def test_constructor(self): """Test the constructor of the Variable class.""" binned_values = [(1, 2), (2, 3), (3, 4)] unbinned_values = [1, 2, 3, 4] binned_values_wrong_length = [(1, 2, 3), (4, 5, 6)] # Should work fine: Binned try: _var = Variable("testvar", is_binned=True, values=binned_values) except ValueError: self.fail("Variable constructor raised unexpected ValueError.") # Should work fine: Unbinned try: _var = Variable("testvar", is_binned=False, values=unbinned_values) except ValueError: self.fail("Variable constructor raised unexpected ValueError.") # Wrong type of argument with self.assertRaises(ValueError): _var = Variable("testvar", is_binned=True, values=unbinned_values) # Other way around with self.assertRaises(ValueError): _var = Variable("testvar", is_binned=False, values=binned_values) # Tuples, but wrong length with self.assertRaises(ValueError): _var = Variable("testvar", is_binned=False, values=binned_values_wrong_length)
def test_scale_values(self): '''Test behavior of Uncertainty.scale_values function''' values = list(range(0, 300, 1)) uncertainty = [x + random.uniform(0, 2) for x in values] testvar = Variable("testvar") testvar.is_binned = False testvar.units = "GeV" testvar.values = values testunc = Uncertainty("testunc") testunc.is_symmetric = True testunc.values = uncertainty testvar.uncertainties.append(testunc) assert testvar.values == values self.assertTrue(testunc.values == uncertainty) for factor in [random.uniform(0, 10000) for x in range(100)]: # Check that scaling works testvar.scale_values(factor) scaled_values = [factor * x for x in values] scaled_uncertainty = [factor * x for x in uncertainty] self.assertTrue(all(test_utilities.float_compare(x, y) for x, y in zip(testvar.values, scaled_values))) self.assertTrue(all(test_utilities.float_compare(x, y) for x, y in zip(testunc.values, scaled_uncertainty))) # Check that inverse also works testvar.scale_values(1. / factor) self.assertTrue(all(test_utilities.float_compare(x, y) for x, y in zip(testvar.values, values))) self.assertTrue(all(test_utilities.float_compare(x, y) for x, y in zip(testunc.values, uncertainty)))
def test_scale_values(self): '''Test behavior of Variable.scale_values function''' values = list(zip(range(0, 5, 1), range(1, 6, 1))) testvar = Variable("testvar") testvar.is_binned = True testvar.units = "GeV" testvar.values = values self.assertTrue(testvar.values == values) for factor in [random.uniform(0, 10000) for x in range(100)]: # Check that scaling works testvar.scale_values(factor) scaled_values = [(factor * x[0], factor * x[1]) for x in values] assert (all( test_utilities.tuple_compare(x, y) for x, y in zip(testvar.values, scaled_values))) # Check that inverse also works testvar.scale_values(1. / factor) self.assertTrue( all( test_utilities.tuple_compare(x, y) for x, y in zip(testvar.values, values)))
def test_write_yaml(self): """Test write_yaml() for Table.""" test_table = Table("Some Table") test_variable = Variable("Some Variable") test_table.add_variable(test_variable) try: test_table.write_yaml("test_output") except TypeError: self.fail("Table.write_yaml raised an unexpected TypeError.") with self.assertRaises(TypeError): test_table.write_yaml(None)
def test_write_yaml(self): """Test write_yaml() for Table.""" test_table = Table("Some Table") test_variable = Variable("Some Variable") test_table.add_variable(test_variable) testdir = tmp_directory_name() self.addCleanup(shutil.rmtree, testdir) try: test_table.write_yaml(testdir) except TypeError: self.fail("Table.write_yaml raised an unexpected TypeError.") with self.assertRaises(TypeError): test_table.write_yaml(None) self.doCleanups()
def test_add_variable(self): """Test the add_variable function.""" # Verify that the type check works test_table = Table("Some variable") test_variable = Variable("Some variable") test_uncertainty = Uncertainty("Some Uncertainty") try: test_table.add_variable(test_variable) except TypeError: self.fail("Table.add_variable raised an unexpected TypeError.") with self.assertRaises(TypeError): test_table.add_variable(5) with self.assertRaises(TypeError): test_table.add_variable([1, 3, 5]) with self.assertRaises(TypeError): test_table.add_variable("a string") with self.assertRaises(TypeError): test_table.add_variable(test_uncertainty)
def test_yaml_output(self): """Test yaml dump""" tmp_dir = tmp_directory_name() # Create test dictionary testlist = [("x", 1.2), ("x", 2.2), ("y", 0.12), ("y", 0.22)] testdict = defaultdict(list) for key, value in testlist: testdict[key].append(value) # Create test submission test_submission = Submission() test_table = Table("TestTable") x_variable = Variable("X", is_independent=True, is_binned=False) x_variable.values = testdict['x'] y_variable = Variable("Y", is_independent=False, is_binned=False) y_variable.values = testdict['y'] test_table.add_variable(x_variable) test_table.add_variable(y_variable) test_submission.add_table(test_table) test_submission.create_files(tmp_dir) # Test read yaml file table_file = os.path.join(tmp_dir, "testtable.yaml") try: with open(table_file, 'r') as testfile: testyaml = yaml.safe_load(testfile) except yaml.YAMLError as exc: print(exc) # Test compare yaml file to string testtxt = ( "dependent_variables:\n- header:\n name: Y\n values:\n" + " - value: 0.12\n - value: 0.22\nindependent_variables:\n" + "- header:\n name: X\n values:\n - value: 1.2\n - value: 2.2\n" ) with open(table_file, 'r') as testfile: testyaml = testfile.read() self.assertEqual(str(testyaml), testtxt) self.addCleanup(os.remove, "submission.tar.gz") self.addCleanup(shutil.rmtree, tmp_dir) self.doCleanups()
def make_table(): params = [ 'r_ggH_0J_low', 'r_ggH_0J_high', 'r_ggH_1J_low', 'r_ggH_1J_med', 'r_ggH_1J_high', 'r_ggH_2J_low', 'r_ggH_2J_med', 'r_ggH_2J_high', 'r_ggH_BSM_low', 'r_ggH_BSM_med', 'r_ggH_BSM_high', 'r_qqH_low_mjj_low_pthjj', 'r_qqH_low_mjj_high_pthjj', 'r_qqH_high_mjj_low_pthjj', 'r_qqH_high_mjj_high_pthjj', 'r_qqH_VHhad', 'r_qqH_BSM', 'r_WH_lep_low', 'r_WH_lep_med', 'r_WH_lep_high', 'r_ZH_lep', 'r_ttH_low', 'r_ttH_medlow', 'r_ttH_medhigh', 'r_ttH_high', 'r_ttH_veryhigh', 'r_tH' ] # Load results + xsbr data inputXSBRjson = "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Plots/jsons/xsbr_theory_stage1p2_extended_125p38.json" inputExpResultsJson = '/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Plots/expected_UL_redo.json' inputObsResultsJson = '/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Plots/observed_UL_redo.json' inputMode = "stage1p2_extended" translatePOIs = LoadTranslations("translate/pois_%s.json" % inputMode) with open(inputXSBRjson, "r") as jsonfile: xsbr_theory = json.load(jsonfile) observed = CopyDataFromJsonFile(inputObsResultsJson, inputMode, params) expected = CopyDataFromJsonFile(inputExpResultsJson, inputMode, params) mh = float(re.sub("p", ".", inputXSBRjson.split("_")[-1].split(".json")[0])) # Make table of results table = Table("STXS stage 1.2 minimal merging scheme") table.description = "Results of the minimal merging scheme STXS fit. The best fit cross sections are shown together with the respective 68% C.L. intervals. The uncertainty is decomposed into the systematic and statistical components. The expected uncertainties on the fitted parameters are given in brackets. Also listed are the SM predictions for the cross sections and the theoretical uncertainty in those predictions." table.location = "Results from Figure 20 and Table 13" table.keywords["reactions"] = ["P P --> H ( --> GAMMA GAMMA ) X"] pois = Variable("STXS region", is_independent=True, is_binned=False) poiNames = [] for poi in params: poiNames.append(str(Translate(poi, translatePOIs))) pois.values = poiNames # Dependent variables # SM predict xsbr_sm = Variable("SM predicted cross section times branching ratio", is_independent=False, is_binned=False, units='fb') xsbr_sm.add_qualifier("SQRT(S)", 13, "TeV") xsbr_sm.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') xsbr_sm.add_qualifier("MH", '125.38', "GeV") theory = Uncertainty("Theory", is_symmetric=False) xsbr_vals = [] xsbr_hi_th, xsbr_lo_th = [], [] for poi in params: xsbr_vals.append(xsbr_theory[poi]['nominal']) xsbr_hi_th.append(xsbr_theory[poi]['High01Sigma']) xsbr_lo_th.append(-1 * abs(xsbr_theory[poi]['Low01Sigma'])) xsbr_sm.values = np.round(np.array(xsbr_vals), 3) theory.values = zip(np.round(np.array(xsbr_lo_th), 3), np.round(np.array(xsbr_hi_th), 3)) xsbr_sm.add_uncertainty(theory) # Observed cross section xsbr = Variable("Observed cross section times branching ratio", is_independent=False, is_binned=False, units='fb') xsbr.add_qualifier("SQRT(S)", 13, "TeV") xsbr.