Ejemplo n.º 1
0
def matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, 
                vInv=vInv_ref, beamVec=bVec_ref, etaVec=eta_ref, 
                omePeriod=None):
    """
    For a given list of (x, y, ome) points, outputs the index into the results from
    oscillAnglesOfHKLs, including the calculated omega values.
    """
    # get omegas for rMat_s calculation
    if omePeriod is not None:
        meas_omes = xf.mapAngle(xyo_det[:, 2], omePeriod)
    else:
        meas_omes = xyo_det[:, 2]
    
    oangs0, oangs1 = xf.oscillAnglesOfHKLs(hkls_idx, chi, rMat_c, bMat, wavelength, 
                                           vInv=vInv, 
                                           beamVec=beamVec, 
                                           etaVec=etaVec)

    if omePeriod is not None:
        calc_omes  = np.vstack( [xf.mapAngle(oangs0[2, :], omePeriod), 
                                 xf.mapAngle(oangs1[2, :], omePeriod) ] )
    else:
        calc_omes  = np.vstack( [xf.mapAngle(oangs0[2, :]), 
                                 xf.mapAngle(oangs1[2, :]) ] )
        
    match_omes = np.argsort(abs(np.tile(meas_omes, (2, 1)) - calc_omes), axis=0) == 0
    calc_omes  = calc_omes.T.flatten()[match_omes.T.flatten()]

    return match_omes, calc_omes
Ejemplo n.º 2
0
def matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength,
                vInv=vInv_ref, beamVec=bVec_ref, etaVec=eta_ref,
                omePeriod=None):
    """
    For a given list of (x, y, ome) points, outputs the index into the results from
    oscillAnglesOfHKLs, including the calculated omega values.
    """
    # get omegas for rMat_s calculation
    if omePeriod is not None:
        meas_omes = xf.mapAngle(xyo_det[:, 2], omePeriod)
    else:
        meas_omes = xyo_det[:, 2]

    oangs0, oangs1 = xfcapi.oscillAnglesOfHKLs(hkls_idx.T, chi, rMat_c, bMat, wavelength,
                                               vInv=vInv,
                                               beamVec=beamVec,
                                               etaVec=etaVec)
    if np.any(np.isnan(oangs0)):
        nanIdx = np.where(np.isnan(oangs0[:, 0]))[0]
        errorString = "Infeasible parameters for hkls:\n"
        for i in range(len(nanIdx)):
            errorString += "%d  %d  %d\n" % tuple(hkls_idx[:, nanIdx[i]])
        raise RuntimeError, errorString
    else:
        # CAPI version gives vstacked angles... must be (2, nhkls)
        calc_omes = np.vstack([oangs0[:, 2], oangs1[:, 2]])
    if omePeriod is not None:
        calc_omes  = np.vstack([xf.mapAngle(oangs0[:, 2], omePeriod),
                                xf.mapAngle(oangs1[:, 2], omePeriod)])
    # do angular difference
    diff_omes  = xf.angularDifference(np.tile(meas_omes, (2, 1)), calc_omes)
    match_omes = np.argsort(diff_omes, axis=0) == 0
    calc_omes  = calc_omes.T.flatten()[match_omes.T.flatten()]

    return match_omes, calc_omes
Ejemplo n.º 3
0
def matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength,
                vInv=vInv_ref, beamVec=bVec_ref, etaVec=eta_ref,
                omePeriod=None):
    """
    For a given list of (x, y, ome) points, outputs the index into the results from
    oscillAnglesOfHKLs, including the calculated omega values.
    """
    # get omegas for rMat_s calculation
    if omePeriod is not None:
        meas_omes = xf.mapAngle(xyo_det[:, 2], omePeriod)
    else:
        meas_omes = xyo_det[:, 2]

    oangs0, oangs1 = xfcapi.oscillAnglesOfHKLs(hkls_idx.T, chi, rMat_c, bMat, wavelength,
                                               vInv=vInv,
                                               beamVec=beamVec,
                                               etaVec=etaVec)
    if np.any(np.isnan(oangs0)):
        nanIdx = np.where(np.isnan(oangs0[:, 0]))[0]
        errorString = "Infeasible parameters for hkls:\n"
        for i in range(len(nanIdx)):
            errorString += "%d  %d  %d\n" % tuple(hkls_idx[:, nanIdx[i]])
        raise RuntimeError, errorString
    else:
        # CAPI version gives vstacked angles... must be (2, nhkls)
        calc_omes = np.vstack([oangs0[:, 2], oangs1[:, 2]])
    if omePeriod is not None:
        calc_omes  = np.vstack([xf.mapAngle(oangs0[:, 2], omePeriod),
                                xf.mapAngle(oangs1[:, 2], omePeriod)])
    # do angular difference
    diff_omes  = xf.angularDifference(np.tile(meas_omes, (2, 1)), calc_omes)
    match_omes = np.argsort(diff_omes, axis=0) == 0
    calc_omes  = calc_omes.T.flatten()[match_omes.T.flatten()]

    return match_omes, calc_omes
Ejemplo n.º 4
0
def calibrateDetectorFromSX(xyo_det, hkls_idx, bMat, wavelength, 
                            tiltAngles, chi, expMap_c,
                            tVec_d, tVec_s, tVec_c, 
                            vInv=vInv_ref,
                            beamVec=bVec_ref, etaVec=eta_ref, 
                            distortion=(dFunc_ref, dParams_ref, dFlag_ref, dScl_ref), 
                            pFlag=pFlag_ref, pScl=pScl_ref,
                            omePeriod=None,
                            factor=0.1, xtol=1e-8, ftol=1e-8):
    """
    """

    if omePeriod is not None:
        xyo_det[:, 2] = xf.mapAngle(xyo_det[:, 2], omePeriod)
    
    dFunc   = distortion[0]
    dParams = distortion[1]
    dFlag   = distortion[2]
    dScl    = distortion[3]
    
    # p = np.zeros(16)
    # 
    # p[0]  = tiltAngles[0]
    # p[1]  = tiltAngles[1]
    # p[2]  = tiltAngles[2]
    # p[3]  = tVec_d[0]
    # p[4]  = tVec_d[1]
    # p[5]  = tVec_d[2]
    # p[6]  = chi
    # p[7]  = tVec_s[0]
    # p[8]  = tVec_s[1]
    # p[9]  = tVec_s[2]
    # p[10] = expMap_c[0]
    # p[11] = expMap_c[1]
    # p[12] = expMap_c[2]
    # p[13] = tVec_c[0]
    # p[14] = tVec_c[1]
    # p[15] = tVec_c[2]
    # 
    # pFull = np.hstack([p, dParams])

    pFull = geomParamsToInput(tiltAngles, chi, expMap_c,
                              tVec_d, tVec_s, tVec_c, 
                              dParams)

    refineFlag = np.hstack([pFlag, dFlag])
    scl        = np.hstack([pScl, dScl])
    pFit       = pFull[refineFlag] 
    fitArgs    = (pFull, pFlag, dFunc, dFlag, xyo_det, hkls_idx,
                  bMat, vInv, wavelength, beamVec, etaVec, omePeriod)
        
    results = opt.leastsq(objFuncSX, pFit, args=fitArgs, diag=scl[refineFlag].flatten(),
                          factor=factor, xtol=xtol, ftol=ftol)
    
    pFit_opt = results[0]

    retval = pFull
    retval[refineFlag] = pFit_opt
    return retval
Ejemplo n.º 5
0
def calibrateDetectorFromSX(xyo_det, hkls_idx, bMat, wavelength,
                            tiltAngles, chi, expMap_c,
                            tVec_d, tVec_s, tVec_c,
                            vInv=vInv_ref,
                            beamVec=bVec_ref, etaVec=eta_ref,
                            distortion=(dFunc_ref, dParams_ref, dFlag_ref, dScl_ref),
                            pFlag=pFlag_ref, pScl=pScl_ref,
                            omePeriod=None,
                            factor=0.1, xtol=1e-4, ftol=1e-4):
    """
    """
    if omePeriod is not None:
        xyo_det[:, 2] = xf.mapAngle(xyo_det[:, 2], omePeriod)

    dFunc   = distortion[0]
    dParams = distortion[1]
    dFlag   = distortion[2]
    dScl    = distortion[3]

