def test_ScalarView_mpl_unknown(): mesh = Mesh() mesh.load(domain_mesh) mesh.refine_element(0) shapeset = H1Shapeset() pss = PrecalcShapeset(shapeset) # create an H1 space space = H1Space(mesh, shapeset) space.set_uniform_order(5) space.assign_dofs() # initialize the discrete problem wf = WeakForm(1) set_forms(wf) solver = DummySolver() sys = LinSystem(wf, solver) sys.set_spaces(space) sys.set_pss(pss) # assemble the stiffness matrix and solve the system sys.assemble() A = sys.get_matrix() b = sys.get_rhs() from scipy.sparse.linalg import cg x, res = cg(A, b) sln = Solution() sln.set_fe_solution(space, pss, x) view = ScalarView("Solution")
def test_example_08(): from hermes2d.examples.c08 import set_bc, set_forms set_verbose(False) # The following parameter can be changed: P_INIT = 4 # Load the mesh file mesh = Mesh() mesh.load(get_sample_mesh()) # Perform uniform mesh refinement mesh.refine_all_elements() # Create the x- and y- displacement space using the default H1 shapeset xdisp = H1Space(mesh, P_INIT) ydisp = H1Space(mesh, P_INIT) set_bc(xdisp, ydisp) # Initialize the weak formulation wf = WeakForm(2) set_forms(wf) # Initialize the linear system. ls = LinSystem(wf) ls.set_spaces(xdisp, ydisp) # Assemble and solve the matrix problem xsln = Solution() ysln = Solution() ls.assemble() ls.solve_system(xsln, ysln, lib="scipy")
def test_example_04(): from hermes2d.examples.c04 import set_bc set_verbose(False) # Below you can play with the parameters CONST_F, P_INIT, and UNIFORM_REF_LEVEL. INIT_REF_NUM = 2 # number of initial uniform mesh refinements P_INIT = 2 # initial polynomial degree in all elements # Load the mesh file mesh = Mesh() mesh.load(get_example_mesh()) # Perform initial mesh refinements for i in range(INIT_REF_NUM): mesh.refine_all_elements() # Create an H1 space with default shapeset space = H1Space(mesh, P_INIT) set_bc(space) # Initialize the weak formulation wf = WeakForm() set_forms(wf) # Initialize the linear system ls = LinSystem(wf) ls.set_spaces(space) # Assemble and solve the matrix problem sln = Solution() ls.assemble() ls.solve_system(sln)
def test_example_03(): from hermes2d.examples.c03 import set_bc set_verbose(False) P_INIT = 5 # Uniform polynomial degree of mesh elements. # Problem parameters. CONST_F = 2.0 # Load the mesh file mesh = Mesh() mesh.load(get_example_mesh()) # Sample "manual" mesh refinement mesh.refine_all_elements() # Create an H1 space with default shapeset space = H1Space(mesh, P_INIT) set_bc(space) # Initialize the weak formulation wf = WeakForm(1) set_forms(wf) # Initialize the linear system ls = LinSystem(wf) ls.set_spaces(space) # Assemble and solve the matrix problem. sln = Solution() ls.assemble() ls.solve_system(sln)
def test_example_07(): from hermes2d.examples.c07 import set_bc, set_forms set_verbose(False) # The following parameters can be changed: P_INIT = 2 # Initial polynomial degree of all mesh elements. INIT_REF_NUM = 4 # Number of initial uniform refinements # Load the mesh mesh = Mesh() mesh.load(get_07_mesh()) # Perform initial mesh refinements. for i in range(INIT_REF_NUM): mesh.refine_all_elements() # Create an H1 space with default shapeset space = H1Space(mesh, P_INIT) set_bc(space) # Initialize the weak formulation wf = WeakForm() set_forms(wf) # Initialize the linear system. ls = LinSystem(wf) ls.set_spaces(space) # Assemble and solve the matrix problem sln = Solution() ls.assemble() ls.solve_system(sln)