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') xsbr.add_qualifier("MH", '125.38', "GeV") # Add uncertainties tot = Uncertainty("Total", is_symmetric=False) stat = Uncertainty("Stat only", is_symmetric=False) syst = Uncertainty("Syst", is_symmetric=False) xsbr_vals = [] xsbr_hi_tot, xsbr_lo_tot = [], [] xsbr_hi_stat, xsbr_lo_stat = [], [] xsbr_hi_syst, xsbr_lo_syst = [], [] for poi in params: xsbr_vals.append(xsbr_theory[poi]['nominal'] * observed[poi]['Val']) xsbr_hi_tot.append( abs(xsbr_theory[poi]['nominal'] * observed[poi]['ErrorHi'])) xsbr_lo_tot.append( -1 * abs(xsbr_theory[poi]['nominal'] * observed[poi]['ErrorLo'])) xsbr_hi_stat.append( abs(xsbr_theory[poi]['nominal'] * observed[poi]['StatHi'])) xsbr_lo_stat.append( -1 * abs(xsbr_theory[poi]['nominal'] * observed[poi]['StatLo'])) xsbr_hi_syst.append( abs(xsbr_theory[poi]['nominal'] * observed[poi]['SystHi'])) xsbr_lo_syst.append( -1 * abs(xsbr_theory[poi]['nominal'] * observed[poi]['SystLo'])) tot.values = zip(np.round(np.array(xsbr_lo_tot), 3), np.round(np.array(xsbr_hi_tot), 3)) stat.values = zip(np.round(np.array(xsbr_lo_stat), 3), np.round(np.array(xsbr_hi_stat), 3)) syst.values = zip(np.round(np.array(xsbr_lo_syst), 3), np.round(np.array(xsbr_hi_syst), 3)) xsbr.values = np.round(np.array(xsbr_vals), 3) xsbr.add_uncertainty(tot) xsbr.add_uncertainty(stat) xsbr.add_uncertainty(syst) # Observed ratio to SM xsbrr = Variable("Observed ratio to SM", is_independent=False, is_binned=False, units='') xsbrr.add_qualifier("SQRT(S)", 13, "TeV") xsbrr.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') xsbrr.add_qualifier("MH", '125.38', "GeV") # Add uncertainties totr = Uncertainty("Total", is_symmetric=False) statr = Uncertainty("Stat only", is_symmetric=False) systr = Uncertainty("Syst", is_symmetric=False) xsbr_vals = [] xsbr_hi_tot, xsbr_lo_tot = [], [] xsbr_hi_stat, xsbr_lo_stat = [], [] xsbr_hi_syst, xsbr_lo_syst = [], [] for poi in params: xsbr_vals.append(observed[poi]['Val']) xsbr_hi_tot.append(abs(observed[poi]['ErrorHi'])) xsbr_lo_tot.append(-1 * abs(observed[poi]['ErrorLo'])) xsbr_hi_stat.append(abs(observed[poi]['StatHi'])) xsbr_lo_stat.append(-1 * abs(observed[poi]['StatLo'])) xsbr_hi_syst.append(abs(observed[poi]['SystHi'])) xsbr_lo_syst.append(-1 * abs(observed[poi]['SystLo'])) totr.values = zip(np.round(np.array(xsbr_lo_tot), 3), np.round(np.array(xsbr_hi_tot), 3)) statr.values = zip(np.round(np.array(xsbr_lo_stat), 3), np.round(np.array(xsbr_hi_stat), 3)) systr.values = zip(np.round(np.array(xsbr_lo_syst), 3), np.round(np.array(xsbr_hi_syst), 3)) xsbrr.values = np.round(np.array(xsbr_vals), 3) xsbrr.add_uncertainty(totr) xsbrr.add_uncertainty(statr) xsbrr.add_uncertainty(systr) # Expected cross section xsbr_exp = Variable("Expected cross section times branching ratio", is_independent=False, is_binned=False, units='fb') xsbr_exp.add_qualifier("SQRT(S)", 13, "TeV") xsbr_exp.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') xsbr_exp.add_qualifier("MH", '125.38', "GeV") # Add uncertainties tot_exp = Uncertainty("Total", is_symmetric=False) stat_exp = Uncertainty("Stat only", is_symmetric=False) syst_exp = Uncertainty("Syst", is_symmetric=False) xsbr_vals = [] xsbr_hi_tot, xsbr_lo_tot = [], [] xsbr_hi_stat, xsbr_lo_stat = [], [] xsbr_hi_syst, xsbr_lo_syst = [], [] for poi in params: xsbr_vals.append(xsbr_theory[poi]['nominal']) xsbr_hi_tot.append( abs(xsbr_theory[poi]['nominal'] * expected[poi]['ErrorHi'])) xsbr_lo_tot.append( -1 * abs(xsbr_theory[poi]['nominal'] * expected[poi]['ErrorLo'])) xsbr_hi_stat.append( abs(xsbr_theory[poi]['nominal'] * expected[poi]['StatHi'])) xsbr_lo_stat.append( -1 * abs(xsbr_theory[poi]['nominal'] * expected[poi]['StatLo'])) xsbr_hi_syst.append( abs(xsbr_theory[poi]['nominal'] * expected[poi]['SystHi'])) xsbr_lo_syst.append( -1 * abs(xsbr_theory[poi]['nominal'] * expected[poi]['SystLo'])) tot_exp.values = zip(np.round(np.array(xsbr_lo_tot), 3), np.round(np.array(xsbr_hi_tot), 3)) stat_exp.values = zip(np.round(np.array(xsbr_lo_stat), 3), np.round(np.array(xsbr_hi_stat), 3)) syst_exp.values = zip(np.round(np.array(xsbr_lo_syst), 3), np.round(np.array(xsbr_hi_syst), 3)) xsbr_exp.values = np.round(np.array(xsbr_vals), 3) xsbr_exp.add_uncertainty(tot_exp) xsbr_exp.add_uncertainty(stat_exp) xsbr_exp.add_uncertainty(syst_exp) # Expected ratio to SM xsbrr_exp = Variable("Expected ratio to SM", is_independent=False, is_binned=False, units='') xsbrr_exp.add_qualifier("SQRT(S)", 13, "TeV") xsbrr_exp.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') xsbrr_exp.add_qualifier("MH", '125.38', "GeV") # Add uncertainties totr_exp = Uncertainty("Total", is_symmetric=False) statr_exp = Uncertainty("Stat only", is_symmetric=False) systr_exp = Uncertainty("Syst", is_symmetric=False) xsbr_vals = [] xsbr_hi_tot, xsbr_lo_tot = [], [] xsbr_hi_stat, xsbr_lo_stat = [], [] xsbr_hi_syst, xsbr_lo_syst = [], [] for poi in params: xsbr_vals.append(1.00) xsbr_hi_tot.append(abs(expected[poi]['ErrorHi'])) xsbr_lo_tot.append(-1 * abs(expected[poi]['ErrorLo'])) xsbr_hi_stat.append(abs(expected[poi]['StatHi'])) xsbr_lo_stat.append(-1 * abs(expected[poi]['StatLo'])) xsbr_hi_syst.append(abs(expected[poi]['SystHi'])) xsbr_lo_syst.append(-1 * abs(expected[poi]['SystLo'])) totr_exp.values = zip(np.round(np.array(xsbr_lo_tot), 3), np.round(np.array(xsbr_hi_tot), 3)) statr_exp.values = zip(np.round(np.array(xsbr_lo_stat), 3), np.round(np.array(xsbr_hi_stat), 3)) systr_exp.values = zip(np.round(np.array(xsbr_lo_syst), 3), np.round(np.array(xsbr_hi_syst), 3)) xsbrr_exp.values = np.round(np.array(xsbr_vals), 3) xsbrr_exp.add_uncertainty(totr_exp) xsbrr_exp.add_uncertainty(statr_exp) xsbrr_exp.add_uncertainty(systr_exp) # Add variables to table table.add_variable(pois) table.add_variable(xsbr_sm) table.add_variable(xsbr) table.add_variable(xsbrr) table.add_variable(xsbr_exp) table.add_variable(xsbrr_exp) # Add figure table.add_image( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/stxs_dist_stage1p2_minimal.pdf" ) return table
submission.add_record_id(1865855, "inspire") #FIGURE 2 UPPER LEFT fig2_ul = Table("Figure 2 (upper left)") fig2_ul.description = "Distribution of the transverse momentum of the diphoton system for the $\mathrm{W}\gamma\gamma$ electron channel. The predicted yields are shown with their pre-fit normalisations. The observed data, the expected signal contribution and the background estimates are presented with error bars showing the corresponding statistical uncertainties." fig2_ul.location = "Data from Figure 2 on Page 6 of the preprint" fig2_ul.keywords["observables"] = ["Diphoton pT"] fig2_ul.keywords["reactions"] = [ "P P --> W GAMMA GAMMA --> ELECTRON NU GAMMA GAMMA" ] fig2_ul_in = np.loadtxt("input/fig2_ul.txt", skiprows=1) #diphoton pT fig2_ul_pt = Variable("$p_T^{\gamma\gamma}$", is_independent=True, is_binned=False, units="GeV") fig2_ul_pt.values = fig2_ul_in[:, 0] #Data fig2_ul_Data = Variable("Data", is_independent=False, is_binned=False, units="Events per bin") fig2_ul_Data.values = fig2_ul_in[:, 1] fig2_ul_Data_stat = Uncertainty("stat", is_symmetric=True) fig2_ul_Data_stat.values = fig2_ul_in[:, 2] fig2_ul_Data.add_uncertainty(fig2_ul_Data_stat) #Wgg fig2_ul_Wgg = Variable("$\mathrm{W}\gamma\gamma$",
figure2.description = "The measured and predicted inclusive fiducial cross sections in fb. The experimental measurement includes both statistical and systematics uncertainties. The theoretical prediction includes both the QCD scale and PDF uncertainties." figure2.location = "Data from Figure 2" figure2.keywords["observables"] = ["SIG"] figure2.keywords["phrases"] = [ "Electroweak", "Cross Section", "Proton-Proton", "Z boson production" ] figure2.keywords["reactions"] = ["PP -> Z"] figure2_load = np.loadtxt("HEPData/inputs/smp18003/cross_section_results.txt", dtype='string', skiprows=2) print(figure2_load) figure2_data = Variable("", is_independent=True, is_binned=False, units="") figure2_data.values = [str(x) for x in figure2_load[:, 0]] figure2_yields1 = Variable("Cross Section", is_independent=False, is_binned=False, units="") figure2_yields1.digits = 0 figure2_yields1.values = [int(x) for x in figure2_load[:, 1]] figure2_yields1.add_qualifier("", "Cross Section (fb)") figure2_yields2 = Variable("Positive uncertainty", is_independent=False, is_binned=False, units="") figure2_yields2.digits = 0
