left',bbox_to_anchor=(0.001, 0.05))


    plt.annotate(r"ALICE, $\sqrt{s_{\mathrm{_{NN}}}}=5.02$ TeV",xy=(0.115,0.008),xycoords='axes fraction', ha='left',va='bottom',fontsize=label_size)
    plt.annotate(r"%1.0f < $p_\mathrm{T}^{\gamma}$ < %1.0f GeV/$c$"%(pTbins[0],pTbins[N_pT_Bins]),xy=(0.97, 0.81), xycoords='axes fraction', ha='right', va='top', fontsize=label_size)
    plt.annotate(r"%1.1f < $p_\mathrm{T}^\mathrm{h}$ < %1.1f GeV/$c$"%(Min_Hadron_pT,Max_Hadron_pT),xy=(0.97, 0.89), xycoords='axes fraction', ha='right', va='top', fontsize=label_size)
    plt.annotate("$\chi^2/\mathrm{ndf}$ = %1.1f/%i, $p$ = %1.2f"%(Chi2*NDF,NDF,Pval), xy=(0.97, 0.97), xycoords='axes fraction', ha='right', va='top', fontsize=label_size)



#HEP FF
    Fig5 = Table("Figure 5 Top Panel")
    Fig5.description = "$\gamma^\mathrm{iso}$-tagged fragmentation function for pp (red) and p$-$Pb data (blue) at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The boxes represent the systematic uncertainties while the vertical bars indicate the statistical uncertainties. The dashed green line corresponds to PYTHIA 8.2 Monash Tune. The $\chi^2$ test for the comparison of pp and p$-$Pb data incorporates correlations among different $z_\mathrm{T}$ intervals. A constant that was fit to the ratio is shown as grey band, with the width indicating the uncertainty on the fit."
    Fig5.location = "Data from Figure 5 Top Panel, Page 15"
    Fig5.keywords["observables"] = ["$\frac{1}{N_{\mathrm{\gamma}}}\frac{\mathrm{d}^3N}{\mathrm{d}z_{\mathrm{T}}\mathrm{d}\Delta\varphi\mathrm{d}\Delta\eta}$"]
    Fig5.add_image("./pics/LO/zT_Rebin_8_006zT06zT13fnew/Final_FFunction_and_Ratio.pdf")
    
    # x-axis: zT
    zt = Variable(r"$z_\mathrm{T}$", is_independent=True, is_binned=True, units="")
    zt.values = zT_edges
    Fig5.add_variable(zt)

    # y-axis: p-Pb Yields
    pPb_data = Variable("p$-$Pb conditional yield of associated hadrons", is_independent=False, is_binned=False, units="")
    pPb_data.values = Comb_Dict["p-Pb_Combined_FF"]
    
    pPb_sys = Uncertainty("p-Pb Systematic", is_symmetric=True)
    pPb_sys.values = p_Pb_sys_Error
    pPb_stat = Uncertainty("p-Pb Statistical", is_symmetric=True)
    pPb_stat.values = Comb_Dict["p-Pb_Combined_FF_Errors"]
    pPb_data.add_uncertainty(pPb_sys)
    pPb_data.add_uncertainty(pPb_stat)    

    # y-axis: pp Yields
    pp_data = Variable("pp conditional yield of associated hadrons", is_independent=False, is_binned=False, units="")
    pp_data.values = Comb_Dict["pp_Combined_FF"]
    
    pp_sys = Uncertainty("pp Systematic", is_symmetric=True)
    pp_sys.values = pp_sys_Error
    pp_stat = Uncertainty("pp Statistical", is_symmetric=True)
    pp_stat.values = Comb_Dict["pp_Combined_FF_Errors"]
    pp_data.add_uncertainty(pp_sys)
    pp_data.add_uncertainty(pp_stat)