def test_example_05(): from hermes2d.examples.c05 import set_bc from hermes2d.examples.c05 import set_forms as set_forms_surf set_verbose(False) P_INIT = 4 # initial polynomial degree in all elements CORNER_REF_LEVEL = 12 # number of mesh refinements towards the re-entrant corner # Load the mesh file mesh = Mesh() mesh.load(get_example_mesh()) # Perform initial mesh refinements. mesh.refine_towards_vertex(3, CORNER_REF_LEVEL) # Create an H1 space with default shapeset space = H1Space(mesh, P_INIT) set_bc(space) # Initialize the weak formulation wf = WeakForm() set_forms(wf) # Initialize the linear system. ls = LinSystem(wf) ls.set_spaces(space) # Assemble and solve the matrix problem sln = Solution() ls.assemble() ls.solve_system(sln)
def test_example_09(): from hermes2d.examples.c09 import set_bc, temp_ext, set_forms # The following parameters can be changed: INIT_REF_NUM = 4 # number of initial uniform mesh refinements INIT_REF_NUM_BDY = 1 # number of initial uniform mesh refinements towards the boundary P_INIT = 4 # polynomial degree of all mesh elements TAU = 300.0 # time step in seconds # Problem constants T_INIT = 10 # temperature of the ground (also initial temperature) FINAL_TIME = 86400 # length of time interval (24 hours) in seconds # Global variable TIME = 0 # Boundary markers. bdy_ground = 1 bdy_air = 2 # Load the mesh mesh = Mesh() mesh.load(get_cathedral_mesh()) # Perform initial mesh refinements for i in range(INIT_REF_NUM): mesh.refine_all_elements() mesh.refine_towards_boundary(bdy_air, INIT_REF_NUM_BDY) # Create an H1 space with default shapeset space = H1Space(mesh, P_INIT) set_bc(space) # Set initial condition tsln = Solution() tsln.set_const(mesh, T_INIT) # Initialize the weak formulation wf = WeakForm() set_forms(wf) # Initialize the linear system. ls = LinSystem(wf) ls.set_spaces(space) # Time stepping nsteps = int(FINAL_TIME / TAU + 0.5) rhsonly = False # Assemble and solve ls.assemble() rhsonly = True ls.solve_system(tsln, lib="scipy")
def test_example_06(): from hermes2d.examples.c06 import set_bc, set_forms set_verbose(False) # The following parameters can be changed: UNIFORM_REF_LEVEL = 2 # Number of initial uniform mesh refinements. CORNER_REF_LEVEL = 12 # Number of mesh refinements towards the re-entrant corner. P_INIT = 6 # Uniform polynomial degree of all mesh elements. # Boundary markers NEWTON_BDY = 1 # Load the mesh file mesh = Mesh() mesh.load(get_example_mesh()) # Perform initial mesh refinements. for i in range(UNIFORM_REF_LEVEL): mesh.refine_all_elements() mesh.refine_towards_vertex(3, CORNER_REF_LEVEL) # Create an H1 space with default shapeset space = H1Space(mesh, P_INIT) set_bc(space) # Initialize the weak formulation wf = WeakForm() set_forms(wf) # Initialize the linear system. ls = LinSystem(wf) ls.set_spaces(space) # Assemble and solve the matrix problem sln = Solution() ls.assemble() ls.solve_system(sln)
def test_matrix(): set_verbose(False) mesh = Mesh() mesh.load(domain_mesh) mesh.refine_element_id(0) # create an H1 space with default shapeset space = H1Space(mesh, 1) # initialize the discrete problem wf = WeakForm(1) set_forms(wf) sys = LinSystem(wf) sys.set_spaces(space) # assemble the stiffness matrix and solve the system sln = Solution() sys.assemble() A = sys.get_matrix()