    # p = np.zeros(16)
    #
    # p[0]  = tiltAngles[0]
    # p[1]  = tiltAngles[1]
    # p[2]  = tiltAngles[2]
    # p[3]  = tVec_d[0]
    # p[4]  = tVec_d[1]
    # p[5]  = tVec_d[2]
    # p[6]  = chi
    # p[7]  = tVec_s[0]
    # p[8]  = tVec_s[1]
    # p[9]  = tVec_s[2]
    # p[10] = expMap_c[0]
    # p[11] = expMap_c[1]
    # p[12] = expMap_c[2]
    # p[13] = tVec_c[0]
    # p[14] = tVec_c[1]
    # p[15] = tVec_c[2]
    #
    # pFull = np.hstack([p, dParams])

    pFull = geomParamsToInput(tiltAngles, chi, expMap_c,
                              tVec_d, tVec_s, tVec_c,
                              dParams)

    refineFlag = np.hstack([pFlag, dFlag])
    scl        = np.hstack([pScl, dScl])
    pFit       = pFull[refineFlag]
    fitArgs    = (pFull, pFlag, dFunc, dFlag, xyo_det, hkls_idx,
                  bMat, vInv, wavelength, beamVec, etaVec, omePeriod)

    results = optimize.leastsq(objFuncSX, pFit, args=fitArgs, 
                               diag=1./scl[refineFlag].flatten(),
                               factor=factor, xtol=xtol, ftol=ftol)

    pFit_opt = results[0]

    retval = pFull
    retval[refineFlag] = pFit_opt
    return retval
Ejemplo n.º 6
0
    def fit_grains(self, grain_id, grain_params):
        """
        Executes lsq fits of grains based on spot files
        
        REFLECTION TABLE
        
        Cols as follows:
            0-6:   ID    PID    H    K    L    sum(int)    max(int)    
            6-9:   pred tth    pred eta    pred ome              
            9-12:  meas tth    meas eta    meas ome              
            12-15: meas X      meas Y      meas ome
        """
        ome_start = self._p['omega_start']
        ome_step = self._p['omega_step']
        ome_stop =  self._p['omega_stop']
        refl_table = np.loadtxt(self._p['spots_stem'] % grain_id)
        valid_refl_ids = refl_table[:, 0] >= 0
        unsat_spots = refl_table[:, 6] < self._p['saturation_level']
        pred_ome = refl_table[:, 9]
        if angularDifference(ome_start, ome_stop, units='degrees') > 0:
            # if here, incomplete have omega range and
            # clip the refelctions very close to the edges to avoid
            # problems with the least squares...
            if np.sign(ome_step) < 0:
                idx_ome = np.logical_and(
                    pred_ome < np.radians(ome_start + 2*ome_step),
                    pred_ome > np.radians(ome_stop - 2*ome_step)
                    )
            else:
                idx_ome = np.logical_and(
                    pred_ome > np.radians(ome_start + 2*ome_step),
                    pred_ome < np.radians(ome_stop - 2*ome_step)
                    )
            idx = np.logical_and(
                valid_refl_ids,
                np.logical_and(unsat_spots, idx_ome)
                )
        else:
            idx = np.logical_and(valid_refl_ids, unsat_spots)

        hkls = refl_table[idx, 2:5].T # must be column vectors
        self._p['hkls'] = hkls
        xyo_det = refl_table[idx, -3:] # these are the cartesian centroids + ome
        xyo_det[:, 2] = mapAngle(xyo_det[:, 2], self._p['omega_period'])
        self._p['xyo_det'] = xyo_det
        if sum(idx) <= 12:
            return grain_params, 0
        grain_params = fitGrain(
            xyo_det, hkls, self._p['bMat'], self._p['wlen'],
            self._p['detector_params'],
            grain_params[:3], grain_params[3:6], grain_params[6:],
            beamVec=bVec_ref, etaVec=eta_ref,
            distortion=self._p['distortion'],
            gFlag=gFlag, gScl=gScl,
            omePeriod=self._p['omega_period']
            )
        completeness = sum(valid_refl_ids)/float(len(valid_refl_ids))
        return grain_params, completeness
Ejemplo n.º 7
0
def fitGrain(
    xyo_det,
    hkls_idx,
    bMat,
    wavelength,
    detectorParams,
    expMap_c,
    tVec_c,
    vInv,
    beamVec=bVec_ref,
    etaVec=eta_ref,
    distortion=(dFunc_ref, dParams_ref),
    gFlag=gFlag_ref,
    gScl=gScl_ref,
    omePeriod=None,
    factor=0.1,
    xtol=1e-4,
    ftol=1e-4,
):
    """
    """
    if omePeriod is not None:
        xyo_det[:, 2] = xf.mapAngle(xyo_det[:, 2], omePeriod)

    dFunc = distortion[0]
    dParams = distortion[1]

    gFull = np.hstack([expMap_c.flatten(), tVec_c.flatten(), vInv.flatten()])

    gFit = gFull[gFlag]

    fitArgs = (
        gFull,
        gFlag,
        detectorParams,
        xyo_det,
        hkls_idx,
        bMat,
        wavelength,
        beamVec,
        etaVec,
        dFunc,
        dParams,
        omePeriod,
    )

    results = optimize.leastsq(
        objFuncFitGrain, gFit, args=fitArgs, diag=1.0 / gScl[gFlag].flatten(), factor=0.1, xtol=xtol, ftol=ftol
    )

    gFit_opt = results[0]

    retval = gFull
    retval[gFlag] = gFit_opt
    return retval
Ejemplo n.º 8
0
def simulate_diffractions(grain_params, experiment, controller):
    """actual forward simulation of the diffraction"""

    image_stack = np.zeros(
        (experiment.nframes, experiment.nrows, experiment.ncols), dtype=bool)
    count = len(grain_params)
    subprocess = 'simulate diffractions'

    _project = xrdutil._project_on_detector_plane
    rD = experiment.rMat_d
    chi = experiment.chi
    tD = experiment.tVec_d
    tS = experiment.tVec_s
    distortion = experiment.distortion

    eta_range = [
        (-np.pi, np.pi),
    ]
    ome_range = experiment.ome_range
    ome_period = (-np.pi, np.pi)

    full_hkls = xrdutil._fetch_hkls_from_planedata(experiment.plane_data)
    bMat = experiment.plane_data.latVecOps['B']
    wlen = experiment.plane_data.wavelength

    controller.start(subprocess, count)
    for i in range(count):
        rC = xfcapi.makeRotMatOfExpMap(grain_params[i][0:3])
        tC = np.ascontiguousarray(grain_params[i][3:6])
        vInv_s = np.ascontiguousarray(grain_params[i][6:12])
        ang_list = np.vstack(
            xfcapi.oscillAnglesOfHKLs(full_hkls[:, 1:],
                                      chi,
                                      rC,
                                      bMat,
                                      wlen,
                                      vInv=vInv_s))
        # hkls not needed here
        all_angs, _ = xrdutil._filter_hkls_eta_ome(full_hkls, ang_list,
                                                   eta_range, ome_range)
        all_angs[:, 2] = xf.mapAngle(all_angs[:, 2], ome_period)

        det_xy, _ = _project(all_angs, rD, rC, chi, tD, tC, tS, distortion)

        _write_pixels(det_xy, all_angs[:, 2], image_stack, experiment.base,
                      experiment.inv_deltas, experiment.clip_vals)

        controller.update(i + 1)

    controller.finish(subprocess)
    return image_stack
Ejemplo n.º 9
0
    def fit_grains(self, grain_id, grain_params):
        ome_start = self._p['omega_start']
        ome_step = self._p['omega_step']
        ome_stop = self._p['omega_stop']
        refl_table = np.loadtxt(self._p['spots_stem'] % grain_id)
        valid_refl_ids = refl_table[:, 0] >= 0
        unsat_spots = refl_table[:, 5] < self._p['saturation_level']
        pred_ome = refl_table[:, 8]
        if angularDifference(ome_start, ome_stop, units='degrees') > 0:
            # if here, incomplete have omega range and
            # clip the refelctions very close to the edges to avoid
            # problems with the least squares...
            if np.sign(ome_step) < 0:
                idx_ome = np.logical_and(
                    pred_ome < np.radians(ome_start + 2 * ome_step),
                    pred_ome > np.radians(ome_stop - 2 * ome_step))
            else:
                idx_ome = np.logical_and(
                    pred_ome > np.radians(ome_start + 2 * ome_step),
                    pred_ome < np.radians(ome_stop - 2 * ome_step))
            idx = np.logical_and(unsat_spots,
                                 np.logical_and(valid_refl_ids, idx_ome))
        else:
            idx = np.logical_and(valid_refl_ids, unsat_spots)

        hkls = refl_table[idx, 1:4].T  # must be column vectors
        self._p['hkls'] = hkls
        xyo_det = refl_table[idx,
                             -3:]  # these are the cartesian centroids + ome
        xyo_det[:, 2] = mapAngle(xyo_det[:, 2], self._p['omega_period'])
        self._p['xyo_det'] = xyo_det
        if sum(idx) <= 12:
            return grain_params, 0
        grain_params = fitGrain(xyo_det,
                                hkls,
                                self._p['bMat'],
                                self._p['wlen'],
                                self._p['detector_params'],
                                grain_params[:3],
                                grain_params[3:6],
                                grain_params[6:],
                                beamVec=bVec_ref,
                                etaVec=eta_ref,
                                distortion=self._p['distortion'],
                                gFlag=gFlag,
                                gScl=gScl,
                                omePeriod=self._p['omega_period'])
        completeness = sum(idx) / float(len(idx))
        return grain_params, completeness
Ejemplo n.º 10
0
def simulate_diffractions(grain_params, experiment, controller):
    """actual forward simulation of the diffraction"""