    # y-axis: PYTHIA Yields
    pythia_data = Variable("PYTHIA conditional yield of associated hadrons", is_independent=False, is_binned=False, units="")
    pythia_data.values = pythia_FF
    
    pythia_stat = Uncertainty("PYTHIA Statistical", is_symmetric=True)
    pythia_stat.values = pythia_FF_Errors
    pythia_data.add_uncertainty(pythia_stat)

    #Add everything to the HEP Table
    Fig5.add_variable(pPb_data)
    Fig5.add_variable(pp_data)
    Fig5.add_variable(pythia_data)

    submission.add_table(Fig5)

    #RATIO SECOND Y_AXIS
    fig.add_axes((0.1,0.1,0.88,0.2))

    pPb_Combined = Comb_Dict["p-Pb_Combined_FF"]
    pPb_Combined_Errors = Comb_Dict["p-Pb_Combined_FF_Errors"]
    pPb_purity_Uncertainty = Comb_Dict["p-Pb_purity_Uncertainty"]
    
    pp_Combined = Comb_Dict["pp_Combined_FF"]
    pp_Combined_Errors = Comb_Dict["pp_Combined_FF_Errors"]
    pp_purity_Uncertainty = Comb_Dict["pp_purity_Uncertainty"]
    
    Ratio = pPb_Combined/pp_Combined
    Ratio_Error = np.sqrt((pPb_Combined_Errors/pPb_Combined)**2 + (pp_Combined_Errors/pp_Combined)**2)*Ratio
    Ratio_Plot = plt.errorbar(zT_centers[:NzT-ZT_OFF_PLOT], Ratio[:NzT-ZT_OFF_PLOT], yerr=Ratio_Error[:NzT-ZT_OFF_PLOT],xerr=zT_widths[:NzT-ZT_OFF_PLOT]*0, fmt='ko',capsize=0, ms=6,lw=1)
    
        #Save
    np.save("npy_files/%s_Averaged_FF_Ratio_%s.npy"%(Shower,description_string),Ratio)
    np.save("npy_files/%s_Averaged_FF_Ratio_Errors_%s.npy"%(Shower,description_string),Ratio_Error)
    
    Purity_Uncertainty = np.sqrt((pp_purity_Uncertainty/pp_Combined)**2 + (pPb_purity_Uncertainty/pPb_Combined)**2)*Ratio
    Efficiency_Uncertainty = np.ones(len(pPb_Combined))*0.056*math.sqrt(2)*Ratio 
    Eta_Cor_Uncertainty = Eta_Correction_Uncertainty/Comb_Dict["p-Pb_Combined_FF"]*Ratio
    if (CorrectedP):
        Ratio_Systematic = np.sqrt(Purity_Uncertainty**2 + Efficiency_Uncertainty**2 + Eta_Cor_Uncertainty**2)
        
    Sys_Plot = plt.bar(zT_centers[:NzT-ZT_OFF_PLOT], Ratio_Systematic[:NzT-ZT_OFF_PLOT]+Ratio_Systematic[:NzT-ZT_OFF_PLOT],
            bottom=Ratio[:NzT-ZT_OFF_PLOT]-Ratio_Systematic[:NzT-ZT_OFF_PLOT], width=zT_widths[:NzT-ZT_OFF_PLOT]*2, align='center',color='black',alpha=0.25)
    
    ### ROOT LINEAR and CONSTANT FITS ###
    Ratio_TGraph = TGraphErrors()
    for izt in range (len(Ratio)-ZT_OFF_PLOT):
        Ratio_TGraph.SetPoint(izt,zT_centers[izt],Ratio[izt])
        Ratio_TGraph.SetPointError(izt,0,Ratio_Error[izt])