def convertUnfoldingHistToYaml( rootfile, label, variable, unit ): tab = Table(label) reader = RootFileReader(rootfile) data = reader.read_hist_1d("unfoled_spectrum") simP8 = reader.read_hist_1d("fiducial_spectrum") simHpp = reader.read_hist_1d("fiducial_spectrum_Hpp") simH7 = reader.read_hist_1d("fiducial_spectrum_H7") totalUncUp = reader.read_hist_1d("totalUncertainty_up") mcstatUncUp = reader.read_hist_1d("mcStat_up") matrixUncUp = reader.read_hist_1d("totalMatrixVariationUnc_up") statUncUp = reader.read_hist_1d("stat_up") totunc = [] reltotunc = [] statunc = [] relstatunc = [] for i, i_up in enumerate(totalUncUp["y"]): tot = data["y"][i] utot = (i_up - tot)**2 utot += (mcstatUncUp["y"][i] - tot)**2 utot += matrixUncUp["y"][i]**2 utot = sqrt(utot) ustat = statUncUp["y"][i] - tot totunc.append(utot) statunc.append(ustat) reltotunc.append(utot*100./tot) relstatunc.append(ustat*100./tot) xbins = Variable( variable, is_independent=True, is_binned=True, units=unit) xbins.values = data["x_edges"] ydata = Variable( "Observed", is_independent=False, is_binned=False) ydata.values = data["y"] ydata.add_qualifier("SQRT(S)","13","TeV") ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yunc = Uncertainty( "total" ) yunc.is_symmetric = True yunc.values = totunc ystatunc = Uncertainty( "stat" ) ystatunc.is_symmetric = True ystatunc.values = statunc # ydata.uncertainties.append(ystatunc) # ydata.uncertainties.append(yunc) ysimP8 = Variable( "Simulation MG5_aMC + Pythia8", is_independent=False, is_binned=False) ysimP8.values = simP8["y"] ysimP8.add_qualifier("SQRT(S)","13","TeV") ysimP8.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ysimH7 = Variable( "Simulation MG5_aMC + Herwig7", is_independent=False, is_binned=False) ysimH7.values = simH7["y"] ysimH7.add_qualifier("SQRT(S)","13","TeV") ysimH7.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ysimHpp = Variable( "Simulation MG5_aMC + Herwig++", is_independent=False, is_binned=False) ysimHpp.values = simHpp["y"] ysimHpp.add_qualifier("SQRT(S)","13","TeV") ysimHpp.add_qualifier("LUMINOSITY","137","fb$^{-1}$") tab.add_variable(xbins) tab.add_variable(ydata) tab.add_variable(ysimP8) tab.add_variable(ysimH7) tab.add_variable(ysimHpp) return tab
def convertSRHistToYaml( rootfile, label, variable, unit ): tab = Table(label) reader = RootFileReader(rootfile) data = reader.read_hist_1d("dataAR") gen = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat0") had = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat134") misID = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat2") qcd = reader.read_hist_1d("QCD") uncUp = reader.read_hist_1d("totalUncertainty_up") uncDown = reader.read_hist_1d("totalUncertainty_down") rootfile = ROOT.TFile(rootfile,"READ") statHist = rootfile.Get("dataAR") unc = [] statunc = [] relunc = [] tot = [] for i, i_up in enumerate(uncUp["y"]): stat = statHist.GetBinError(i+1) u = abs(i_up-uncDown["y"][i])*0.5 sim = sum([ gen["y"][i], had["y"][i], misID["y"][i], qcd["y"][i] ]) unc.append(u) statunc.append(stat) tot.append(sim) relunc.append(u*100./sim) xbins = Variable( variable, is_independent=True, is_binned=True, units=unit) xbins.values = data["x_edges"] ydata = Variable( "Observed", is_independent=False, is_binned=False) ydata.values = data["y"] ydata.add_qualifier("CHANNEL","l+jets") ydata.add_qualifier("SQRT(S)","13","TeV") ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ytot = Variable( "Total simulation", is_independent=False, is_binned=False) ytot.values = tot ytot.add_qualifier("CHANNEL","l+jets") ytot.add_qualifier("SQRT(S)","13","TeV") ytot.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ygen = Variable( "Genuine $\gamma$", is_independent=False, is_binned=False) ygen.values = gen["y"] ygen.add_qualifier("CHANNEL","l+jets") ygen.add_qualifier("SQRT(S)","13","TeV") ygen.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yhad = Variable( "Hadronic $\gamma$", is_independent=False, is_binned=False) yhad.values = had["y"] yhad.add_qualifier("CHANNEL","l+jets") yhad.add_qualifier("SQRT(S)","13","TeV") yhad.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ymisID = Variable( "Misid. e", is_independent=False, is_binned=False) ymisID.values = misID["y"] ymisID.add_qualifier("CHANNEL","l+jets") ymisID.add_qualifier("SQRT(S)","13","TeV") ymisID.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yqcd = Variable( "Multijet", is_independent=False, is_binned=False) yqcd.values = qcd["y"] yqcd.add_qualifier("CHANNEL","l+jets") yqcd.add_qualifier("SQRT(S)","13","TeV") yqcd.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yunc = Uncertainty( "syst" ) yunc.is_symmetric = True yunc.values = unc ystatunc = Uncertainty( "stat" ) ystatunc.is_symmetric = True ystatunc.values = statunc ydata.uncertainties.append(ystatunc) ytot.uncertainties.append(yunc) tab.add_variable(xbins) tab.add_variable(ydata) tab.add_variable(ytot) tab.add_variable(ygen) tab.add_variable(yhad) tab.add_variable(ymisID) tab.add_variable(yqcd) return tab
def convertMlgHistToYaml( rootfile, label, variable, channel ): tab = Table(label) reader = RootFileReader(rootfile) data = reader.read_hist_1d("dataAR") misID = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat2") wg = reader.read_hist_1d("WG_centralnoChgIsoNoSieiephotoncat0") zg = reader.read_hist_1d("ZG_centralnoChgIsoNoSieiephotoncat0") other = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat0") had = reader.read_hist_1d("TTG_centralnoChgIsoNoSieiephotoncat134") qcd = reader.read_hist_1d("QCD") uncUp = reader.read_hist_1d("totalUncertainty_up") uncDown = reader.read_hist_1d("totalUncertainty_down") rootfile = ROOT.TFile(rootfile,"READ") statHist = rootfile.Get("dataAR") unc = [] statunc = [] relunc = [] tot = [] for i, i_up in enumerate(uncUp["y"]): stat = statHist.GetBinError(i+1) u = abs(i_up-uncDown["y"][i])*0.5 all = [ misID["y"][i], wg["y"][i], zg["y"][i], other["y"][i], had["y"][i], qcd["y"][i] ] sim = sum(all) unc.append(u) statunc.append(stat) tot.append(sim) relunc.append(u*100./sim) xbins = Variable( variable, is_independent=True, is_binned=True, units="GeV") xbins.values = data["x_edges"] ydata = Variable( "Observed", is_independent=False, is_binned=False) ydata.values = data["y"] ydata.add_qualifier("CHANNEL",channel) ydata.add_qualifier("SQRT(S)","13","TeV") ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ytot = Variable( "Total simulation", is_independent=False, is_binned=False) ytot.values = tot ytot.add_qualifier("CHANNEL",channel) ytot.add_qualifier("SQRT(S)","13","TeV") ytot.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ymisID = Variable( "Misid. e", is_independent=False, is_binned=False) ymisID.values = misID["y"] ymisID.add_qualifier("CHANNEL",channel) ymisID.add_qualifier("SQRT(S)","13","TeV") ymisID.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yhad = Variable( "Hadronic $\gamma$", is_independent=False, is_binned=False) yhad.values = had["y"] yhad.add_qualifier("CHANNEL",channel) yhad.add_qualifier("SQRT(S)","13","TeV") yhad.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ywg = Variable( "W$\gamma$", is_independent=False, is_binned=False) ywg.values = wg["y"] ywg.add_qualifier("CHANNEL",channel) ywg.add_qualifier("SQRT(S)","13","TeV") ywg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yzg = Variable( "Z$\gamma$", is_independent=False, is_binned=False) yzg.values = zg["y"] yzg.add_qualifier("CHANNEL",channel) yzg.add_qualifier("SQRT(S)","13","TeV") yzg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yother = Variable( "Other", is_independent=False, is_binned=False) yother.values = other["y"] yother.add_qualifier("CHANNEL",channel) yother.add_qualifier("SQRT(S)","13","TeV") yother.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yqcd = Variable( "Multijet", is_independent=False, is_binned=False) yqcd.values = qcd["y"] yqcd.add_qualifier("CHANNEL",channel) yqcd.add_qualifier("SQRT(S)","13","TeV") yqcd.add_qualifier("LUMINOSITY","137","fb$^{-1}$") # yunc = Variable( "Total systematic uncertainty", is_independent=False, is_binned=False) # yunc.values = unc # yunc.add_qualifier("SQRT(S)","13","TeV") # yunc.add_qualifier("LUMINOSITY","137","fb$^{-1}$") #yrelunc = Variable( "Rel. uncertainty (%)", is_independent=False, is_binned=False) #yrelunc.values = relunc yunc = Uncertainty( "syst" ) yunc.is_symmetric = True yunc.values = unc ystatunc = Uncertainty( "stat" ) ystatunc.is_symmetric = True ystatunc.values = statunc ydata.uncertainties.append(ystatunc) ytot.uncertainties.append(yunc) tab.add_variable(xbins) tab.add_variable(ydata) tab.add_variable(ytot) tab.add_variable(ymisID) tab.add_variable(ywg) tab.add_variable(yzg) tab.add_variable(yother) tab.add_variable(yhad) tab.add_variable(yqcd) # tab.add_variable(yunc) return tab