    # use a packed array for the image_stack
    array_dims = (experiment.nframes, experiment.ncols, ((experiment.nrows - 1)//8) + 1)
    image_stack = np.zeros(array_dims, dtype = np.uint8)

    count = len(grain_params)
    subprocess = 'simulate diffractions'

    _project = xrdutil._project_on_detector_plane
    rD = experiment.rMat_d
    chi = experiment.chi
    tD = experiment.tVec_d
    tS = experiment.tVec_s
    distortion = experiment.distortion

    eta_range = [(-np.pi, np.pi), ]
    ome_range = experiment.ome_range
    ome_period = (-np.pi, np.pi)

    full_hkls = xrdutil._fetch_hkls_from_planedata(experiment.plane_data)
    bMat = experiment.plane_data.latVecOps['B']
    wlen = experiment.plane_data.wavelength

    controller.start(subprocess, count)
    for i in range(count):
        rC = xfcapi.makeRotMatOfExpMap(grain_params[i][0:3])
        tC = np.ascontiguousarray(grain_params[i][3:6])
        vInv_s = np.ascontiguousarray(grain_params[i][6:12])
        ang_list = np.vstack(xfcapi.oscillAnglesOfHKLs(full_hkls[:, 1:], chi,
                                                       rC, bMat, wlen,
                                                       vInv=vInv_s))
        # hkls not needed here
        all_angs, _ = xrdutil._filter_hkls_eta_ome(full_hkls, ang_list,
                                                   eta_range, ome_range)
        all_angs[:, 2] =xf.mapAngle(all_angs[:, 2], ome_period)


        det_xy, _ = _project(all_angs, rD, rC, chi, tD,
                             tC, tS, distortion)

        _write_pixels(det_xy, all_angs[:,2], image_stack, experiment.base,
                      experiment.inv_deltas, experiment.clip_vals)

        controller.update(i+1)

    controller.finish(subprocess)
    return image_stack
Ejemplo n.º 11
0
    def fit_grains(self, grain_id, grain_params):
        ome_start = self._p['omega_start']
        ome_step = self._p['omega_step']
        ome_stop =  self._p['omega_stop']
        refl_table = np.loadtxt(self._p['spots_stem'] % grain_id)
        valid_refl_ids = refl_table[:, 0] >= 0
        unsat_spots = refl_table[:, 5] < self._p['saturation_level']
        pred_ome = refl_table[:, 8]
        if angularDifference(ome_start, ome_stop, units='degrees') > 0:
            # if here, incomplete have omega range and
            # clip the refelctions very close to the edges to avoid
            # problems with the least squares...
            if np.sign(ome_step) < 0:
                idx_ome = np.logical_and(
                    pred_ome < np.radians(ome_start + 2*ome_step),
                    pred_ome > np.radians(ome_stop - 2*ome_step)
                    )
            else:
                idx_ome = np.logical_and(
                    pred_ome > np.radians(ome_start + 2*ome_step),
                    pred_ome < np.radians(ome_stop - 2*ome_step)
                    )
            idx = np.logical_and(
                unsat_spots,
                np.logical_and(valid_refl_ids, idx_ome)
                )
        else:
            idx = np.logical_and(valid_refl_ids, unsat_spots)

        hkls = refl_table[idx, 1:4].T # must be column vectors
        self._p['hkls'] = hkls
        xyo_det = refl_table[idx, -3:] # these are the cartesian centroids + ome
        xyo_det[:, 2] = mapAngle(xyo_det[:, 2], self._p['omega_period'])
        self._p['xyo_det'] = xyo_det
        if sum(idx) <= 12:
            return grain_params, 0
        grain_params = fitGrain(
            xyo_det, hkls, self._p['bMat'], self._p['wlen'],
            self._p['detector_params'],
            grain_params[:3], grain_params[3:6], grain_params[6:],
            beamVec=bVec_ref, etaVec=eta_ref,
            distortion=self._p['distortion'],
            gFlag=gFlag, gScl=gScl,
            omePeriod=self._p['omega_period']
            )
        completeness = sum(idx)/float(len(idx))
        return grain_params, completeness
Ejemplo n.º 12
0
def fitGrain(xyo_det,
             hkls_idx,
             bMat,
             wavelength,
             detectorParams,
             expMap_c,
             tVec_c,
             vInv,
             beamVec=bVec_ref,
             etaVec=eta_ref,
             distortion=(dFunc_ref, dParams_ref),
             gFlag=gFlag_ref,
             gScl=gScl_ref,
             omePeriod=None,
             factor=0.1,
             xtol=sqrt_epsf,
             ftol=sqrt_epsf):
    """
    """
    if omePeriod is not None:
        xyo_det[:, 2] = xf.mapAngle(xyo_det[:, 2], omePeriod)

    dFunc = distortion[0]
    dParams = distortion[1]

    gFull = np.hstack([expMap_c.flatten(), tVec_c.flatten(), vInv.flatten()])

    gFit = gFull[gFlag]

    fitArgs = (gFull, gFlag, detectorParams, xyo_det, hkls_idx, bMat,
               wavelength, beamVec, etaVec, dFunc, dParams, omePeriod)

    results = optimize.leastsq(objFuncFitGrain,
                               gFit,
                               args=fitArgs,
                               diag=1. / gScl[gFlag].flatten(),
                               factor=0.1,
                               xtol=xtol,
                               ftol=ftol)

    gFit_opt = results[0]

    retval = gFull
    retval[gFlag] = gFit_opt
    return retval
Ejemplo n.º 13
0
    def fit_grains(self, grain_id, grain_params):
        ome_start = self._p['omega_start']
        ome_step = self._p['omega_step']
        ome_stop =  self._p['omega_stop']
        gtable = np.loadtxt(self._p['spots_stem'] % grain_id)
        valid_refl_ids = gtable[:, 0] >= 0
        pred_ome = gtable[:, 6]
        if np.sign(ome_step) < 0:
            idx_ome = np.logical_and(
                pred_ome < np.radians(ome_start + 2*ome_step),
                pred_ome > np.radians(ome_stop - 2*ome_step)
                )
        else:
            idx_ome = np.logical_and(
                pred_ome > np.radians(ome_start + 2*ome_step),
                pred_ome < np.radians(ome_stop - 2*ome_step)
                )

        idx = np.logical_and(valid_refl_ids, idx_ome)
        hkls = gtable[idx, 1:4].T # must be column vectors
        self._p['hkls'] = hkls
        xyo_det = gtable[idx, -3:] # these are the cartesian centroids + ome
        xyo_det[:, 2] = mapAngle(xyo_det[:, 2], self._p['omega_period'])
        self._p['xyo_det'] = xyo_det
        if sum(idx) <= 12:
            return grain_params, 0
        grain_params = fitGrain(
            xyo_det, hkls, self._p['bMat'], self._p['wlen'],
            self._p['detector_params'],
            grain_params[:3], grain_params[3:6], grain_params[6:],
            beamVec=bVec_ref, etaVec=eta_ref,
            distortion=self._p['distortion'],
            gFlag=gFlag, gScl=gScl,
            omePeriod=self._p['omega_period']
            )
        completeness = sum(idx)/float(len(idx))
        return grain_params, completeness
Ejemplo n.º 14
0
def calibrateDetectorFromSX(
        xyo_det, hkls_idx, bMat, wavelength,
        tiltAngles, chi, expMap_c,
        tVec_d, tVec_s, tVec_c,
        vInv=vInv_ref,
        beamVec=bVec_ref, etaVec=eta_ref,
        distortion=(dFunc_ref, dParams_ref, dFlag_ref, dScl_ref),
        pFlag=pFlag_ref, pScl=pScl_ref,
        omePeriod=None,
        factor=0.1,
        xtol=sqrt_epsf, ftol=sqrt_epsf):
    """
    """
    if omePeriod is not None:
        xyo_det[:, 2] = xf.mapAngle(xyo_det[:, 2], omePeriod)