    Ratio_TGraph.Fit("pol0","S")
    f = Ratio_TGraph.GetFunction("pol0")
    chi2_red  = f.GetChisquare()/f.GetNDF()
    pval = f.GetProb()
    p0 = f.GetParameter(0)
    p0e = f.GetParError(0)
    p0col = "grey"
    Show_Fits = True
    if (Show_Fits):
        sys_const = 0.19 #23% relative from purity + tracking
        #sys_const = 0.504245 #IRC
        plt.annotate("$c = {0:.2f} \pm {1:.2f} \pm {2:.2f}$".format(p0,p0e,sys_const), xy=(0.98, 0.9), xycoords='axes fraction', ha='right', va='top', color="black",fontsize=label_size,alpha=.9)
        plt.annotate(r"$p = %1.2f$"%(pval), xy=(0.98, 0.75), xycoords='axes fraction', ha='right', va='top', color="black",fontsize=label_size,alpha=.9)

        c_error = math.sqrt(p0e**2 + sys_const**2)
        plt.fill_between(np.arange(0,1.1,0.1), p0+c_error, p0-c_error,color=p0col,alpha=.3)
    
    ###LABELS/AXES###
    plt.axhline(y=1, color='k', linestyle='--')
    
    plt.xlabel("${z_\mathrm{T}} = p_\mathrm{T}^{\mathrm{h}}/p_\mathrm{T}^\gamma$",fontsize=axis_size-8,x=0.9)
    plt.ylabel(r"$\frac{\mathrm{p-Pb}}{\mathrm{pp}}$",fontsize=axis_size,y=0.5)
    plt.ylim((-0.0, 2.8))
    plt.xticks(fontsize=20)
    plt.yticks([0.5,1.0,1.5,2.0,2.5],fontsize=20)
    plt.xlim(0,0.65)
    plt.tick_params(which='both',direction='in',right=True,bottom=True,top=True,length=10)
    plt.tick_params(which='both',direction='in',top=True,length=5)

    plt.savefig("pics/%s/%s/Final_FFunction_and_Ratio.pdf"%(Shower,description_string), bbox_inches = "tight")
    plt.show()

#RATIO HEP
    FigRatio = Table("Figure 5 Bottom Panel")
    FigRatio.description = r"$\gamma^\mathrm{iso}$-tagged fragmentation function for pp (red) and p$-$Pb data (blue) at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The boxes represent the systematic uncertainties while the vertical bars indicate the statistical uncertainties. The dashed green line corresponds to PYTHIA 8.2 Monash Tune. The $\chi^2$ test for the comparison of pp and p$-$Pb data incorporates correlations among different $z_\mathrm{T}$ intervals. A constant that was fit to the ratio is shown as grey band, with the width indicating the uncertainty on the fit."
    FigRatio.location = "Data from Figure 5, Bottom Panel, Page 15"
    FigRatio.keywords["observables"] = [r"$\frac{1}{N_{\mathrm{\gamma}}}\frac{\mathrm{d}^3N}{\mathrm{d}z_{\mathrm{T}}\mathrm{d}\Delta\varphi\mathrm{d}\Delta\eta}$"]
    FigRatio.add_image("./pics/LO/zT_Rebin_8_006zT06zT13fnew/Final_FFunction_and_Ratio.pdf")

    # x-axis: zT     
    zt_ratio = Variable(r"$z_\mathrm{T}$", is_independent=True, is_binned=True, units="")
    zt_ratio.values = zT_edges
    FigRatio.add_variable(zt_ratio)

    # y-axis: p-Pb Yields
    Ratio_HEP = Variable("Ratio conditional yield of associated hadrons in pp and p$-$Pb", is_independent=False, is_binned=False, units="")
    Ratio_HEP.values = Ratio
    Ratio_sys = Uncertainty("Ratio Systematic", is_symmetric=True)
    Ratio_sys.values = Ratio_Systematic
    Ratio_stat = Uncertainty("Ratio Statistical", is_symmetric=True)
    Ratio_stat.values = Ratio_Error
    Ratio_HEP.add_uncertainty(Ratio_stat)
    Ratio_HEP.add_uncertainty(Ratio_sys)
    FigRatio.add_variable(Ratio_HEP)
    submission.add_table(FigRatio)
Ejemplo n.º 28
0
    def test_add_uncertainty(self):
        '''Test behavior of Variable.add_uncertainty function'''
        var = Variable("testvar")
        var.is_binned = False

        var.values = range(5)

