def drawLines(pw, pointLists=[], netStyle = None, netNDiv = 12, netAlpha = 0.5, rMat=None, southern=False, invertFromSouthern=True, origin=(0.,0.), r=1.0): x0, y0 = origin lines = pw.a.get_lines() for line in lines: line.remove() ringAngs = num.linspace(0,num.pi*2.,181) if netStyle: arcAngsM = num.linspace(-num.pi/2.,num.pi/2.,91) arcAngsL = num.linspace(0, num.pi, 181) rMat_yDiv = ors.RotInv(-num.pi/netNDiv, [0,1,0]).toMatrix() pw(r*num.cos(ringAngs)+x0,r*num.sin(ringAngs)+y0,style='k-') if netStyle: nVMerid = num.vstack( ( num.cos(arcAngsM), num.sin(arcAngsM), num.zeros(len(arcAngsM)) ) ) for iDiv in range(netNDiv-1): nVMerid = num.dot(rMat_yDiv, nVMerid) eaProj = n2eap(nVMerid, flip=False) pw(r*eaProj[0,:]+x0, r*eaProj[1,:]+y0, alpha=netAlpha, style=netStyle) for latAng in num.pi/netNDiv*num.arange(1,netNDiv): polZ = num.cos(latAng) polR = num.sin(latAng) nVLat = num.vstack( ( polR*num.cos(arcAngsL), polZ*num.ones(len(arcAngsL)), polR*num.sin(arcAngsL)) ) eaProj = n2eap(nVLat, flip=False) pw(r*eaProj[0,:]+x0, r*eaProj[1,:]+y0, alpha=netAlpha, style=netStyle) 'done with drawing net' for points, pwKWArgs in pointLists: nVecs = matrixutil.unitVector(points) if rMat is not None: 'rotate as did elsewhere' nVecs = num.dot(rMat, nVecs) bNVecsS = nVecs[2,:] < 0 if southern: nVecsS = nVecs[:,bNVecsS] nVecsS = fromSouthern(nVecsS, invertFromSouthern) eaProj = n2eap(nVecsS, flip=False) pw(r*eaProj[0,:]+x0, r*eaProj[1,:]+y0, **pwKWArgs) else: nVecsN = nVecs[:,num.logical_not(bNVecsS)] eaProj = n2eap(nVecsN, flip=False) pw(r*eaProj[0,:]+x0, r*eaProj[1,:]+x0, **pwKWArgs) 'done with pointLists' return
def sph2n(coords_sph): '''convert from chi/eta spherical coordinates to normal vectors; can use with coords from femODF.FemHemisphere ''' assert coords_sph.shape[0] == 2, 'shape[0] not 2' z = num.cos(coords_sph[0, :]) rho = num.sin(coords_sph[0, :]) x = rho * num.cos(coords_sph[1, :]) y = rho * num.sin(coords_sph[1, :]) # nVectors = arrayutil.toArray(num.vstack((x,y,z))) nVectors = getMem((3, coords_sph.shape[1])) nVectors[0, :] = x nVectors[1, :] = y nVectors[2, :] = z return nVectors
def sph2n(coords_sph): '''convert from chi/eta spherical coordinates to normal vectors; can use with coords from femODF.FemHemisphere ''' assert coords_sph.shape[0] == 2, 'shape[0] not 2' z = num.cos(coords_sph[0,:]) rho = num.sin(coords_sph[0,:]) x = rho * num.cos(coords_sph[1,:]) y = rho * num.sin(coords_sph[1,:]) # nVectors = arrayutil.toArray(num.vstack((x,y,z))) nVectors = getMem((3,coords_sph.shape[1])) nVectors[0,:] = x nVectors[1,:] = y nVectors[2,:] = z return nVectors
def drawLines(pw, pointLists=[], netStyle=None, netNDiv=12, netAlpha=0.5, rMat=None, southern=False, invertFromSouthern=True, origin=(0., 0.), r=1.0): x0, y0 = origin lines = pw.a.get_lines() for line in lines: line.remove() ringAngs = num.linspace(0, num.pi * 2., 181) if netStyle: arcAngsM = num.linspace(-num.pi / 2., num.pi / 2., 91) arcAngsL = num.linspace(0, num.pi, 181) rMat_yDiv = ors.RotInv(-num.pi / netNDiv, [0, 1, 0]).toMatrix() pw(r * num.cos(ringAngs) + x0, r * num.sin(ringAngs) + y0, style='k-') if netStyle: nVMerid = num.vstack( (num.cos(arcAngsM), num.sin(arcAngsM), num.zeros(len(arcAngsM)))) for iDiv in range(netNDiv - 1): nVMerid = num.dot(rMat_yDiv, nVMerid) eaProj = n2eap(nVMerid, flip=False) pw(r * eaProj[0, :] + x0, r * eaProj[1, :] + y0, alpha=netAlpha, style=netStyle) for latAng in num.pi / netNDiv * num.arange(1, netNDiv): polZ = num.cos(latAng) polR = num.sin(latAng) nVLat = num.vstack( (polR * num.cos(arcAngsL), polZ * num.ones(len(arcAngsL)), polR * num.sin(arcAngsL))) eaProj = n2eap(nVLat, flip=False) pw(r * eaProj[0, :] + x0, r * eaProj[1, :] + y0, alpha=netAlpha, style=netStyle) 'done with drawing net' for points, pwKWArgs in pointLists: nVecs = matrixutil.unitVector(points) if rMat is not None: 'rotate as did elsewhere' nVecs = num.dot(rMat, nVecs) bNVecsS = nVecs[2, :] < 0 if southern: nVecsS = nVecs[:, bNVecsS] nVecsS = fromSouthern(nVecsS, invertFromSouthern) eaProj = n2eap(nVecsS, flip=False) pw(r * eaProj[0, :] + x0, r * eaProj[1, :] + y0, **pwKWArgs) else: nVecsN = nVecs[:, num.logical_not(bNVecsS)] eaProj = n2eap(nVecsN, flip=False) pw(r * eaProj[0, :] + x0, r * eaProj[1, :] + x0, **pwKWArgs) 'done with pointLists' return