    # FIXME: this format for distortion needs to go away ASAP <JVB 2017-03-27>
    dFunc = distortion[0]
    dParams = distortion[1]
    dFlag = distortion[2]
    dScl = distortion[3]

    """
    p = np.zeros(17)

    p[0]  = wavelength
    p[1]  = tiltAngles[0]
    p[2]  = tiltAngles[1]
    p[3]  = tiltAngles[2]
    p[4]  = tVec_d[0]
    p[5]  = tVec_d[1]
    p[6]  = tVec_d[2]
    p[7]  = chi
    p[8]  = tVec_s[0]
    p[9]  = tVec_s[1]
    p[10] = tVec_s[2]
    p[11] = expMap_c[0]
    p[12] = expMap_c[1]
    p[13] = expMap_c[2]
    p[14] = tVec_c[0]
    p[15] = tVec_c[1]
    p[16] = tVec_c[2]

    pFull = np.hstack([p, dParams])
    """

    pFull = geomParamsToInput(
        wavelength,
        tiltAngles, chi, expMap_c,
        tVec_d, tVec_s, tVec_c,
        dParams
        )

    # TODO: check scaling <JVB 2017-03-27>
    refineFlag = np.array(np.hstack([pFlag, dFlag]), dtyp=bool)
    scl = np.hstack([pScl, dScl])
    pFit = pFull[refineFlag]
    fitArgs = (pFull, pFlag, dFunc, dFlag, xyo_det, hkls_idx,
               bMat, vInv, beamVec, etaVec, omePeriod)

    results = optimize.leastsq(objFuncSX, pFit, args=fitArgs,
                               diag=1./scl[refineFlag].flatten(),
                               factor=factor, xtol=xtol, ftol=ftol)

    pFit_opt = results[0]

    retval = pFull
    retval[refineFlag] = pFit_opt
    return retval
Ejemplo n.º 15
0
 for i in range(2):
     gtable  = np.loadtxt(filename %grainID) # load pull_spots output table
     idx0    = gtable[:, 0] >= 0             # select valid reflections
     #
     pred_ome = gtable[:, 6]
     if np.sign(ome_delta) < 0:
         idx_ome  = np.logical_and(pred_ome < d2r*(ome_start + 2*ome_delta),
                                   pred_ome > d2r*(ome_stop  - 2*ome_delta))
     else:
         idx_ome  = np.logical_and(pred_ome > d2r*(ome_start + 2*ome_delta),
                                   pred_ome < d2r*(ome_stop  - 2*ome_delta))
     #
     idx     = np.logical_and(idx0, idx_ome)
     hkls    = gtable[idx, 1:4].T            # must be column vectors
     xyo_det = gtable[idx, -3:]              # these are the cartesian centroids + ome
     xyo_det[:, 2] = xf.mapAngle(xyo_det[:, 2], ome_period)
     print "completeness: %f%%" %(100. * sum(idx)/float(len(idx)))
     if sum(idx) > 12:
         g_initial = grain_params
         g_refined = fitting.fitGrain(xyo_det, hkls, bMat, wlen,
                                      detector_params,
                                      g_initial[:3], g_initial[3:6], g_initial[6:],
                                      beamVec=bVec_ref, etaVec=eta_ref,
                                      distortion=(dFunc, dParams),
                                      gFlag=gFlag, gScl=gScl,
                                      omePeriod=ome_period)
         if i == 0:
             fid = open(filename %grainID, 'w')
             sd = xrdutil.pullSpots(pd, detector_params, g_refined, reader,
                                    distortion=(dFunc, dParams),
                                    eta_range=etaRange, ome_period=ome_period,
Ejemplo n.º 16
0
def paintGridThis(quat):
    """
    """
    # Unpack common parameters into locals
    symHKLs = paramMP['symHKLs']
    symHKLs_ix = paramMP['symHKLs_ix']
    wavelength = paramMP['wavelength']
    hklList = paramMP['hklList']
    omeMin = paramMP['omeMin']
    omeMax = paramMP['omeMax']
    omeTol = paramMP['omeTol']
    omePeriod = paramMP['omePeriod']
    omeIndices = paramMP['omeIndices']
    omeEdges = paramMP['omeEdges']
    etaMin = paramMP['etaMin']
    etaMax = paramMP['etaMax']
    etaTol = paramMP['etaTol']
    etaIndices = paramMP['etaIndices']
    etaEdges = paramMP['etaEdges']
    etaOmeMaps = paramMP['etaOmeMaps']
    bMat = paramMP['bMat']
    threshold = paramMP['threshold']

    # need this for proper index generation

    delOmeSign = num.sign(omeEdges[1] - omeEdges[0])

    del_ome = abs(omeEdges[1] - omeEdges[0])
    del_eta = abs(etaEdges[1] - etaEdges[0])

    dpix_ome = round(omeTol / del_ome)
    dpix_eta = round(etaTol / del_eta)

    debug = False
    if debug:
        print "using ome, eta dilitations of (%d, %d) pixels" \
              % (dpix_ome, dpix_eta)

    nHKLs = len(symHKLs_ix) - 1

    rMat = rotMatOfQuat(quat)

    nPredRefl = 0
    nMeasRefl = 0
    reflInfoList = []
    dummySpotInfo = num.nan * num.ones(3)

    # Compute the oscillation angles of all the symHKLs at once
    oangs_pair = xfcapi.oscillAnglesOfHKLs(
        symHKLs, 0., rMat, bMat, wavelength)
    # Interleave the two produced oang solutions to simplify later processing
    oangs = num.empty((len(symHKLs)*2, 3), dtype=oangs_pair[0].dtype)
    oangs[0::2] = oangs_pair[0]
    oangs[1::2] = oangs_pair[1]

    # Map all of the angles at once
    oangs[:, 1] = xf.mapAngle(oangs[:, 1])
    oangs[:, 2] = xf.mapAngle(oangs[:, 2], omePeriod)

    # Create a mask of the good ones
    oangMask = num.logical_and(
                ~num.isnan(oangs[:, 0]),
            num.logical_and(
                xf.validateAngleRanges(oangs[:, 1], etaMin, etaMax),
                xf.validateAngleRanges(oangs[:, 2], omeMin, omeMax)))

    hklCounterP = 0 # running count of excpected (predicted) HKLs
    hklCounterM = 0 # running count of "hit" HKLs
    for iHKL in range(nHKLs):
        start, stop = symHKLs_ix[iHKL:iHKL+2]
        start, stop = (2*start, 2*stop)

        angList = oangs[start:stop]
        angMask = oangMask[start:stop]

        allAngs_m = angList[angMask, :]
        if len(allAngs_m) > 0:
            # not output # # duplicate HKLs
            # not output # allHKLs_m = num.vstack(
            #     [these_hkls, these_hkls]
            #     )[angMask, :]

            culledTTh  = allAngs_m[:, 0]
            culledEta  = allAngs_m[:, 1]
            culledOme  = allAngs_m[:, 2]
            # not output # culledHKLs = allHKLs_m.T

            nThisPredRefl = len(culledTTh)
            hklCounterP += nThisPredRefl
            for iTTh in range(nThisPredRefl):
                culledEtaIdx = num.where(etaEdges - culledEta[iTTh] > 0)[0]
                if len(culledEtaIdx) > 0:
                    culledEtaIdx = culledEtaIdx[0] - 1
                    if culledEtaIdx < 0:
                        culledEtaIdx = None
                else:
                    culledEtaIdx = None
                culledOmeIdx = num.where(omeEdges - culledOme[iTTh] > 0)[0]
                if len(culledOmeIdx) > 0:
                    if delOmeSign > 0:
                        culledOmeIdx = culledOmeIdx[0] - 1
                    else:
                        culledOmeIdx = culledOmeIdx[-1]
                    if culledOmeIdx < 0:
                        culledOmeIdx = None
                else:
                    culledOmeIdx = None