stat = reader.read_hist_2d(fig["name_stat"]) else: print("ERROR: {}, type not recognized!".format(fig["figure_name"])) if fig["type_syst"].lower() in ["tgraph", "tgrapherrors", "tgraphasymmerrors"]: syst = reader.read_graph(fig["name_syst"]) elif fig["type_syst"].lower() == "th1": syst = reader.read_hist_1d(fig["name_syst"]) elif fig["type_syst"].lower() == "th2": syst = reader.read_hist_2d(fig["name_syst"]) else: print("WARNING: {}, systematic errors not found!".format(fig["figure_name"])) # read points if fig["type_stat"].lower() == "th2": x1 = Variable(fig["x1_name"], is_independent=True, is_binned=False, units=fig["x1_units"]) x1.values = stat["x"] x2 = Variable(fig["x2_name"], is_independent=True, is_binned=False, units=fig["x2_units"]) x2.values = stat["y"] y = Variable(fig["y_name"], is_independent=False, is_binned=False, units=fig["y_units"]) y.values = stat["z"] else: x1 = Variable(fig["x1_name"], is_independent=True, is_binned=False, units=fig["x1_units"]) x1.values = stat["x"] y = Variable(fig["y_name"], is_independent=False, is_binned=False, units=fig["y_units"]) y.values = stat["y"] if fig["type_stat"].lower() == "tgraphasymmerrors": y_stat = Uncertainty("stat. uncertainty", is_symmetric=False) y_stat.values = stat["dy"] y.add_uncertainty(y_stat)
"Top", "Quark", "Photon", "lepton+jets", "semileptonic", "Cross Section", "Proton-Proton Scattering", "Inclusive", "Differential" ] #tableF4b.keywords() submission.add_table(tableF4b) ### ### SF table ### tabSF = Table("Table 4") tabSF.description = "Extracted scale factors for the contribution from misidentified electrons for the three data-taking periods, and the Z$\gamma$, W$\gamma$ simulations." tabSF.location = "Table 4" sfType = Variable("Scale factor", is_independent=True, is_binned=False, units="") sfType.values = [ "Misidentified electrons (2016)", "Misidentified electrons (2017)", "Misidentified electrons (2018)", "Z$\gamma$ normalization", "W$\gamma$ normalization" ] value = Variable("Value", is_independent=False, is_binned=False, units="") value.values = [2.25, 2.00, 1.52, 1.01, 1.13] value.add_qualifier("SQRT(S)", "13", "TeV") value.add_qualifier("LUMINOSITY", "137", "fb$^{-1}$") unc = Uncertainty("total") unc.is_symmetric = True unc.values = [0.29, 0.27, 0.17, 0.10, 0.08] value.uncertainties.append(unc)
table2.location = "Data from Table 2" table2.keywords["observables"] = ["Uncertainty"] table2.keywords["reactions"] = ["P P --> W W j j", "P P --> W Z j j"] table2.keywords["phrases"] = [ "Same-sign WW", "WZ", "Georgi-Machacek", "Charged Higgs", "VBF" ] data2 = np.loadtxt("HEPData/inputs/hig20017/systematics.txt", dtype='string', skiprows=2) print(data2) table2_data = Variable("Source of uncertainty", is_independent=True, is_binned=False, units="") table2_data.values = [str(x) for x in data2[:, 0]] table2_yields0 = Variable("Uncertainty", is_independent=False, is_binned=False, units="") table2_yields0.values = [float(x) for x in data2[:, 1]] table2_yields0.add_qualifier("Source of uncertainty", "$\Delta \mu$ for background-only") table2_yields0.add_qualifier("SQRT(S)", 13, "TeV") table2_yields0.add_qualifier("L$_{\mathrm{int}}$", 137, "fb$^{-1}$") table2_yields1 = Variable("Uncertainty", is_independent=False,
table.location = "Data from additional Figure 1" table.keywords["observables"] = ["ACC", "EFF"] table.keywords["reactions"] = [ "P P --> GRAVITON --> W+ W-", "P P --> WPRIME --> W+/W- Z0" ] data = np.loadtxt("hepdata_lib/examples/example_inputs/effacc_signal.txt", skiprows=2) print(data) ### Variable from hepdata_lib import Variable d = Variable("Resonance mass", is_independent=True, is_binned=False, units="GeV") d.values = data[:, 0] BulkG = Variable("Efficiency times acceptance", is_independent=False, is_binned=False, units="") BulkG.values = data[:, 1] BulkG.add_qualifier("Efficiency times acceptance", "Bulk graviton --> WW") BulkG.add_qualifier("SQRT(S)", 13, "TeV") Wprime = Variable("Efficiency times acceptance", is_independent=False, is_binned=False, units="")
### Table from hepdata_lib import Table from hepdata_lib import Variable from hepdata_lib import RootFileReader ### Begin covariance mumu dressed # Create a reader for the input file reader_covariance_mm_Pt = RootFileReader( "HEPData/inputs/smp17010/folders_dressedleptons/output_root/matrix03__XSRatioSystPt.root" ) # Read the histogram data_covariance_mm_Pt = reader_covariance_mm_Pt.read_hist_2d( "covariance_totsum_0") # Create variable objects x_covariance_mm_Pt = Variable("Bin X", is_independent=True, is_binned=True) x_covariance_mm_Pt.values = data_covariance_mm_Pt["x_edges"] y_covariance_mm_Pt = Variable("Bin Y", is_independent=True, is_binned=False) y_covariance_mm_Pt.values = data_covariance_mm_Pt["y"] z_covariance_mm_Pt = Variable("covariance Matrix", is_independent=False, is_binned=False) z_covariance_mm_Pt.values = data_covariance_mm_Pt["z"] table_covariance_XSRatio_mm_Pt = Table("cov matr norm xs aux 1a") table_covariance_XSRatio_mm_Pt.description = "Covariance matrix for normalized cross sections using dressed level leptons for all bins used in bins of Z pt in the dimuon final state." table_covariance_XSRatio_mm_Pt.location = "Supplementary material" for var in [x_covariance_mm_Pt, y_covariance_mm_Pt, z_covariance_mm_Pt]: table_covariance_XSRatio_mm_Pt.add_variable(var) submission.add_table(table_covariance_XSRatio_mm_Pt)
def make_table(): params = ['r_ggH', 'r_VBF', 'r_VH', 'r_top'] # Load results + xsbr data inputMode = "mu" translatePOIs = LoadTranslations("translate/pois_%s.json" % inputMode) with open( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/correlations_mu.json", "r") as jf: correlations = json.load(jf) with open( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/correlations_expected_mu.json", "r") as jf: correlations_exp = json.load(jf) # Make table of results table = Table("Correlations: production mode signal strength") table.description = "Observed and expected correlations between the parameters in the production mode signal strength fit." table.location = "Results from additional material" table.keywords["reactions"] = ["P P --> H ( --> GAMMA GAMMA ) X"] pois_x = Variable("Parameter (x)", is_independent=True, is_binned=False) pois_y = Variable("Parameter (y)", is_independent=True, is_binned=False) c = Variable("Observed correlation", is_independent=False, is_binned=False) c.add_qualifier("SQRT(S)", 13, "TeV") c.add_qualifier("MH", '125.38', "GeV") c_exp = Variable("Expected correlation", is_independent=False, is_binned=False) c_exp.add_qualifier("SQRT(S)", 13, "TeV") c_exp.add_qualifier("MH", '125.38', "GeV") poiNames_x = [] poiNames_y = [] corr = [] corr_exp = [] for ipoi in params: for jpoi in params: poiNames_x.append(str(Translate(ipoi, translatePOIs))) poiNames_y.append(str(Translate(jpoi, translatePOIs))) # Extract correlation coefficient corr.append(correlations["%s__%s" % (ipoi, jpoi)]) corr_exp.append(correlations_exp["%s__%s" % (ipoi, jpoi)]) pois_x.values = poiNames_x pois_y.values = poiNames_y c.values = np.round(np.array(corr), 3) c_exp.values = np.round(np.array(corr_exp), 3) # Add variables to table table.add_variable(pois_x) table.add_variable(pois_y) table.add_variable(c) table.add_variable(c_exp) # Add figure table.add_image( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/perproc_mu_corr.pdf" ) return table