# Perform initial mesh refinements for i in range(INIT_REF_NUM): mesh.refine_all_elements() mesh.refine_towards_boundary(bdy_air, INIT_REF_NUM_BDY) # Create an H1 space with default shapeset space = H1Space(mesh, P_INIT) set_bc(space) # Set initial condition tsln = Solution() tsln.set_const(mesh, T_INIT) # Initialize the weak formulation wf = WeakForm() set_forms(wf) # Initialize the linear system. ls = LinSystem(wf) ls.set_spaces(space) # Visualisation sview = ScalarView("Temperature", 0, 0, 450, 600) #title = "Time %s, exterior temperature %s" % (TIME, temp_ext(TIME)) #Tview.set_min_max_range(0,20); #Tview.set_title(title); #Tview.fix_scale_width(3); # Time stepping nsteps = int(FINAL_TIME / TAU + 0.5)
def calc(threshold=0.3, strategy=0, h_only=False, error_tol=1, interactive_plotting=False, show_mesh=False, show_graph=True): mesh = Mesh() mesh.create([ [0, 0], [1, 0], [1, 1], [0, 1], ], [ [2, 3, 0, 1, 0], ], [ [0, 1, 1], [1, 2, 1], [2, 3, 1], [3, 0, 1], ], []) mesh.refine_all_elements() shapeset = H1Shapeset() pss = PrecalcShapeset(shapeset) space = H1Space(mesh, shapeset) set_bc(space) space.set_uniform_order(1) wf = WeakForm(1) set_forms(wf) sln = Solution() rsln = Solution() solver = DummySolver() selector = H1ProjBasedSelector(CandList.HP_ANISO, 1.0, -1, shapeset) view = ScalarView("Solution") iter = 0 graph = [] while 1: space.assign_dofs() sys = LinSystem(wf, solver) sys.set_spaces(space) sys.set_pss(pss) sys.assemble() sys.solve_system(sln) dofs = sys.get_matrix().shape[0] if interactive_plotting: view.show(sln, lib=lib, notebook=True, filename="a%02d.png" % iter) rsys = RefSystem(sys) rsys.assemble() rsys.solve_system(rsln) hp = H1Adapt([space]) hp.set_solutions([sln], [rsln]) err_est = hp.calc_error() * 100 err_est = hp.calc_error(sln, rsln) * 100 print "iter=%02d, err_est=%5.2f%%, DOFS=%d" % (iter, err_est, dofs) graph.append([dofs, err_est]) if err_est < error_tol: break hp.adapt(selector, threshold, strategy) iter += 1 if not interactive_plotting: view.show(sln, lib=lib, notebook=True) if show_mesh: mview = MeshView("Mesh") mview.show(mesh, lib="mpl", notebook=True, filename="b.png") if show_graph: from numpy import array graph = array(graph) import pylab pylab.clf() pylab.plot(graph[:, 0], graph[:, 1], "ko", label="error estimate") pylab.plot(graph[:, 0], graph[:, 1], "k-") pylab.title("Error Convergence for the Inner Layer Problem") pylab.legend() pylab.xlabel("Degrees of Freedom") pylab.ylabel("Error [%]") pylab.yscale("log") pylab.grid() pylab.savefig("graph.png")
P_INIT = 4 # Load the mesh file mesh = Mesh() mesh.load(get_sample_mesh()) # Perform uniform mesh refinement mesh.refine_all_elements() # Create the x- and y- displacement space using the default H1 shapeset xdisp = H1Space(mesh, P_INIT) ydisp = H1Space(mesh, P_INIT) set_bc(xdisp, ydisp) # Initialize the weak formulation wf = WeakForm(2) set_forms(wf) # Initialize the linear system. ls = LinSystem(wf) ls.set_spaces(xdisp, ydisp) # Assemble and solve the matrix problem xsln = Solution() ysln = Solution() ls.assemble() ls.solve_system(xsln, ysln, lib="scipy") # Visualize the solution view = ScalarView("Von Mises stress [Pa]", 50, 50, 1200, 600) E = float(200e9)