                if culledEtaIdx is not None and culledOmeIdx is not None:
                    if dpix_ome > 0 or dpix_eta > 0:
                        i_dil, j_dil = _meshgrid2d(
                            num.arange(-dpix_ome, dpix_ome + 1),
                            num.arange(-dpix_eta, dpix_eta + 1)
                            )
                        i_sup = omeIndices[culledOmeIdx] + num.array(
                            [i_dil.flatten()], dtype=int
                            )
                        j_sup = etaIndices[culledEtaIdx] + num.array(
                            [j_dil.flatten()], dtype=int
                            )
                        # catch shit that falls off detector...
                        # ...maybe make this fancy enough to wrap at 2pi?
                        i_max, j_max = etaOmeMaps[iHKL].shape
                        idx_mask = num.logical_and(
                            num.logical_and(i_sup >= 0, i_sup < i_max),
                            num.logical_and(j_sup >= 0, j_sup < j_max)
                            )
                        pixelVal = etaOmeMaps[iHKL][
                            i_sup[idx_mask], j_sup[idx_mask]
                            ]
                    else:
                        pixelVal = etaOmeMaps[iHKL][
                            omeIndices[culledOmeIdx], etaIndices[culledEtaIdx]
                            ]
                    isHit = num.any(pixelVal >= threshold[iHKL])
                    if isHit:
                        hklCounterM += 1
                # if debug:
                #     print "hkl %d -->\t%d\t%d\t%d\t" % (
                #         iHKL, culledHKLs[0, iTTh], culledHKLs[1, iTTh],
                #         culledHKLs[2, iTTh]
                #         ) \
                #         + "isHit=%d\tpixel value: %g\n" % (isHit, pixelVal) \
                #         + "eta index: %d,%d\tetaP: %g\n" % (
                #         culledEtaIdx, etaIndices[culledEtaIdx],
                #         r2d*culledEta[iTTh]
                #         ) \
                #         + "ome index: %d,%d\tomeP: %g\n" % (
                #         culledOmeIdx, omeIndices[culledOmeIdx],
                #         r2d*culledOme[iTTh]
                #         )
                #
                # close conditional on valid reflections
            # close loop on signed reflections
        # close loop on HKL
    if hklCounterP == 0:
        retval = 0.
    else:
        retval = float(hklCounterM) / float(hklCounterP)
    return retval
Ejemplo n.º 17
0
def paintGridThis(quat):
    """
    """
    # pull local vars from globals set in paintGrid
    global symHKLs_MP, wavelength_MP
    global omeMin_MP, omeMax_MP, omeTol_MP
    global etaMin_MP, etaMax_MP, etaTol_MP
    global omeIndices_MP, etaIndices_MP
    global omeEdges_MP, etaEdges_MP
    global hklList_MP, hklIDs_MP
    global etaOmeMaps_MP
    global bMat_MP
    global threshold_MP
    symHKLs    = symHKLs_MP
    wavelength = wavelength_MP
    hklIDs     = hklIDs_MP
    hklList    = hklList_MP
    omeMin     = omeMin_MP
    omeMax     = omeMax_MP
    omeTol     = omeTol_MP
    omeIndices = omeIndices_MP
    omeEdges   = omeEdges_MP
    etaMin     = etaMin_MP
    etaMax     = etaMax_MP
    etaTol     = etaTol_MP
    etaIndices = etaIndices_MP
    etaEdges   = etaEdges_MP
    etaOmeMaps = etaOmeMaps_MP
    bMat       = bMat_MP
    threshold  = threshold_MP

    # need this for proper index generation

    omegas = [omeEdges[0] + (i+0.5)*(omeEdges[1] - omeEdges[0]) for i in range(len(omeEdges) - 1)]
    etas   = [etaEdges[0] + (i+0.5)*(etaEdges[1] - etaEdges[0]) for i in range(len(etaEdges) - 1)]
    
    delOmeSign = num.sign(omegas[1] - omegas[0])
    
    del_ome = abs(omegas[1] - omegas[0])
    del_eta = abs(etas[1] - etas[0])
    
    dpix_ome = round(omeTol / del_ome)
    dpix_eta = round(etaTol / del_eta)
    
    debug = False
    if debug:
        print "using ome, eta dilitations of (%d, %d) pixels" % (dpix_ome, dpix_eta)
    
    nHKLs = len(hklIDs)

    rMat = rotMatOfQuat(quat)

    nPredRefl = 0
    nMeasRefl = 0
    reflInfoList = []
    dummySpotInfo = num.nan * num.ones(3)

    hklCounterP = 0                 # running count of excpected (predicted) HKLs
    hklCounterM = 0                 # running count of "hit" HKLs
    for iHKL in range(nHKLs):
        # select and C-ify symmetric HKLs
        these_hkls = num.array(symHKLs[hklIDs[iHKL]].T, dtype=float, order='C')
        
        # oscillation angle arrays
        oangs   = xfcapi.oscillAnglesOfHKLs(these_hkls, 0., rMat, bMat, wavelength)
        angList = num.vstack(oangs)
        if not num.all(num.isnan(angList)):
            angList[:, 1] = xf.mapAngle(angList[:, 1])
            angList[:, 2] = xf.mapAngle(angList[:, 2])
            
            if omeMin is None:
                omeMin = [-num.pi, ]
                omeMax = [ num.pi, ]
            if etaMin is None:
                etaMin = [-num.pi, ]
                etaMax = [ num.pi, ]
                
            angMask = num.logical_and(
                xf.validateAngleRanges(angList[:, 1], etaMin, etaMax),
                xf.validateAngleRanges(angList[:, 2], omeMin, omeMax))
            
            allAngs_m = angList[angMask, :]
            
            # not output # # duplicate HKLs
            # not output # allHKLs_m = num.vstack([these_hkls, these_hkls])[angMask, :]
            
            culledTTh  = allAngs_m[:, 0]
            culledEta  = allAngs_m[:, 1]
            culledOme  = allAngs_m[:, 2]
            # not output # culledHKLs = allHKLs_m.T
            
            nThisPredRefl = len(culledTTh)
            hklCounterP += nThisPredRefl
            for iTTh in range(nThisPredRefl):
                culledEtaIdx = num.where(etaEdges - culledEta[iTTh] > 0)[0]
                if len(culledEtaIdx) > 0:
                    culledEtaIdx = culledEtaIdx[0] - 1
                    if culledEtaIdx < 0:
                        culledEtaIdx = None
                else:
                    culledEtaIdx = None
                culledOmeIdx = num.where(omeEdges - culledOme[iTTh] > 0)[0]
                if len(culledOmeIdx) > 0:
                    if delOmeSign > 0:
                        culledOmeIdx = culledOmeIdx[0] - 1
                    else:
                        culledOmeIdx = culledOmeIdx[-1]
                    if culledOmeIdx < 0:
                        culledOmeIdx = None
                else:
                    culledOmeIdx = None
                
                if culledEtaIdx is not None and culledOmeIdx is not None:
                    if dpix_ome > 0 or dpix_eta > 0:
                        i_dil, j_dil = num.meshgrid(num.arange(-dpix_ome, dpix_ome + 1),
                                                    num.arange(-dpix_eta, dpix_eta + 1))
                        i_sup = omeIndices[culledOmeIdx] + num.array([i_dil.flatten()], dtype=int)
                        j_sup = etaIndices[culledEtaIdx] + num.array([j_dil.flatten()], dtype=int)
                        # catch shit that falls off detector... 
                        # ...maybe make this fancy enough to wrap at 2pi?
                        i_max, j_max = etaOmeMaps[iHKL].shape
                        idx_mask = num.logical_and(num.logical_and(i_sup >= 0, i_sup < i_max),
                                                   num.logical_and(j_sup >= 0, j_sup < j_max))                    
                        pixelVal = etaOmeMaps[iHKL][i_sup[idx_mask], j_sup[idx_mask]]
                    else:
                        pixelVal = etaOmeMaps[iHKL][omeIndices[culledOmeIdx], etaIndices[culledEtaIdx] ]
                    isHit = num.any(pixelVal >= threshold[iHKL])
                    if isHit:
                        hklCounterM += 1
                        pass
                    pass
                # disabled # if debug:
                # disabled #     print "hkl %d -->\t%d\t%d\t%d\t" % (iHKL, culledHKLs[0, iTTh], culledHKLs[1, iTTh], culledHKLs[2, iTTh]) + \
                # disabled #           "isHit=%d\tpixel value: %g\n" % (isHit, pixelVal) + \
                # disabled #           "eta index: %d,%d\tetaP: %g\n" % (culledEtaIdx, etaIndices[culledEtaIdx], r2d*culledEta[iTTh]) + \
                # disabled #           "ome index: %d,%d\tomeP: %g\n" % (culledOmeIdx, omeIndices[culledOmeIdx], r2d*culledOme[iTTh])
                # disabled #     pass
                pass # close conditional on valid reflections
            pass # close loop on signed reflections
        pass # close loop on HKL
    if hklCounterP == 0:
        retval = 0.
    else:
        retval = float(hklCounterM) / float(hklCounterP)
    return retval
Ejemplo n.º 18
0
def paintGridThis(quat):
    """
    """
    # pull local vars from globals set in paintGrid
    global symHKLs_MP, wavelength_MP
    global omeMin_MP, omeMax_MP, omeTol_MP, omePeriod_MP
    global etaMin_MP, etaMax_MP, etaTol_MP
    global omeIndices_MP, etaIndices_MP
    global omeEdges_MP, etaEdges_MP
    global hklList_MP, hklIDs_MP
    global etaOmeMaps_MP
    global bMat_MP
    global threshold_MP
    symHKLs = symHKLs_MP
    wavelength = wavelength_MP
    hklIDs = hklIDs_MP
    hklList = hklList_MP
    omeMin = omeMin_MP
    omeMax = omeMax_MP
    omeTol = omeTol_MP
    omePeriod = omePeriod_MP
    omeIndices = omeIndices_MP
    omeEdges = omeEdges_MP
    etaMin = etaMin_MP
    etaMax = etaMax_MP
    etaTol = etaTol_MP
    etaIndices = etaIndices_MP
    etaEdges = etaEdges_MP
    etaOmeMaps = etaOmeMaps_MP
    bMat = bMat_MP
    threshold = threshold_MP