def test_make_dict(self): """Test the make_dict function.""" # pylint: disable=no-self-use var = Variable("testvar") # With or without units for units in ["", "GeV"]: var.units = units # Binned var.is_binned = False var.values = [1, 2, 3] var.make_dict() # Unbinned var.is_binned = True var.values = [(0, 1), (1, 2), (2, 3)] var.make_dict() # With symmetric uncertainty unc1 = Uncertainty("unc1") unc1.is_symmetric = True unc1.values = [random.random() for _ in range(len(var.values))] var.add_uncertainty(unc1) var.make_dict() # With asymmetric uncertainty unc2 = Uncertainty("unc2") unc2.is_symmetric = False unc2.values = [(-random.random(), random.random()) for _ in range(len(var.values))] var.add_uncertainty(unc2) var.make_dict() # With qualifiers (which only apply to dependent variables) var.is_independent = False var.add_qualifier("testqualifier1", 1, units="GeV") var.add_qualifier("testqualifier2", 1, units="") var.make_dict()
def convertSRPlotToYaml(): tab = Table("Figure 6") reader = RootFileReader("../regionPlots/SR_incl.root") data = reader.read_hist_1d("0dc_2016data") tot = reader.read_hist_1d("0dc_2016total") totbkg = reader.read_hist_1d("0dc_2016total_background") ttg = reader.read_hist_1d("0dc_2016signal") misID = reader.read_hist_1d("0dc_2016misID") had = reader.read_hist_1d("0dc_2016fakes") other = reader.read_hist_1d("0dc_2016other") wg = reader.read_hist_1d("0dc_2016WG") qcd = reader.read_hist_1d("0dc_2016QCD") zg = reader.read_hist_1d("0dc_2016ZG") rootfile = ROOT.TFile("../regionPlots/SR_incl.root","READ") totHist = rootfile.Get("0dc_2016total") datHist = rootfile.Get("0dc_2016data") unc = [] statunc = [] relunc = [] for i, i_tot in enumerate(tot["y"]): u = totHist.GetBinError(i+1) ustat = datHist.GetBinError(i+1) unc.append(u) statunc.append(ustat) relunc.append(u*100./i_tot) crBinLabel = [ "SR3, e, $M_{3}$ $<$ 280 GeV", "SR3, e, 280 $\leq$ $M_{3}$ $<$ 420 GeV", "SR3, e, $M_{3}$ $\geq$ 420 GeV", "SR3, $\mu$, $M_{3}$ $<$ 280 GeV", "SR3, $\mu$, 280 $\leq$ $M_{3}$ $<$ 420 GeV", "SR3, $\mu$, $M_{3}$ $\geq$ 420 GeV", "SR4p, e, $M_{3}$ $<$ 280 GeV", "SR4p, e, 280 $\leq$ $M_{3}$ $<$ 420 GeV", "SR4p, e, $M_{3}$ $\geq$ 420 GeV", "SR4p, $\mu$, $M_{3}$ $<$ 280 GeV", "SR4p, $\mu$, 280 $\leq$ $M_{3}$ $<$ 420 GeV", "SR4p, $\mu$, $M_{3}$ $\geq$ 420 GeV", ] xbins = Variable( "Bin", is_independent=True, is_binned=False) xbins.values = crBinLabel ydata = Variable( "Observed", is_independent=False, is_binned=False) ydata.values = data["y"] ydata.add_qualifier("SQRT(S)","13","TeV") ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ytot = Variable( "Total simulation", is_independent=False, is_binned=False) ytot.values = tot["y"] ytot.add_qualifier("SQRT(S)","13","TeV") ytot.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ytotbkg = Variable( "Total background", is_independent=False, is_binned=False) ytotbkg.values = totbkg["y"] ytotbkg.add_qualifier("SQRT(S)","13","TeV") ytotbkg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ywg = Variable( "$W\gamma$", is_independent=False, is_binned=False) ywg.values = wg["y"] ywg.add_qualifier("SQRT(S)","13","TeV") ywg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yzg = Variable( "$Z\gamma$", is_independent=False, is_binned=False) yzg.values = zg["y"] yzg.add_qualifier("SQRT(S)","13","TeV") yzg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ymisID = Variable( "Misid. e", is_independent=False, is_binned=False) ymisID.values = misID["y"] ymisID.add_qualifier("SQRT(S)","13","TeV") ymisID.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yhad = Variable( "Hadronic $\gamma$", is_independent=False, is_binned=False) yhad.values = had["y"] yhad.add_qualifier("SQRT(S)","13","TeV") yhad.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yqcd = Variable( "Multijet", is_independent=False, is_binned=False) yqcd.values = qcd["y"] yqcd.add_qualifier("SQRT(S)","13","TeV") yqcd.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yttg = Variable( "tt$\gamma$", is_independent=False, is_binned=False) yttg.values = ttg["y"] yttg.add_qualifier("SQRT(S)","13","TeV") yttg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yother = Variable( "Other", is_independent=False, is_binned=False) yother.values = other["y"] yother.add_qualifier("SQRT(S)","13","TeV") yother.add_qualifier("LUMINOSITY","137","fb$^{-1}$") # yunc = Variable( "Total uncertainty", is_independent=False, is_binned=False) # yunc.values = unc # yunc.add_qualifier("SQRT(S)","13","TeV") # yunc.add_qualifier("LUMINOSITY","137","fb$^{-1}$") #yrelunc = Variable( "Rel. uncertainty (%)", is_independent=False, is_binned=False) #yrelunc.values = relunc yunc = Uncertainty( "syst" ) yunc.is_symmetric = True yunc.values = unc ystatunc = Uncertainty( "stat" ) ystatunc.is_symmetric = True ystatunc.values = statunc ydata.uncertainties.append(ystatunc) ytot.uncertainties.append(yunc) tab.add_variable(xbins) tab.add_variable(ydata) tab.add_variable(ytot) tab.add_variable(ytotbkg) tab.add_variable(yttg) tab.add_variable(ymisID) tab.add_variable(yhad) tab.add_variable(yother) tab.add_variable(ywg) tab.add_variable(yqcd) tab.add_variable(yzg) # tab.add_variable(yunc) return tab
def convertWJetsHistToYaml( rootfile, label, channel ): tab = Table(label) reader = RootFileReader(rootfile) data = reader.read_hist_1d("dataAR") # ttg = reader.read_hist_1d("TTG_centralall") top = reader.read_hist_1d("Top_centralall") dy = reader.read_hist_1d("DY_LO_centralall") wjets = reader.read_hist_1d("WJets_centralall") # wg = reader.read_hist_1d("WG_centralall") # zg = reader.read_hist_1d("ZG_centralall") other = reader.read_hist_1d("other_centralall") qcd = reader.read_hist_1d("QCD") uncUp = reader.read_hist_1d("totalUncertainty_up") uncDown = reader.read_hist_1d("totalUncertainty_down") rootfile = ROOT.TFile(rootfile,"READ") statHist = rootfile.Get("dataAR") unc = [] statunc = [] relunc = [] tot = [] for i, i_up in enumerate(uncUp["y"]): stat = statHist.GetBinError(i+1) u = abs(i_up-uncDown["y"][i])*0.5 # all = [ ttg["y"][i], top["y"][i], dy["y"][i], wjets["y"][i], wg["y"][i], zg["y"][i], other["y"][i], qcd["y"][i] ] all = [ top["y"][i], dy["y"][i], wjets["y"][i], other["y"][i], qcd["y"][i] ] sim = sum(all) unc.append(u) statunc.append(stat) tot.append(sim) relunc.append(u*100./sim) xbins = Variable( "$m_{T}(W)$", is_independent=True, is_binned=True, units="GeV") xbins.values = data["x_edges"] ydata = Variable( "Observed", is_independent=False, is_binned=False) ydata.values = data["y"] ydata.add_qualifier("CHANNEL",channel) ydata.add_qualifier("SQRT(S)","13","TeV") ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ytot = Variable( "Total simulation", is_independent=False, is_binned=False) ytot.values = tot ytot.add_qualifier("CHANNEL",channel) ytot.add_qualifier("SQRT(S)","13","TeV") ytot.add_qualifier("LUMINOSITY","137","fb$^{-1}$") # yttg = Variable( "tt$\gamma$", is_independent=False, is_binned=False) # yttg.values = ttg["y"] # yttg.add_qualifier("CHANNEL",channel) # yttg.add_qualifier("SQRT(S)","13","TeV") # yttg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ytop = Variable( "t/tt", is_independent=False, is_binned=False) ytop.values = top["y"] ytop.add_qualifier("CHANNEL",channel) ytop.add_qualifier("SQRT(S)","13","TeV") ytop.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ydy = Variable( "Drell-Yan", is_independent=False, is_binned=False) ydy.values = dy["y"] ydy.add_qualifier("CHANNEL",channel) ydy.add_qualifier("SQRT(S)","13","TeV") ydy.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ywjets = Variable( "W+jets", is_independent=False, is_binned=False) ywjets.values = wjets["y"] ywjets.add_qualifier("CHANNEL",channel) ywjets.add_qualifier("SQRT(S)","13","TeV") ywjets.add_qualifier("LUMINOSITY","137","fb$^{-1}$") # ywg = Variable( "W$\gamma$", is_independent=False, is_binned=False) # ywg.values = wg["y"] # ywg.add_qualifier("CHANNEL",channel) # ywg.add_qualifier("SQRT(S)","13","TeV") # ywg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") # yzg = Variable( "Z$\gamma$", is_independent=False, is_binned=False) # yzg.values = zg["y"] # yzg.add_qualifier("CHANNEL",channel) # yzg.add_qualifier("SQRT(S)","13","TeV") # yzg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yother = Variable( "Other", is_independent=False, is_binned=False) yother.values = other["y"] yother.add_qualifier("CHANNEL",channel) yother.add_qualifier("SQRT(S)","13","TeV") yother.