        # Normal behavior
        unc = Uncertainty("testunc")
        unc.is_symmetric = True
        unc.values = [x * 0.1 for x in var.values]

        var.add_uncertainty(unc)

        self.assertTrue(len(var.uncertainties) == 1)
        self.assertTrue(var.uncertainties[0] == unc)

        # Reset variable but leave uncertainty as is
        var.uncertainties = []
        var.values = []
        var.add_uncertainty(unc)

        self.assertTrue(len(var.uncertainties) == 1)
        self.assertTrue(var.uncertainties[0] == unc)

        # Exception testing
        var.values = range(5)

        def wrong_input_type():
            '''Call add_uncertainty with invalid input type.'''
            var.add_uncertainty("this is not a proper input argument")

        self.assertRaises(TypeError, wrong_input_type)

        def wrong_input_properties():
            '''Call add_uncertainty with invalid input properties.'''
            unc2 = Uncertainty("testunc2")
            unc2.is_symmetric = True
            unc2.values = unc.values + [3]
            var.add_uncertainty(unc2)

        self.assertRaises(ValueError, wrong_input_properties)
Ejemplo n.º 29
0
    def test_add_qualifier(self):
        """Test the 'add_qualifier' function"""

        # Initialize dependent variable
        var = Variable("testvar")
        var.is_binned = False
        var.values = range(5)
        var.is_independent = False

        # This should work fine
        try:
            var.add_qualifier("Some Name 1", "Some value 1", "Some unit 1")
            var.add_qualifier("Some Name 2", "Some value 2")
        except RuntimeError:
            self.fail(
                "Variable.add_qualifier raised an unexpected RuntimeError.")

        # For an independent variable, an exception should be raised
        var.is_independent = True
        with self.assertRaises(RuntimeError):
            var.add_qualifier("Some Name 3", "Some value 3")
        with self.assertRaises(RuntimeError):
            var.add_qualifier("Some Name 4", "Some value 4", "Some unit 4")

### Begin Table 4
table4 = Table("Table 4")
table4.description = "Systematic uncertainties of the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$ and $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$, and $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{X}}$ and $\mathrm{W}^\pm_{\mathrm{T}}\mathrm{W}^\pm_{\mathrm{T}}$ cross section measurements in units of percent."
table4.location = "Data from Table 4"

table4.keywords["observables"] = ["Uncertainty"]
table4.keywords["reactions"] = ["P P --> W W j j"]
table4.keywords["phrases"] = ["VBS", "Polarized", "Same-sign WW"]

data4 = np.loadtxt("HEPData/inputs/smp20006/systematics.txt", dtype='string', skiprows=2)

print(data4)

table4_data = Variable("Source of uncertainty", is_independent=True, is_binned=False, units="")
table4_data.values = [str(x) for x in data4[:,0]]

table4_yields0 = Variable("Uncertainty", is_independent=False, is_binned=False, units="")
table4_yields0.values = [float(x) for x in data4[:,1]]
table4_yields0.add_qualifier("Source of uncertainty", "$\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$")
table4_yields0.add_qualifier("SQRT(S)", 13, "TeV")
table4_yields0.add_qualifier("L$_{\mathrm{int}}$", 137, "fb$^{-1}$")

table4_yields1 = Variable("Uncertainty", is_independent=False, is_binned=False, units="")
table4_yields1.values = [float(x) for x in data4[:,2]]
table4_yields1.add_qualifier("Source of uncertainty", "$\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$")
table4_yields1.add_qualifier("SQRT(S)", 13, "TeV")
table4_yields1.add_qualifier("L$_{\mathrm{int}}$", 137, "fb$^{-1}$")

table4_yields2 = Variable("Uncertainty", is_independent=False, is_binned=False, units="")