    # need this for proper index generation

    omegas = [
        omeEdges[0] + (i + 0.5) * (omeEdges[1] - omeEdges[0])
        for i in range(len(omeEdges) - 1)
    ]
    etas = [
        etaEdges[0] + (i + 0.5) * (etaEdges[1] - etaEdges[0])
        for i in range(len(etaEdges) - 1)
    ]

    delOmeSign = num.sign(omegas[1] - omegas[0])

    del_ome = abs(omegas[1] - omegas[0])
    del_eta = abs(etas[1] - etas[0])

    dpix_ome = round(omeTol / del_ome)
    dpix_eta = round(etaTol / del_eta)

    debug = False
    if debug:
        print "using ome, eta dilitations of (%d, %d) pixels" % (dpix_ome,
                                                                 dpix_eta)

    nHKLs = len(hklIDs)

    rMat = rotMatOfQuat(quat)

    nPredRefl = 0
    nMeasRefl = 0
    reflInfoList = []
    dummySpotInfo = num.nan * num.ones(3)

    hklCounterP = 0  # running count of excpected (predicted) HKLs
    hklCounterM = 0  # running count of "hit" HKLs
    for iHKL in range(nHKLs):
        # select and C-ify symmetric HKLs
        these_hkls = num.array(symHKLs[hklIDs[iHKL]].T, dtype=float, order='C')

        # oscillation angle arrays
        oangs = xfcapi.oscillAnglesOfHKLs(these_hkls, 0., rMat, bMat,
                                          wavelength)
        angList = num.vstack(oangs)
        if not num.all(num.isnan(angList)):
            idx = -num.isnan(angList[:, 0])
            angList = angList[idx, :]
            angList[:, 1] = xf.mapAngle(angList[:, 1])
            angList[:, 2] = xf.mapAngle(angList[:, 2], omePeriod)

            if omeMin is None:
                omeMin = [
                    -num.pi,
                ]
                omeMax = [
                    num.pi,
                ]
            if etaMin is None:
                etaMin = [
                    -num.pi,
                ]
                etaMax = [
                    num.pi,
                ]

            angMask = num.logical_and(
                xf.validateAngleRanges(angList[:, 1], etaMin, etaMax),
                xf.validateAngleRanges(angList[:, 2], omeMin, omeMax))

            allAngs_m = angList[angMask, :]

            # not output # # duplicate HKLs
            # not output # allHKLs_m = num.vstack([these_hkls, these_hkls])[angMask, :]

            culledTTh = allAngs_m[:, 0]
            culledEta = allAngs_m[:, 1]
            culledOme = allAngs_m[:, 2]
            # not output # culledHKLs = allHKLs_m.T

            nThisPredRefl = len(culledTTh)
            hklCounterP += nThisPredRefl
            for iTTh in range(nThisPredRefl):
                culledEtaIdx = num.where(etaEdges - culledEta[iTTh] > 0)[0]
                if len(culledEtaIdx) > 0:
                    culledEtaIdx = culledEtaIdx[0] - 1
                    if culledEtaIdx < 0:
                        culledEtaIdx = None
                else:
                    culledEtaIdx = None
                culledOmeIdx = num.where(omeEdges - culledOme[iTTh] > 0)[0]
                if len(culledOmeIdx) > 0:
                    if delOmeSign > 0:
                        culledOmeIdx = culledOmeIdx[0] - 1
                    else:
                        culledOmeIdx = culledOmeIdx[-1]
                    if culledOmeIdx < 0:
                        culledOmeIdx = None
                else:
                    culledOmeIdx = None

                if culledEtaIdx is not None and culledOmeIdx is not None:
                    if dpix_ome > 0 or dpix_eta > 0:
                        i_dil, j_dil = num.meshgrid(
                            num.arange(-dpix_ome, dpix_ome + 1),
                            num.arange(-dpix_eta, dpix_eta + 1))
                        i_sup = omeIndices[culledOmeIdx] + num.array(
                            [i_dil.flatten()], dtype=int)
                        j_sup = etaIndices[culledEtaIdx] + num.array(
                            [j_dil.flatten()], dtype=int)
                        # catch shit that falls off detector...
                        # ...maybe make this fancy enough to wrap at 2pi?
                        i_max, j_max = etaOmeMaps[iHKL].shape
                        idx_mask = num.logical_and(
                            num.logical_and(i_sup >= 0, i_sup < i_max),
                            num.logical_and(j_sup >= 0, j_sup < j_max))
                        pixelVal = etaOmeMaps[iHKL][i_sup[idx_mask],
                                                    j_sup[idx_mask]]
                    else:
                        pixelVal = etaOmeMaps[iHKL][omeIndices[culledOmeIdx],
                                                    etaIndices[culledEtaIdx]]
                    isHit = num.any(pixelVal >= threshold[iHKL])
                    if isHit:
                        hklCounterM += 1
                        pass
                    pass
                # disabled # if debug:
                # disabled #     print "hkl %d -->\t%d\t%d\t%d\t" % (iHKL, culledHKLs[0, iTTh], culledHKLs[1, iTTh], culledHKLs[2, iTTh]) + \
                # disabled #           "isHit=%d\tpixel value: %g\n" % (isHit, pixelVal) + \
                # disabled #           "eta index: %d,%d\tetaP: %g\n" % (culledEtaIdx, etaIndices[culledEtaIdx], r2d*culledEta[iTTh]) + \
                # disabled #           "ome index: %d,%d\tomeP: %g\n" % (culledOmeIdx, omeIndices[culledOmeIdx], r2d*culledOme[iTTh])
                # disabled #     pass
                pass  # close conditional on valid reflections
            pass  # close loop on signed reflections
        pass  # close loop on HKL
    if hklCounterP == 0:
        retval = 0.
    else:
        retval = float(hklCounterM) / float(hklCounterP)
    return retval
Ejemplo n.º 19
0
def calibrateDetectorFromSX(xyo_det,
                            hkls_idx,
                            bMat,
                            wavelength,
                            tiltAngles,
                            chi,
                            expMap_c,
                            tVec_d,
                            tVec_s,
                            tVec_c,
                            vInv=vInv_ref,
                            beamVec=bVec_ref,
                            etaVec=eta_ref,
                            distortion=(dFunc_ref, dParams_ref, dFlag_ref,
                                        dScl_ref),
                            pFlag=pFlag_ref,
                            pScl=pScl_ref,
                            omePeriod=None,
                            factor=0.1,
                            xtol=sqrt_epsf,
                            ftol=sqrt_epsf):
    """
    """
    if omePeriod is not None:
        xyo_det[:, 2] = xf.mapAngle(xyo_det[:, 2], omePeriod)

    # FIXME: this format for distortion needs to go away ASAP <JVB 2017-03-27>
    dFunc = distortion[0]
    dParams = distortion[1]
    dFlag = distortion[2]
    dScl = distortion[3]
    """
    p = np.zeros(17)

    p[0]  = wavelength
    p[1]  = tiltAngles[0]
    p[2]  = tiltAngles[1]
    p[3]  = tiltAngles[2]
    p[4]  = tVec_d[0]
    p[5]  = tVec_d[1]
    p[6]  = tVec_d[2]
    p[7]  = chi
    p[8]  = tVec_s[0]
    p[9]  = tVec_s[1]
    p[10] = tVec_s[2]
    p[11] = expMap_c[0]
    p[12] = expMap_c[1]
    p[13] = expMap_c[2]
    p[14] = tVec_c[0]
    p[15] = tVec_c[1]
    p[16] = tVec_c[2]

    pFull = np.hstack([p, dParams])
    """

    pFull = geomParamsToInput(wavelength, tiltAngles, chi, expMap_c, tVec_d,
                              tVec_s, tVec_c, dParams)