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yqcd = Variable( "Multijet", is_independent=False, is_binned=False) yqcd.values = qcd["y"] yqcd.add_qualifier("CHANNEL",channel) yqcd.add_qualifier("SQRT(S)","13","TeV") yqcd.add_qualifier("LUMINOSITY","137","fb$^{-1}$") # yunc = Variable( "Total systematic uncertainty", is_independent=False, is_binned=False) # yunc.values = unc # yunc.add_qualifier("SQRT(S)","13","TeV") # yunc.add_qualifier("LUMINOSITY","137","fb$^{-1}$") #yrelunc = Variable( "Rel. uncertainty (%)", is_independent=False, is_binned=False) #yrelunc.values = relunc yunc = Uncertainty( "syst" ) yunc.is_symmetric = True yunc.values = unc ystatunc = Uncertainty( "stat" ) ystatunc.is_symmetric = True ystatunc.values = statunc ydata.uncertainties.append(ystatunc) ytot.uncertainties.append(yunc) tab.add_variable(xbins) tab.add_variable(ydata) tab.add_variable(ytot) tab.add_variable(ywjets) tab.add_variable(yqcd) tab.add_variable(ydy) tab.add_variable(ytop) tab.add_variable(yother) # tab.add_variable(ywg) # tab.add_variable(yzg) # tab.add_variable(yttg) # tab.add_variable(yunc) return tab
def convertCorrMatrixToYaml( rootfile, label, variablex, variabley, unit, object="output_corr_matrix_syst", var="Syst. correlation" ): tab = Table(label) reader = RootFileReader(rootfile) cov = reader.read_hist_2d(object) xbins = Variable( variablex, is_independent=True, is_binned=True, units=unit) xbins.values = cov["x_edges"] ybins = Variable( variabley, is_independent=True, is_binned=True, units=unit) ybins.values = cov["y_edges"] data = Variable( var, is_independent=False, is_binned=False, units="%") data.values = cov["z"] data.add_qualifier("SQRT(S)","13","TeV") data.add_qualifier("LUMINOSITY","137","fb$^{-1}$") tab.add_variable(xbins) tab.add_variable(ybins) tab.add_variable(data) return tab
def make_table(): xparam = 'kappa_V' yparam = 'kappa_F' # Load results + xsbr data inputMode = "kappas" translatePOIs = LoadTranslations("translate/pois_%s.json" % inputMode) # Extract observed results fobs = "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Combine/runFits_UL_redo_kVkF/output_scan2D_syst_fixedMH_v2_obs_kappa_V_vs_kappa_F.root" f_in = ROOT.TFile(fobs) t_in = f_in.Get("limit") xvals, yvals, deltaNLL = [], [], [] ev_idx = 0 for ev in t_in: xvals.append(getattr(ev, xparam)) yvals.append(getattr(ev, yparam)) deltaNLL.append(getattr(ev, "deltaNLL")) # Convert to numpy arrays as required for interpolation x = np.asarray(xvals) y = np.asarray(yvals) dnll = np.asarray(deltaNLL) v = 2 * (deltaNLL - np.min(deltaNLL)) # Make table of results table = Table("Kappas 2D: vector boson and fermion") table.description = "Observed likelihood surface." table.location = "Results from Figure 22" table.keywords["reactions"] = ["P P --> H ( --> GAMMA GAMMA ) X"] pois_x = Variable(str(Translate(xparam, translatePOIs)), is_independent=True, is_binned=False) pois_y = Variable(str(Translate(yparam, translatePOIs)), is_independent=True, is_binned=False) q = Variable("Observed -2$\\Delta$NLL", is_independent=False, is_binned=False) q.add_qualifier("SQRT(S)", 13, "TeV") q.add_qualifier("MH", '125.38', "GeV") pois_x.values = x pois_y.values = y q.values = np.round(np.array(v), 2) # Add variables to table table.add_variable(pois_x) table.add_variable(pois_y) table.add_variable(q) # Add figure table.add_image( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/scan2D_syst_obs_kappa_V_vs_kappa_F.pdf" ) return table
def convertEFTPtHistToYaml( rootfile, label, channel ): tab = Table(label) reader = RootFileReader(rootfile) data = reader.read_hist_1d("data") tot = reader.read_hist_1d("total") totbkg = reader.read_hist_1d("total_background") ttg = reader.read_hist_1d("signal") misID = reader.read_hist_1d("misID") had = reader.read_hist_1d("fakes") other = reader.read_hist_1d("other") wg = reader.read_hist_1d("WG") qcd = reader.read_hist_1d("QCD") zg = reader.read_hist_1d("ZG") eftbf = reader.read_hist_1d("bestFit") eftctZ045 = reader.read_hist_1d("ctZ0.45") eftctZI045 = reader.read_hist_1d("ctZI0.45") eftctZm045 = reader.read_hist_1d("ctZ-0.45") rootfile = ROOT.TFile(rootfile,"READ") totHist = rootfile.Get("total") datHist = rootfile.Get("data") unc = [] statunc = [] relunc = [] for i, i_tot in enumerate(tot["y"]): u = totHist.GetBinError(i+1) ustat = datHist.GetBinError(i+1) unc.append(u) statunc.append(ustat) relunc.append(u*100./i_tot) xbins = Variable( "$p_{T}(\gamma)$", is_independent=True, is_binned=True, units="GeV") xbins.values = data["x_edges"] ydata = Variable( "Observed", is_independent=False, is_binned=False) ydata.values = data["y"] ydata.add_qualifier("CHANNEL",channel) ydata.add_qualifier("SQRT(S)","13","TeV") ydata.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ytot = Variable( "Total simulation", is_independent=False, is_binned=False) ytot.values = tot["y"] ytot.add_qualifier("CHANNEL",channel) ytot.add_qualifier("SQRT(S)","13","TeV") ytot.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ytotbkg = Variable( "Total background", is_independent=False, is_binned=False) ytotbkg.values = totbkg["y"] ytotbkg.add_qualifier("CHANNEL",channel) ytotbkg.add_qualifier("SQRT(S)","13","TeV") ytotbkg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ywg = Variable( "$W\gamma$", is_independent=False, is_binned=False) ywg.values = wg["y"] ywg.add_qualifier("CHANNEL",channel) ywg.add_qualifier("SQRT(S)","13","TeV") ywg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yzg = Variable( "$Z\gamma$", is_independent=False, is_binned=False) yzg.values = zg["y"] yzg.add_qualifier("CHANNEL",channel) yzg.add_qualifier("SQRT(S)","13","TeV") yzg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") ymisID = Variable( "Misid. e", is_independent=False, is_binned=False) ymisID.values = misID["y"] ymisID.add_qualifier("CHANNEL",channel) ymisID.add_qualifier("SQRT(S)","13","TeV") ymisID.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yhad = Variable( "Hadronic $\gamma$", is_independent=False, is_binned=False) yhad.values = had["y"] yhad.add_qualifier("CHANNEL",channel) yhad.add_qualifier("SQRT(S)","13","TeV") yhad.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yqcd = Variable( "Multijet", is_independent=False, is_binned=False) yqcd.values = qcd["y"] yqcd.add_qualifier("CHANNEL",channel) yqcd.add_qualifier("SQRT(S)","13","TeV") yqcd.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yttg = Variable( "tt$\gamma$", is_independent=False, is_binned=False) yttg.values = ttg["y"] yttg.add_qualifier("CHANNEL",channel) yttg.add_qualifier("SQRT(S)","13","TeV") yttg.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yother = Variable( "Other", is_independent=False, is_binned=False) yother.values = other["y"] yother.add_qualifier("CHANNEL",channel) yother.add_qualifier("SQRT(S)","13","TeV") yother.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yeftbf = Variable( "SM-EFT best fit", is_independent=False, is_binned=False) yeftbf.values = eftbf["y"] yeftbf.add_qualifier("CHANNEL",channel) yeftbf.add_qualifier("SQRT(S)","13","TeV") yeftbf.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yeftctZ045 = Variable( "$c_{tZ} = 0.45$", is_independent=False, is_binned=False, units="($\Lambda$/TeV)$^2$") yeftctZ045.values = eftctZ045["y"] yeftctZ045.add_qualifier("CHANNEL",channel) yeftctZ045.add_qualifier("SQRT(S)","13","TeV") yeftctZ045.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yeftctZI045 = Variable( "$c^I_{tZ} = 0.45$", is_independent=False, is_binned=False, units="($\Lambda$/TeV)$^2$") yeftctZI045.values = eftctZI045["y"] yeftctZI045.add_qualifier("CHANNEL",channel) yeftctZI045.add_qualifier("SQRT(S)","13","TeV") yeftctZI045.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yeftctZm045 = Variable( "$c_{tZ} = -0.45$", is_independent=False, is_binned=False, units="($\Lambda$/TeV)$^2$") yeftctZm045.values = eftctZm045["y"] yeftctZm045.add_qualifier("CHANNEL",channel) yeftctZm045.add_qualifier("SQRT(S)","13","TeV") yeftctZm045.add_qualifier("LUMINOSITY","137","fb$^{-1}$") yunc = Uncertainty( "syst" ) yunc.is_symmetric = True yunc.values = unc ystatunc = Uncertainty( "stat" ) ystatunc.is_symmetric = True ystatunc.values = statunc ydata.uncertainties.append(ystatunc) ytot.uncertainties.append(yunc) tab.add_variable(xbins) tab.add_variable(ydata) tab.add_variable(ytot) tab.add_variable(yeftbf) tab.add_variable(yeftctZ045) tab.add_variable(yeftctZI045) tab.add_variable(yeftctZm045) tab.add_variable(ytotbkg) tab.add_variable(yttg) tab.add_variable(yhad) tab.add_variable(ymisID) tab.add_variable(yother) tab.add_variable(ywg) tab.add_variable(yqcd) tab.add_variable(yzg) return tab