def test_example_22(): from hermes2d.examples.c22 import set_bc, set_forms # The following parameters can be changed: SOLVE_ON_COARSE_MESH = True # if true, coarse mesh FE problem is solved in every adaptivity step INIT_REF_NUM = 1 # Number of initial uniform mesh refinements P_INIT = 2 # Initial polynomial degree of all mesh elements. THRESHOLD = 0.3 # This is a quantitative parameter of the adapt(...) function and # it has different meanings for various adaptive strategies (see below). STRATEGY = 0 # Adaptive strategy: # STRATEGY = 0 ... refine elements until sqrt(THRESHOLD) times total # error is processed. If more elements have similar errors, refine # all to keep the mesh symmetric. # STRATEGY = 1 ... refine all elements whose error is larger # than THRESHOLD times maximum element error. # STRATEGY = 2 ... refine all elements whose error is larger # than THRESHOLD. # More adaptive strategies can be created in adapt_ortho_h1.cpp. CAND_LIST = CandList.H2D_HP_ANISO # Predefined list of element refinement candidates. # Possible values are are attributes of the class CandList: # P_ISO, P_ANISO, H_ISO, H_ANISO, HP_ISO, HP_ANISO_H, HP_ANISO_P, HP_ANISO # See the Sphinx tutorial (http://hpfem.org/hermes2d/doc/src/tutorial-2.html#adaptive-h-fem-and-hp-fem) for details. MESH_REGULARITY = -1 # Maximum allowed level of hanging nodes: # MESH_REGULARITY = -1 ... arbitrary level hangning nodes (default), # MESH_REGULARITY = 1 ... at most one-level hanging nodes, # MESH_REGULARITY = 2 ... at most two-level hanging nodes, etc. # Note that regular meshes are not supported, this is due to # their notoriously bad performance. CONV_EXP = 0.5 ERR_STOP = 0.1 # Stopping criterion for adaptivity (rel. error tolerance between the # fine mesh and coarse mesh solution in percent). NDOF_STOP = 60000 # Adaptivity process stops when the number of degrees of freedom grows # over this limit. This is to prevent h-adaptivity to go on forever. H2DRS_DEFAULT_ORDER = -1 # A default order. Used to indicate an unkonwn order or a maximum support order # Problem parameters. SLOPE = 60 # Slope of the layer. # Load the mesh mesh = Mesh() mesh.create([ [0, 0], [1, 0], [1, 1], [0, 1], ], [ [2, 3, 0, 1, 0], ], [ [0, 1, 1], [1, 2, 1], [2, 3, 1], [3, 0, 1], ], []) # Perform initial mesh refinements mesh.refine_all_elements() # Create an H1 space with default shapeset space = H1Space(mesh, P_INIT) set_bc(space) # Initialize the weak formulation wf = WeakForm() set_forms(wf) # Initialize refinement selector selector = H1ProjBasedSelector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER) # Initialize the coarse mesh problem ls = LinSystem(wf) ls.set_spaces(space) # Adaptivity loop iter = 0 done = False sln_coarse = Solution() sln_fine = Solution() # Assemble and solve the fine mesh problem rs = RefSystem(ls) rs.assemble() rs.solve_system(sln_fine) # Either solve on coarse mesh or project the fine mesh solution # on the coarse mesh. if SOLVE_ON_COARSE_MESH: ls.assemble() ls.solve_system(sln_coarse) # Calculate error estimate wrt. fine mesh solution hp = H1Adapt(ls) hp.set_solutions([sln_coarse], [sln_fine]) err_est = hp.calc_error() * 100
def test_example_11(): from hermes2d.examples.c11 import set_bc, set_wf_forms, set_hp_forms SOLVE_ON_COARSE_MESH = True # If true, coarse mesh FE problem is solved in every adaptivity step. P_INIT_U = 2 # Initial polynomial degree for u P_INIT_V = 2 # Initial polynomial degree for v INIT_REF_BDY = 3 # Number of initial boundary refinements MULTI = True # MULTI = true ... use multi-mesh, # MULTI = false ... use single-mesh. # Note: In the single mesh option, the meshes are # forced to be geometrically the same but the # polynomial degrees can still vary. THRESHOLD = 0.3 # This is a quantitative parameter of the adapt(...) function and # it has different meanings for various adaptive strategies (see below). STRATEGY = 1 # Adaptive strategy: # STRATEGY = 0 ... refine elements until sqrt(THRESHOLD) times total # error is processed. If more elements have similar errors, refine # all to keep the mesh symmetric. # STRATEGY = 1 ... refine all elements whose error is larger # than THRESHOLD times maximum element error. # STRATEGY = 2 ... refine all elements whose error is larger # than THRESHOLD. # More adaptive strategies can be created in adapt_ortho_h1.cpp. CAND_LIST = CandList.H2D_HP_ANISO # Predefined list of element refinement candidates. # Possible values are are attributes of the class CandList: # P_ISO, P_ANISO, H_ISO, H_ANISO, HP_ISO, HP_ANISO_H, HP_ANISO_P, HP_ANISO # See the Sphinx tutorial (http://hpfem.org/hermes2d/doc/src/tutorial-2.html#adaptive-h-fem-and-hp-fem) for details. MESH_REGULARITY = -1 # Maximum allowed level of hanging nodes: # MESH_REGULARITY = -1 ... arbitrary level hangning nodes (default), # MESH_REGULARITY = 1 ... at most one-level hanging nodes, # MESH_REGULARITY = 2 ... at most two-level hanging nodes, etc. # Note that regular meshes are not supported, this is due to # their notoriously bad performance. CONV_EXP = 1 # Default value is 1.0. This parameter influences the selection of # cancidates in hp-adaptivity. See get_optimal_refinement() for details. MAX_ORDER = 10 # Maximum allowed element degree ERR_STOP = 0.5 # Stopping criterion for adaptivity (rel. error tolerance between the # fine mesh and coarse mesh solution in percent). NDOF_STOP = 60000 # Adaptivity process stops when the number of degrees of freedom grows over # this limit. This is mainly to prevent h-adaptivity to go on forever. H2DRS_DEFAULT_ORDER = -1 # A default order. Used to indicate an unkonwn order or a maximum support order # Load the mesh umesh = Mesh() vmesh = Mesh() umesh.load(get_bracket_mesh()) if MULTI == False: umesh.refine_towards_boundary(1, INIT_REF_BDY) # Create initial mesh (master mesh). vmesh.copy(umesh) # Initial mesh refinements in the vmesh towards the boundary if MULTI == True: vmesh.refine_towards_boundary(1, INIT_REF_BDY) # Create the x displacement space uspace = H1Space(umesh, P_INIT_U) vspace = H1Space(vmesh, P_INIT_V) # Initialize the weak formulation wf = WeakForm(2) set_wf_forms(wf) # Initialize refinement selector selector = H1ProjBasedSelector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER) # Initialize the coarse mesh problem ls = LinSystem(wf) ls.set_spaces(uspace, vspace) u_sln_coarse = Solution() v_sln_coarse = Solution() u_sln_fine = Solution() v_sln_fine = Solution() # Assemble and Solve the fine mesh problem rs = RefSystem(ls) rs.assemble() rs.solve_system(u_sln_fine, v_sln_fine, lib="scipy") # Either solve on coarse mesh or project the fine mesh solution # on the coarse mesh. if SOLVE_ON_COARSE_MESH: ls.assemble() ls.solve_system(u_sln_coarse, v_sln_coarse, lib="scipy") # Calculate element errors and total error estimate hp = H1Adapt(ls) hp.set_solutions([u_sln_coarse, v_sln_coarse], [u_sln_fine, v_sln_fine]) set_hp_forms(hp) err_est = hp.calc_error() * 100