    # TODO: check scaling <JVB 2017-03-27>
    refineFlag = np.array(np.hstack([pFlag, dFlag]), dtyp=bool)
    scl = np.hstack([pScl, dScl])
    pFit = pFull[refineFlag]
    fitArgs = (pFull, pFlag, dFunc, dFlag, xyo_det, hkls_idx, bMat, vInv,
               beamVec, etaVec, omePeriod)

    results = optimize.leastsq(objFuncSX,
                               pFit,
                               args=fitArgs,
                               diag=1. / scl[refineFlag].flatten(),
                               factor=factor,
                               xtol=xtol,
                               ftol=ftol)

    pFit_opt = results[0]

    retval = pFull
    retval[refineFlag] = pFit_opt
    return retval
Ejemplo n.º 20
0
def check_indexing_plots(cfg_filename, plot_trials=False, plot_from_grains=False):
    cfg = config.open(cfg_filename)[0]    # use first block, like indexing

    working_dir = cfg.working_dir
    analysis_dir = os.path.join(working_dir, cfg.analysis_name)
    
    #instrument parameters
    icfg = get_instrument_parameters(cfg)
    chi = icfg['oscillation_stage']['chi']

    # load maps that were used
    oem = cPickle.load(
        open(cfg.find_orientations.orientation_maps.file, 'r')
        )
    nmaps = len(oem.dataStore)
    omeEdges = np.degrees(oem.omeEdges); nome = len(omeEdges) - 1
    etaEdges = np.degrees(oem.etaEdges); neta = len(etaEdges) - 1
    delta_ome = abs(omeEdges[1]-omeEdges[0])

    full_ome_range = xf.angularDifference(omeEdges[0], omeEdges[-1]) == 0
    full_eta_range = xf.angularDifference(etaEdges[0], etaEdges[-1]) == 0
    
    # grab plane data and figure out IDs of map HKLS
    pd = oem.planeData
    gvids = [pd.hklDataList[i]['hklID'] for i in np.where(pd.exclusions == False)[0].tolist()]

    # load orientations
    quats = np.atleast_2d(np.loadtxt(os.path.join(working_dir, 'accepted_orientations.dat')))
    if plot_trials:
        scored_trials = np.load(os.path.join(working_dir, 'scored_orientations.dat'))
        quats = scored_orientations[:4, scored_orientations[-1, :] >= cfg.find_orientations.clustering.completeness]
        pass
    expMaps = np.tile(2. * np.arccos(quats[:, 0]), (3, 1))*unitVector(quats[:, 1:].T)

    ##########################################
    #      SPECIAL CASE FOR FIT GRAINS       #
    ##########################################
    if plot_from_grains:
        distortion = (GE_41RT, icfg['detector']['distortion']['parameters'])
        #
        grain_table = np.atleast_2d(np.loadtxt(os.path.join(analysis_dir, 'grains.out')))
        ngrains = len(grain_table)
        #
        expMaps = grain_table[:, 3:6]
        tVec_c = grain_table[:, 6:9]
        vInv = grain_table[:, 6:12]
        #
        rMat_d = xf.makeDetectorRotMat(icfg['detector']['transform']['tilt_angles'])
        tVec_d = np.vstack(icfg['detector']['transform']['t_vec_d'])
        #
        chi = icfg['oscillation_stage']['chi']
        tVec_s = np.vstack(icfg['oscillation_stage']['t_vec_s'])
        #
        oes = np.zeros(oem.dataStore.shape)
        for i_grn in range(ngrains):
            spots_table = np.loadtxt(os.path.join(analysis_dir, 'spots_%05d.out' %i_grn))
            idx_m = spots_table[:, 0] >= 0
            for i_map in range(nmaps):
                idx_g = spots_table[:, 1] == gvids[i_map]
                idx = np.logical_and(idx_m, idx_g)
                nrefl = sum(idx)
                
                omes_fit = xf.mapAngle(spots_table[idx, 9], np.radians(cfg.find_orientations.omega.period), units='radians')
                xy_det = spots_table[idx, -3:]
                xy_det[:, 2] = np.zeros(nrefl)
                
                rMat_s_array = xfcapi.makeOscillRotMatArray(chi, omes_fit)
                
                # form in-plane vectors for detector points list in DETECTOR FRAME
                P2_d = xy_det.T
                
                # in LAB FRAME
                P2_l = np.dot(rMat_d, P2_d) + tVec_d # point on detector
                P0_l = np.hstack(
                    [tVec_s + np.dot(rMat_s_array[j], tVec_c[i_grn, :].reshape(3, 1)) for j in range(nrefl)]
                ) # origin of CRYSTAL FRAME

                # diffraction unit vector components in LAB FRAME
                dHat_l = unitVector(P2_l - P0_l)
                P2_l = np.dot(rMat_d, xy_det.T) + tVec_d
                
                # angles for reference frame
                dHat_ref_l = unitVector(P2_l)
    
                # append etas and omes
                etas_fit = np.arctan2(dHat_ref_l[1, :], dHat_ref_l[0, :]).flatten()
           
                # find indices, then truncate or wrap
                i_ome = cellIndices(oem.omeEdges, omes_fit)
                if full_ome_range:
                    i_ome[i_ome < 0] = np.mod(i_ome, nome) + 1
                    i_ome[i_ome >= nome] = np.mod(i_ome, nome)
                else:
                    incl = np.logical_or(i_ome >= 0, i_ome < nome)
                    i_ome = i_ome[incl]
                j_eta = cellIndices(oem.etaEdges, etas_fit)
                if full_eta_range:
                    j_eta[j_eta < 0] = np.mod(j_eta, neta) + 1
                    j_eta[j_eta >= neta] = np.mod(j_eta, neta)
                else:
                    incl = np.logical_or(j_eta >= 0, j_eta < neta)
                    j_eta = j_eta[incl]

                #if np.max(i_ome) >= nome or np.min(i_ome) < 0 or np.max(j_eta) >= neta or np.min(j_eta) < 0:
                #    import pdb; pdb.set_trace()
                # add to map
                oes[i_map][i_ome, j_eta] = 1
            pass
        pass
    
    # simulate quaternion points
    if not plot_from_grains:
        oes = simulateOmeEtaMaps(omeEdges, etaEdges, pd,
                                 expMaps,
                                 chi=chi,
                                 etaTol=0.01, omeTol=0.01,
                                 etaRanges=None, omeRanges=None,
                                 bVec=xf.bVec_ref, eVec=xf.eta_ref, vInv=xf.vInv_ref)
    
    # tick labling
    omes = np.degrees(oem.omeEdges)
    etas = np.degrees(oem.etaEdges)
    num_ticks = 7
    xmin = np.amin(etas); xmax = np.amax(etas)
    dx = (xmax - xmin) / (num_ticks - 1.); dx1 = (len(etas) - 1) / (num_ticks - 1.)
    xtlab = ["%.0f" % (xmin + i*dx) for i in range(num_ticks)]
    xtloc = np.array([i*dx1 for i in range(num_ticks)]) - 0.5
    ymin = np.amin(omes); ymax = np.amax(omes)
    dy = (ymax - ymin) / (num_ticks - 1.); dy1 = (len(omes) - 1) / (num_ticks - 1.)
    ytlab = ["%.0f" % (ymin + i*dy) for i in range(num_ticks)]
    ytloc = np.array([i*dy1 for i in range(num_ticks)]) - 0.5
    