submission = Submission() from hepdata_lib import Table table = Table("pa all") table.description = "description." table.location = "upper left." table.keywords["observables"] = ["pa"] from hepdata_lib import RootFileReader reader = RootFileReader("root://eosuser.cern.ch//eos/user/v/vveckaln/analysis_MC13TeV_TTJets/plots/plotter.root") Data = reader.read_hist_1d("L_pull_angle_allconst_reco_leading_jet_scnd_leading_jet_DeltaRgt1p0/L_pull_angle_allconst_reco_leading_jet_scnd_leading_jet_DeltaRgt1p0") Unc = reader.read_hist_1d("L_pull_angle_allconst_reco_leading_jet_scnd_leading_jet_DeltaRgt1p0/L_pull_angle_allconst_reco_leading_jet_scnd_leading_jet_DeltaRgt1p0_totalMCUncShape") from hepdata_lib import Variable, Uncertainty mmed = Variable("pa", is_independent=True, is_binned=False, units="rad") mmed.values = signal["x"] data = Variable("N", is_independent=False, is_binned=False, units="") data.values = Data["y"] unc = Uncertainty("Total", is_symmetric=True) unc.values = Unc["dy"] data.add_uncertainty(unc) table.add_variable(mmed) table.add_variable(data) submission.add_table(table) submission.create_files("example_output")
def Plot_pp_pPb_Avg_FF_and_Ratio(Comb_Dict): label_size=22 axis_size=34 plot_power = False Colors = ["red","blue"] Markers = ["s","o"] fig = plt.figure(figsize=(8,8)) pp_sys_Error = 0 p_Pb_sys_Error = 0 fig.add_axes((0.1,0.3,0.88,0.6)) for SYS,sys_col,marker in zip(reversed(Systems),reversed(Colors),reversed(Markers)): #Systematics Efficiency_Uncertainty = 0.056*Comb_Dict["%s_Combined_FF"%(SYS)] Eta_Cor = Eta_Correction #see default_value.py for value Eta_Cor_Uncertainty = Eta_Correction_Uncertainty*Comb_Dict["%s_Combined_FF"%(SYS)] if not(Apply_Eta_Correction and SYS=="p-Pb"): Eta_Cor_Uncertainty = 0 #2% otherwise FF_Central = Comb_Dict["%s_Combined_FF"%(SYS)] #Eta Correction is applied when creating Dictionary! Sys_Uncertainty = np.sqrt(Efficiency_Uncertainty**2 + Comb_Dict["%s_purity_Uncertainty"%(SYS)]**2 + Eta_Cor_Uncertainty**2) if (SYS=="pp"): pp_sys_Error = Sys_Uncertainty elif (SYS=="p-Pb"): p_Pb_sys_Error=Sys_Uncertainty #Plots if (SYS=="pp"): leg_string = SYS if (SYS=="p-Pb"): leg_string = "p$-$Pb" plt.errorbar(zT_centers[:NzT-ZT_OFF_PLOT], Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT],xerr=zT_widths[:NzT-ZT_OFF_PLOT]*0, yerr=Comb_Dict["%s_Combined_FF_Errors"%(SYS)][:NzT-ZT_OFF_PLOT],linewidth=1, fmt=marker,color=sys_col,capsize=0)#for lines plt.plot(zT_centers[:NzT-ZT_OFF_PLOT], Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT],marker,linewidth=0,color=sys_col, label=leg_string)#for legend without lines if (SYS == "pp"): Sys_Plot_pp = plt.bar(zT_centers[:NzT-ZT_OFF_PLOT], Sys_Uncertainty[:NzT-ZT_OFF_PLOT]+Sys_Uncertainty[:NzT-ZT_OFF_PLOT], bottom=Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT]-Sys_Uncertainty[:NzT-ZT_OFF_PLOT],width=zT_widths[:NzT-ZT_OFF_PLOT]*2, align='center',color=sys_col,alpha=0.3,edgecolor=sys_col) else: Sys_Plot_pp = plt.bar(zT_centers[:NzT-ZT_OFF_PLOT], Sys_Uncertainty[:NzT-ZT_OFF_PLOT]+Sys_Uncertainty[:NzT-ZT_OFF_PLOT], bottom=Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT]-Sys_Uncertainty[:NzT-ZT_OFF_PLOT],width=zT_widths[:NzT-ZT_OFF_PLOT]*2,align='center',color=sys_col,fill=False,edgecolor="blue") if (plot_power): model,p,chi2dof = Fit_FF_PowerLaw(Comb_Dict,SYS) plt.plot(zT_centers[:NzT-ZT_OFF_PLOT], model, sys_col,label=r"%s $\alpha = %1.2f\pm 0.1 \chi^2 = %1.2f$"%(SYS,p,chi2dof)) if (Use_MC): plt.plot(zT_centers[:NzT-ZT_OFF_PLOT],pythia_FF,'--',color="forestgreen",label="PYTHIA 8.2 Monash") plt.errorbar(zT_centers[:NzT-ZT_OFF_PLOT],pythia_FF,yerr=pythia_FF_Errors,fmt='--',color="forestgreen",capsize=0) plt.yscale('log') plt.ylabel(r"$\frac{1}{N_{\mathrm{\gamma}}}\frac{\mathrm{d}^3N}{\mathrm{d}z_{\mathrm{T}}\mathrm{d}|\Delta\varphi|\mathrm{d}\Delta\eta}$",fontsize=axis_size,y=0.76) plt.ylim(0.037,15) plt.yticks(fontsize=20) plt.xticks(fontsize=0) plt.xlim(0,0.65) plt.tick_params(which='both',direction='in',right=True,top=True,bottom=False,length=10) plt.tick_params(which='minor',length=5) #pp_sys_Error = (Comb_Dict["pp_Combined_FF"][:NzT-ZT_OFF_PLOT])*math.sqrt(Rel_pUncert["pp"]**2+0.056**2) #p_Pb_sys_Error = (Comb_Dict["p-Pb_Combined_FF"][:NzT-ZT_OFF_PLOT])*math.sqrt(Rel_pUncert["p-Pb"]**2+0.056**2+Eta_Cor**2) Chi2,NDF,Pval = Get_pp_pPb_List_Chi2(Comb_Dict["pp_Combined_FF"][:NzT-ZT_OFF_PLOT], Comb_Dict["pp_Combined_FF_Errors"][:NzT-ZT_OFF_PLOT], pp_sys_Error, Comb_Dict["p-Pb_Combined_FF"][:NzT-ZT_OFF_PLOT], Comb_Dict["p-Pb_Combined_FF_Errors"][:NzT-ZT_OFF_PLOT], p_Pb_sys_Error) leg = plt.legend(numpoints=1,frameon=True,edgecolor='white', framealpha=0.0, fontsize=label_size,handlelength=1,labelspacing=0.2,loc='lower left',bbox_to_anchor=(0.001, 0.05)) plt.annotate(r"ALICE, $\sqrt{s_{\mathrm{_{NN}}}}=5.02$ TeV",xy=(0.115,0.008),xycoords='axes fraction', ha='left',va='bottom',fontsize=label_size) plt.annotate(r"%1.0f < $p_\mathrm{T}^{\gamma}$ < %1.0f GeV/$c$"%(pTbins[0],pTbins[N_pT_Bins]),xy=(0.97, 0.81), xycoords='axes fraction', ha='right', va='top', fontsize=label_size) plt.annotate(r"%1.1f < $p_\mathrm{T}^\mathrm{h}$ < %1.1f GeV/$c$"%(Min_Hadron_pT,Max_Hadron_pT),xy=(0.97, 0.89), xycoords='axes fraction', ha='right', va='top', fontsize=label_size) plt.annotate("$\chi^2/\mathrm{ndf}$ = %1.1f/%i, $p$ = %1.2f"%(Chi2*NDF,NDF,Pval), xy=(0.97, 0.97), xycoords='axes fraction', ha='right', va='top', fontsize=label_size) #HEP FF Fig5 = Table("Figure 5 Top Panel") Fig5.description = "$\gamma^\mathrm{iso}$-tagged fragmentation function for pp (red) and p$-$Pb data (blue) at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The boxes represent the systematic uncertainties while the vertical bars indicate the statistical uncertainties. The dashed green line corresponds to PYTHIA 8.2 Monash Tune. The $\chi^2$ test for the comparison of pp and p$-$Pb data incorporates correlations among different $z_\mathrm{T}$ intervals. A constant that was fit to the ratio is shown as grey band, with the width indicating the uncertainty on the fit." Fig5.location = "Data from Figure 5 Top Panel, Page 15" Fig5.keywords["observables"] = ["$\frac{1}{N_{\mathrm{\gamma}}}\frac{\mathrm{d}^3N}{\mathrm{d}z_{\mathrm{T}}\mathrm{d}\Delta\varphi\mathrm{d}\Delta\eta}$"] Fig5.add_image("./pics/LO/zT_Rebin_8_006zT06zT13fnew/Final_FFunction_and_Ratio.pdf") # x-axis: zT zt = Variable(r"$z_\mathrm{T}$", is_independent=True, is_binned=True, units="") zt.values = zT_edges Fig5.add_variable(zt) # y-axis: p-Pb Yields pPb_data = Variable("p$-$Pb conditional yield of associated hadrons", is_independent=False, is_binned=False, units="") pPb_data.values = Comb_Dict["p-Pb_Combined_FF"] pPb_sys = Uncertainty("p-Pb Systematic", is_symmetric=True) pPb_sys.values = p_Pb_sys_Error pPb_stat = Uncertainty("p-Pb Statistical", is_symmetric=True) pPb_stat.values = Comb_Dict["p-Pb_Combined_FF_Errors"] pPb_data.add_uncertainty(pPb_sys) pPb_data.add_uncertainty(pPb_stat) # y-axis: pp Yields pp_data = Variable("pp conditional yield of associated hadrons", is_independent=False, is_binned=False, units="") pp_data.values = Comb_Dict["pp_Combined_FF"] pp_sys = Uncertainty("pp Systematic", is_symmetric=True) pp_sys.values = pp_sys_Error pp_stat = Uncertainty("pp Statistical", is_symmetric=True) pp_stat.values = Comb_Dict["pp_Combined_FF_Errors"] pp_data.add_uncertainty(pp_sys) pp_data.add_uncertainty(pp_stat) # y-axis: PYTHIA Yields pythia_data = Variable("PYTHIA conditional yield of associated hadrons", is_independent=False, is_binned=False, units="") pythia_data.values = pythia_FF pythia_stat = Uncertainty("PYTHIA Statistical", is_symmetric=True) pythia_stat.values = pythia_FF_Errors pythia_data.add_uncertainty(pythia_stat) #Add everything to the HEP Table Fig5.add_variable(pPb_data) Fig5.add_variable(pp_data) Fig5.add_variable(pythia_data) submission.add_table(Fig5) #RATIO