def test_example_10(): from hermes2d.examples.c10 import set_bc, set_forms from hermes2d.examples import get_motor_mesh # The following parameters can be changed: SOLVE_ON_COARSE_MESH = True # If true, coarse mesh FE problem is solved in every adaptivity step P_INIT = 2 # Initial polynomial degree of all mesh elements. THRESHOLD = 0.2 # This is a quantitative parameter of the adapt(...) function and # it has different meanings for various adaptive strategies (see below). STRATEGY = 1 # Adaptive strategy: # STRATEGY = 0 ... refine elements until sqrt(THRESHOLD) times total # error is processed. If more elements have similar errors, refine # all to keep the mesh symmetric. # STRATEGY = 1 ... refine all elements whose error is larger # than THRESHOLD times maximum element error. # STRATEGY = 2 ... refine all elements whose error is larger # than THRESHOLD. # More adaptive strategies can be created in adapt_ortho_h1.cpp. CAND_LIST = CandList.H2D_HP_ANISO_H # Predefined list of element refinement candidates. # Possible values are are attributes of the class CandList: # H2D_P_ISO, H2D_P_ANISO, H2D_H_ISO, H2D_H_ANISO, H2D_HP_ISO, H2D_HP_ANISO_H, H2D_HP_ANISO_P, H2D_HP_ANISO # See User Documentation for details. MESH_REGULARITY = -1 # Maximum allowed level of hanging nodes: # MESH_REGULARITY = -1 ... arbitrary level hangning nodes (default), # MESH_REGULARITY = 1 ... at most one-level hanging nodes, # MESH_REGULARITY = 2 ... at most two-level hanging nodes, etc. # Note that regular meshes are not supported, this is due to # their notoriously bad performance. ERR_STOP = 1.0 # Stopping criterion for adaptivity (rel. error tolerance between the # fine mesh and coarse mesh solution in percent). CONV_EXP = 1.0 # Default value is 1.0. This parameter influences the selection of # cancidates in hp-adaptivity. See get_optimal_refinement() for details. # fine mesh and coarse mesh solution in percent). NDOF_STOP = 60000 # Adaptivity process stops when the number of degrees of freedom grows # over this limit. This is to prevent h-adaptivity to go on forever. H2DRS_DEFAULT_ORDER = -1 # A default order. Used to indicate an unkonwn order or a maximum support order # Load the mesh mesh = Mesh() mesh.load(get_motor_mesh()) # Create an H1 space with default shapeset space = H1Space(mesh, P_INIT) set_bc(space) # Initialize the discrete problem wf = WeakForm() set_forms(wf) # Initialize refinement selector. selector = H1ProjBasedSelector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER) # Initialize the linear system. ls = LinSystem(wf) ls.set_spaces(space) sln_coarse = Solution() sln_fine = Solution() # Assemble and solve the fine mesh problem rs = RefSystem(ls) rs.assemble() rs.solve_system(sln_fine) # Either solve on coarse mesh or project the fine mesh solution # on the coarse mesh. if SOLVE_ON_COARSE_MESH: ls.assemble() ls.solve_system(sln_coarse) # Calculate element errors and total error estimate hp = H1Adapt(ls) hp.set_solutions([sln_coarse], [sln_fine]) err_est = hp.calc_error() * 100
# Problem parameters. CONST_F = 2.0 # Load the mesh file mesh = Mesh() mesh.load(get_example_mesh()) # Sample "manual" mesh refinement mesh.refine_all_elements() # Create an H1 space with default shapeset space = H1Space(mesh, P_INIT) set_bc(space) # Initialize the weak formulation wf = WeakForm(1) set_forms(wf) # Initialize the linear system ls = LinSystem(wf) ls.set_spaces(space) # Assemble and solve the matrix problem. sln = Solution() ls.assemble() ls.solve_system(sln) # Visualize the solution sln.plot() # Visualize the mesh