    # Plot the three kernel density estimates
    n_maps = len(oem.iHKLList)
    
    fig_list =[plt.figure(num=i+1) for i in range(n_maps)]
    ax_list = [fig_list[i].gca() for i in range(n_maps)]
    for i_map in range(n_maps):
        y, x = np.where(oes[i_map] > 0)
        ax_list[i_map].hold(True)
        ax_list[i_map].imshow(oem.dataStore[i_map] > 0.1, cmap=cm.bone)
        ax_list[i_map].set_title(r'Map for $\{%d %d %d\}$' %tuple(pd.hkls[:, i_map]))
        ax_list[i_map].set_xlabel(r'Azimuth channel, $\eta$; $\Delta\eta=%.3f$' %delta_ome)
        ax_list[i_map].set_ylabel(r'Rotation channel, $\omega$; $\Delta\omega=%.3f$' %delta_ome)
        ax_list[i_map].plot(x, y, 'c+')
        ax_list[i_map].xaxis.set_ticks(xtloc)
        ax_list[i_map].xaxis.set_ticklabels(xtlab)
        ax_list[i_map].yaxis.set_ticks(ytloc)
        ax_list[i_map].yaxis.set_ticklabels(ytlab)
        ax_list[i_map].axis('tight')
    plt.show()
    return fig_list, oes
Ejemplo n.º 21
0
def check_indexing_plots(cfg_filename,
                         plot_trials=False,
                         plot_from_grains=False):
    cfg = config.open(cfg_filename)[0]  # use first block, like indexing

    working_dir = cfg.working_dir
    analysis_dir = os.path.join(working_dir, cfg.analysis_name)

    #instrument parameters
    icfg = get_instrument_parameters(cfg)
    chi = icfg['oscillation_stage']['chi']

    # load maps that were used
    oem = cPickle.load(open(cfg.find_orientations.orientation_maps.file, 'r'))
    nmaps = len(oem.dataStore)
    omeEdges = np.degrees(oem.omeEdges)
    nome = len(omeEdges) - 1
    etaEdges = np.degrees(oem.etaEdges)
    neta = len(etaEdges) - 1
    delta_ome = abs(omeEdges[1] - omeEdges[0])

    full_ome_range = xf.angularDifference(omeEdges[0], omeEdges[-1]) == 0
    full_eta_range = xf.angularDifference(etaEdges[0], etaEdges[-1]) == 0

    # grab plane data and figure out IDs of map HKLS
    pd = oem.planeData
    gvids = [
        pd.hklDataList[i]['hklID']
        for i in np.where(pd.exclusions == False)[0].tolist()
    ]

    # load orientations
    quats = np.atleast_2d(
        np.loadtxt(os.path.join(working_dir, 'accepted_orientations.dat')))
    if plot_trials:
        scored_trials = np.load(
            os.path.join(working_dir, 'scored_orientations.dat'))
        quats = scored_orientations[:4, scored_orientations[
            -1, :] >= cfg.find_orientations.clustering.completeness]
        pass
    expMaps = np.tile(2. * np.arccos(quats[:, 0]),
                      (3, 1)) * unitVector(quats[:, 1:].T)

    ##########################################
    #      SPECIAL CASE FOR FIT GRAINS       #
    ##########################################
    if plot_from_grains:
        distortion = (GE_41RT, icfg['detector']['distortion']['parameters'])
        #
        grain_table = np.atleast_2d(
            np.loadtxt(os.path.join(analysis_dir, 'grains.out')))
        ngrains = len(grain_table)
        #
        expMaps = grain_table[:, 3:6]
        tVec_c = grain_table[:, 6:9]
        vInv = grain_table[:, 6:12]
        #
        rMat_d = xf.makeDetectorRotMat(
            icfg['detector']['transform']['tilt_angles'])
        tVec_d = np.vstack(icfg['detector']['transform']['t_vec_d'])
        #
        chi = icfg['oscillation_stage']['chi']
        tVec_s = np.vstack(icfg['oscillation_stage']['t_vec_s'])
        #
        oes = np.zeros(oem.dataStore.shape)
        for i_grn in range(ngrains):
            spots_table = np.loadtxt(
                os.path.join(analysis_dir, 'spots_%05d.out' % i_grn))
            idx_m = spots_table[:, 0] >= 0
            for i_map in range(nmaps):
                idx_g = spots_table[:, 1] == gvids[i_map]
                idx = np.logical_and(idx_m, idx_g)
                nrefl = sum(idx)

                omes_fit = xf.mapAngle(spots_table[idx, 9],
                                       np.radians(
                                           cfg.find_orientations.omega.period),
                                       units='radians')
                xy_det = spots_table[idx, -3:]
                xy_det[:, 2] = np.zeros(nrefl)

                rMat_s_array = xfcapi.makeOscillRotMatArray(chi, omes_fit)

                # form in-plane vectors for detector points list in DETECTOR FRAME
                P2_d = xy_det.T

                # in LAB FRAME
                P2_l = np.dot(rMat_d, P2_d) + tVec_d  # point on detector
                P0_l = np.hstack([
                    tVec_s +
                    np.dot(rMat_s_array[j], tVec_c[i_grn, :].reshape(3, 1))
                    for j in range(nrefl)
                ])  # origin of CRYSTAL FRAME

                # diffraction unit vector components in LAB FRAME
                dHat_l = unitVector(P2_l - P0_l)
                P2_l = np.dot(rMat_d, xy_det.T) + tVec_d

                # angles for reference frame
                dHat_ref_l = unitVector(P2_l)

                # append etas and omes
                etas_fit = np.arctan2(dHat_ref_l[1, :],
                                      dHat_ref_l[0, :]).flatten()

                # find indices, then truncate or wrap
                i_ome = cellIndices(oem.omeEdges, omes_fit)
                if full_ome_range:
                    i_ome[i_ome < 0] = np.mod(i_ome, nome) + 1
                    i_ome[i_ome >= nome] = np.mod(i_ome, nome)
                else:
                    incl = np.logical_or(i_ome >= 0, i_ome < nome)
                    i_ome = i_ome[incl]
                j_eta = cellIndices(oem.etaEdges, etas_fit)
                if full_eta_range:
                    j_eta[j_eta < 0] = np.mod(j_eta, neta) + 1
                    j_eta[j_eta >= neta] = np.mod(j_eta, neta)
                else:
                    incl = np.logical_or(j_eta >= 0, j_eta < neta)
                    j_eta = j_eta[incl]

                #if np.max(i_ome) >= nome or np.min(i_ome) < 0 or np.max(j_eta) >= neta or np.min(j_eta) < 0:
                #    import pdb; pdb.set_trace()
                # add to map
                oes[i_map][i_ome, j_eta] = 1
            pass
        pass

    # simulate quaternion points
    if not plot_from_grains:
        oes = simulateOmeEtaMaps(omeEdges,
                                 etaEdges,
                                 pd,
                                 expMaps,
                                 chi=chi,
                                 etaTol=0.01,
                                 omeTol=0.01,
                                 etaRanges=None,
                                 omeRanges=None,
                                 bVec=xf.bVec_ref,
                                 eVec=xf.eta_ref,
                                 vInv=xf.vInv_ref)

    # tick labling
    omes = np.degrees(oem.omeEdges)
    etas = np.degrees(oem.etaEdges)
    num_ticks = 7
    xmin = np.amin(etas)
    xmax = np.amax(etas)
    dx = (xmax - xmin) / (num_ticks - 1.)
    dx1 = (len(etas) - 1) / (num_ticks - 1.)
    xtlab = ["%.0f" % (xmin + i * dx) for i in range(num_ticks)]
    xtloc = np.array([i * dx1 for i in range(num_ticks)]) - 0.5
    ymin = np.amin(omes)
    ymax = np.amax(omes)
    dy = (ymax - ymin) / (num_ticks - 1.)
    dy1 = (len(omes) - 1) / (num_ticks - 1.)
    ytlab = ["%.0f" % (ymin + i * dy) for i in range(num_ticks)]
    ytloc = np.array([i * dy1 for i in range(num_ticks)]) - 0.5

    # Plot the three kernel density estimates
    n_maps = len(oem.iHKLList)

    fig_list = [plt.figure(num=i + 1) for i in range(n_maps)]
    ax_list = [fig_list[i].gca() for i in range(n_maps)]
    for i_map in range(n_maps):
        y, x = np.where(oes[i_map] > 0)
        ax_list[i_map].hold(True)
        ax_list[i_map].imshow(oem.dataStore[i_map] > 0.1, cmap=cm.bone)
        ax_list[i_map].set_title(r'Map for $\{%d %d %d\}$' %
                                 tuple(pd.hkls[:, i_map]))
        ax_list[i_map].set_xlabel(
            r'Azimuth channel, $\eta$; $\Delta\eta=%.3f$' % delta_ome)
        ax_list[i_map].set_ylabel(
            r'Rotation channel, $\omega$; $\Delta\omega=%.3f$' % delta_ome)
        ax_list[i_map].plot(x, y, 'c+')
        ax_list[i_map].xaxis.set_ticks(xtloc)
        ax_list[i_map].xaxis.set_ticklabels(xtlab)
        ax_list[i_map].yaxis.set_ticks(ytloc)
        ax_list[i_map].yaxis.set_ticklabels(ytlab)
        ax_list[i_map].axis('tight')
    plt.show()
    return fig_list, oes