SECOND Y_AXIS fig.add_axes((0.1,0.1,0.88,0.2)) pPb_Combined = Comb_Dict["p-Pb_Combined_FF"] pPb_Combined_Errors = Comb_Dict["p-Pb_Combined_FF_Errors"] pPb_purity_Uncertainty = Comb_Dict["p-Pb_purity_Uncertainty"] pp_Combined = Comb_Dict["pp_Combined_FF"] pp_Combined_Errors = Comb_Dict["pp_Combined_FF_Errors"] pp_purity_Uncertainty = Comb_Dict["pp_purity_Uncertainty"] Ratio = pPb_Combined/pp_Combined Ratio_Error = np.sqrt((pPb_Combined_Errors/pPb_Combined)**2 + (pp_Combined_Errors/pp_Combined)**2)*Ratio Ratio_Plot = plt.errorbar(zT_centers[:NzT-ZT_OFF_PLOT], Ratio[:NzT-ZT_OFF_PLOT], yerr=Ratio_Error[:NzT-ZT_OFF_PLOT],xerr=zT_widths[:NzT-ZT_OFF_PLOT]*0, fmt='ko',capsize=0, ms=6,lw=1) #Save np.save("npy_files/%s_Averaged_FF_Ratio_%s.npy"%(Shower,description_string),Ratio) np.save("npy_files/%s_Averaged_FF_Ratio_Errors_%s.npy"%(Shower,description_string),Ratio_Error) Purity_Uncertainty = np.sqrt((pp_purity_Uncertainty/pp_Combined)**2 + (pPb_purity_Uncertainty/pPb_Combined)**2)*Ratio Efficiency_Uncertainty = np.ones(len(pPb_Combined))*0.056*math.sqrt(2)*Ratio Eta_Cor_Uncertainty = Eta_Correction_Uncertainty/Comb_Dict["p-Pb_Combined_FF"]*Ratio if (CorrectedP): Ratio_Systematic = np.sqrt(Purity_Uncertainty**2 + Efficiency_Uncertainty**2 + Eta_Cor_Uncertainty**2) Sys_Plot = plt.bar(zT_centers[:NzT-ZT_OFF_PLOT], Ratio_Systematic[:NzT-ZT_OFF_PLOT]+Ratio_Systematic[:NzT-ZT_OFF_PLOT], bottom=Ratio[:NzT-ZT_OFF_PLOT]-Ratio_Systematic[:NzT-ZT_OFF_PLOT], width=zT_widths[:NzT-ZT_OFF_PLOT]*2, align='center',color='black',alpha=0.25) ### ROOT LINEAR and CONSTANT FITS ### Ratio_TGraph = TGraphErrors() for izt in range (len(Ratio)-ZT_OFF_PLOT): Ratio_TGraph.SetPoint(izt,zT_centers[izt],Ratio[izt]) Ratio_TGraph.SetPointError(izt,0,Ratio_Error[izt]) Ratio_TGraph.Fit("pol0","S") f = Ratio_TGraph.GetFunction("pol0") chi2_red = f.GetChisquare()/f.GetNDF() pval = f.GetProb() p0 = f.GetParameter(0) p0e = f.GetParError(0) p0col = "grey" Show_Fits = True if (Show_Fits): sys_const = 0.19 #23% relative from purity + tracking #sys_const = 0.504245 #IRC plt.annotate("$c = {0:.2f} \pm {1:.2f} \pm {2:.2f}$".format(p0,p0e,sys_const), xy=(0.98, 0.9), xycoords='axes fraction', ha='right', va='top', color="black",fontsize=label_size,alpha=.9) plt.annotate(r"$p = %1.2f$"%(pval), xy=(0.98, 0.75), xycoords='axes fraction', ha='right', va='top', color="black",fontsize=label_size,alpha=.9) c_error = math.sqrt(p0e**2 + sys_const**2) plt.fill_between(np.arange(0,1.1,0.1), p0+c_error, p0-c_error,color=p0col,alpha=.3) ###LABELS/AXES### plt.axhline(y=1, color='k', linestyle='--') plt.xlabel("${z_\mathrm{T}} = p_\mathrm{T}^{\mathrm{h}}/p_\mathrm{T}^\gamma$",fontsize=axis_size-8,x=0.9) plt.ylabel(r"$\frac{\mathrm{p-Pb}}{\mathrm{pp}}$",fontsize=axis_size,y=0.5) plt.ylim((-0.0, 2.8)) plt.xticks(fontsize=20) plt.yticks([0.5,1.0,1.5,2.0,2.5],fontsize=20) plt.xlim(0,0.65) plt.tick_params(which='both',direction='in',right=True,bottom=True,top=True,length=10) plt.tick_params(which='both',direction='in',top=True,length=5) plt.savefig("pics/%s/%s/Final_FFunction_and_Ratio.pdf"%(Shower,description_string), bbox_inches = "tight") plt.show() #RATIO HEP FigRatio = Table("Figure 5 Bottom Panel") FigRatio.description = r"$\gamma^\mathrm{iso}$-tagged fragmentation function for pp (red) and p$-$Pb data (blue) at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The boxes represent the systematic uncertainties while the vertical bars indicate the statistical uncertainties. The dashed green line corresponds to PYTHIA 8.2 Monash Tune. The $\chi^2$ test for the comparison of pp and p$-$Pb data incorporates correlations among different $z_\mathrm{T}$ intervals. A constant that was fit to the ratio is shown as grey band, with the width indicating the uncertainty on the fit." FigRatio.location = "Data from Figure 5, Bottom Panel, Page 15" FigRatio.keywords["observables"] = [r"$\frac{1}{N_{\mathrm{\gamma}}}\frac{\mathrm{d}^3N}{\mathrm{d}z_{\mathrm{T}}\mathrm{d}\Delta\varphi\mathrm{d}\Delta\eta}$"] FigRatio.add_image("./pics/LO/zT_Rebin_8_006zT06zT13fnew/Final_FFunction_and_Ratio.pdf") # x-axis: zT zt_ratio = Variable(r"$z_\mathrm{T}$", is_independent=True, is_binned=True, units="") zt_ratio.values = zT_edges FigRatio.add_variable(zt_ratio) # y-axis: p-Pb Yields Ratio_HEP = Variable("Ratio conditional yield of associated hadrons in pp and p$-$Pb", is_independent=False, is_binned=False, units="") Ratio_HEP.values = Ratio Ratio_sys = Uncertainty("Ratio Systematic", is_symmetric=True) Ratio_sys.values = Ratio_Systematic Ratio_stat = Uncertainty("Ratio Statistical", is_symmetric=True) Ratio_stat.values = Ratio_Error Ratio_HEP.add_uncertainty(Ratio_stat) Ratio_HEP.add_uncertainty(Ratio_sys) FigRatio.add_variable(Ratio_HEP) submission.add_table(FigRatio)
def test_add_uncertainty(self): '''Test behavior of Variable.add_uncertainty function''' var = Variable("testvar") var.is_binned = False var.values = range(5) # Normal behavior unc = Uncertainty("testunc") unc.is_symmetric = True unc.values = [x * 0.1 for x in var.values] var.add_uncertainty(unc) self.assertTrue(len(var.uncertainties) == 1) self.assertTrue(var.uncertainties[0] == unc) # Reset variable but leave uncertainty as is var.uncertainties = [] var.values = [] var.add_uncertainty(unc) self.assertTrue(len(var.uncertainties) == 1) self.assertTrue(var.uncertainties[0] == unc) # Exception testing var.values = range(5) def wrong_input_type(): '''Call add_uncertainty with invalid input type.''' var.add_uncertainty("this is not a proper input argument") self.assertRaises(TypeError, wrong_input_type) def wrong_input_properties(): '''Call add_uncertainty with invalid input properties.''' unc2 = Uncertainty("testunc2") unc2.is_symmetric = True unc2.values = unc.values + [3] var.add_uncertainty(unc2) self.assertRaises(ValueError, wrong_input_properties)
def test_add_qualifier(self): """Test the 'add_qualifier' function""" # Initialize dependent variable var = Variable("testvar") var.is_binned = False var.values = range(5) var.is_independent = False # This should work fine try: var.add_qualifier("Some Name 1", "Some value 1", "Some unit 1") var.add_qualifier("Some Name 2", "Some value 2") except RuntimeError: self.fail( "Variable.add_qualifier raised an unexpected RuntimeError.") # For an independent variable, an exception should be raised var.is_independent = True with self.assertRaises(RuntimeError): var.add_qualifier("Some Name 3", "Some value 3") with self.assertRaises(RuntimeError): var.add_qualifier("Some Name 4", "Some value 4", "Some unit 4")
### Begin Table 4 table4 = Table("Table 4") table4.description = "Systematic uncertainties of the $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$ and $\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$, and $\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{X}}$ and $\mathrm{W}^\pm_{\mathrm{T}}\mathrm{W}^\pm_{\mathrm{T}}$ cross section measurements in units of percent." table4.location = "Data from Table 4" table4.keywords["observables"] = ["Uncertainty"] table4.keywords["reactions"] = ["P P --> W W j j"] table4.keywords["phrases"] = ["VBS", "Polarized", "Same-sign WW"] data4 = np.loadtxt("HEPData/inputs/smp20006/systematics.txt", dtype='string', skiprows=2) print(data4) table4_data = Variable("Source of uncertainty", is_independent=True, is_binned=False, units="") table4_data.values = [str(x) for x in data4[:,0]] table4_yields0 = Variable("Uncertainty", is_independent=False, is_binned=False, units="") table4_yields0.values = [float(x) for x in data4[:,1]] table4_yields0.add_qualifier("Source of uncertainty", "$\mathrm{W}^\pm_{\mathrm{L}}\mathrm{W}^\pm_{\mathrm{L}}$") table4_yields0.add_qualifier("SQRT(S)", 13, "TeV") table4_yields0.add_qualifier("L$_{\mathrm{int}}$", 137, "fb$^{-1}$") table4_yields1 = Variable("Uncertainty", is_independent=False, is_binned=False, units="") table4_yields1.values = [float(x) for x in data4[:,2]] table4_yields1.add_qualifier("Source of uncertainty", "$\mathrm{W}^\pm_{\mathrm{X}}\mathrm{W}^\pm_{\mathrm{T}}$") table4_yields1.add_qualifier("SQRT(S)", 13, "TeV") table4_yields1.add_qualifier("L$_{\mathrm{int}}$", 137, "fb$^{-1}$") table4_yields2 = Variable("Uncertainty", is_independent=False, is_binned=False, units="")