Ejemplo n.º 1
0
    def testOrthogonalization(self):
        myRandom = Random(self.mpi_rank, self.mpi_size)
        myRandom.normal(1.,self.Q)
        _ = self.Q.orthogonalize()
        QtQ = self.Q.dot_mv(self.Q)

        if self.mpi_rank == 0:
            assert np.linalg.norm(QtQ - np.eye(QtQ.shape[0])) < 1e-8
Ejemplo n.º 2
0
    def setUp(self):
        mesh = dl.UnitSquareMesh(10, 10)
        self.mpi_rank = dl.MPI.rank(mesh.mpi_comm())
        self.mpi_size = dl.MPI.size(mesh.mpi_comm())

        Vh1 = dl.FunctionSpace(mesh, 'Lagrange', 1)

        uh, vh = dl.TrialFunction(Vh1), dl.TestFunction(Vh1)
        mh, test_mh = dl.TrialFunction(Vh1), dl.TestFunction(Vh1)

        ## Set up B
        ndim = 2
        ntargets = 200
        np.random.seed(seed=1)
        targets = np.random.uniform(0.1, 0.9, [ntargets, ndim])
        B = assemblePointwiseObservation(Vh1, targets)

        ## Set up Asolver
        alpha = dl.Constant(1.0)
        varfA = ufl.inner(ufl.grad(uh), ufl.grad(vh))*ufl.dx +\
                    alpha*ufl.inner(uh,vh)*ufl.dx
        A = dl.assemble(varfA)
        Asolver = PETScKrylovSolver(A.mpi_comm(), "cg", amg_method())
        Asolver.set_operator(A)
        Asolver.parameters["maximum_iterations"] = 100
        Asolver.parameters["relative_tolerance"] = 1e-12

        ## Set up C
        varfC = ufl.inner(mh, vh) * ufl.dx
        C = dl.assemble(varfC)

        self.Hop = Hop(B, Asolver, C)

        ## Set up RHS Matrix M.
        varfM = ufl.inner(mh, test_mh) * ufl.dx
        self.M = dl.assemble(varfM)
        self.Minv = PETScKrylovSolver(self.M.mpi_comm(), "cg", amg_method())
        self.Minv.set_operator(self.M)
        self.Minv.parameters["maximum_iterations"] = 100
        self.Minv.parameters["relative_tolerance"] = 1e-12

        myRandom = Random(self.mpi_rank, self.mpi_size)

        x_vec = dl.Vector(mesh.mpi_comm())
        self.Hop.init_vector(x_vec, 1)

        k_evec = 10
        p_evec = 50
        self.Omega = MultiVector(x_vec, k_evec + p_evec)
        self.k_evec = k_evec

        myRandom.normal(1., self.Omega)
Ejemplo n.º 3
0
    def testBOrthogonalization(self):
        myRandom = Random(self.mpi_rank, self.mpi_size)
        myRandom.normal(1.,self.Q)
        self.Q.Borthogonalize(self.M)
        
        MQ = MultiVector(self.Q)
        MQ.zero()
        MatMvMult(self.M, self.Q, MQ)
        
        QtMQ = self.Q.dot_mv(MQ)

        if self.mpi_rank == 0:
            assert np.linalg.norm(QtMQ - np.eye(QtMQ.shape[0])) < 1e-8
def varianceReductionMC(prior, rqoi, taylor_qoi, nsamples, filename="realizations.txt"):
    """
    This function computes Monte Carlo Estimates for forward propagation of uncertainty.
    The uncertain parameter satisfies a Gaussian distribution with known mean and covariance 
    (describes as the inverse of a differential operator).
    Convergence of the Monte Carlo estimates is accelerated using a variance reduction
    techinque based on a Taylor approximation of the parameter-to-qoi map.
    
    INPUTS:
    - prior: an object of type hIPPYlib._Prior that allows to generate samples from the prior distribution
    - rqoi: an object of type ReducedQOI that describes the parameter-to-qoi map
    - taylor_qoi: an object of type TaylorApproximationQOI that computes the first and second order Taylor
                  approximation of the qoi
    - nsamples: an integer representing the number of samples for the MC estimates
    - filename: a string containing the name of the file where the computed qoi
                and its Taylor approximations (for each realization of the parameter) are saved
                
    OUTPUTS:
    - Sample mean of the quantity of interest q, its Taylor approx q1 and q2, and corrections y1=q-q1 and y2=q-q2.
    - MSE (Mean square error) of the standard MC, and the variance reduced MC using q1 and q2.
    
    Note: The variate control MC estimator can be computed off-line by postprocessing the file containing the
          values of the computed qoi and Taylor approximations.
    
    """
    noise = dl.Vector()
    sample = dl.Vector()
    
    prior.init_vector(noise, "noise")
    prior.init_vector(sample, 1)
    
    rank = dl.MPI.rank(noise.mpi_comm())
    
    q_i = np.zeros(nsamples)
    q1_i = np.zeros(nsamples)
    q2_i = np.zeros(nsamples)
    y1_i = np.zeros(nsamples)
    y2_i = np.zeros(nsamples)
    
    Eq1_exact = taylor_qoi.expectedValue(order=1)
    Eq2_exact = taylor_qoi.expectedValue(order=2)
    
    if rank == 0:
        print "nsamples | E[q], E[y1] + E[q1],  E[y2] + E[q2]| Var[q] Var[y1] Var[y2]"
        fid = open(filename,"w")
    
    for i in range(nsamples):
        Random.normal(noise, 1, True)
        prior.sample(noise, sample)
        q_i[i] = rqoi.reduced_eval(sample)
        q1_i[i] = taylor_qoi.eval(sample, order=1)
        q2_i[i] = taylor_qoi.eval(sample, order=2)
        y1_i[i] = q_i[i] - q1_i[i]
        y2_i[i] = q_i[i] - q2_i[i]
        
        if rank == 0:
            fid.write("{0:15e} {1:15e} {2:15e}\n".format(q_i[i], q1_i[i], q2_i[i]))
            fid.flush()
        
        if ( (i+1) % 10 == 0) or (i+1 == nsamples):
            Eq  = np.sum(q_i)/float(i+1)
            Eq1 = np.sum(q1_i)/float(i+1)
            Eq2 = np.sum(q2_i)/float(i+1)
            Ey1 = np.sum(y1_i)/float(i+1)
            Ey2 = np.sum(y2_i)/float(i+1)
            
            Varq = np.sum(np.power(q_i,2))/float(i) - (float(i+1)/float(i)*Eq*Eq)
            Varq1 = np.sum(np.power(q1_i,2))/float(i) - (float(i+1)/float(i)*Eq1*Eq1)
            Varq2 = np.sum(np.power(q2_i,2))/float(i) - (float(i+1)/float(i)*Eq2*Eq2)
            Vary1 = np.sum(np.power(y1_i,2))/float(i) - (float(i+1)/float(i)*Ey1*Ey1)
            Vary2 = np.sum(np.power(y2_i,2))/float(i) - (float(i+1)/float(i)*Ey2*Ey2)
            
            if rank == 0:
                print "{0:3} | {1:7e} {2:7e} {3:7e} | {4:7e} {5:7e} {6:7e}".format(
                    i+1, Eq, Ey1+Eq1_exact, Ey2+Eq2_exact,
                         Varq, Vary1, Vary2)
                
    Vq1_exact = taylor_qoi.variance(order=1) 
    Vq2_exact = taylor_qoi.variance(order=1)         
    
    if rank == 0:        
        fid.close()
            
        print "Expected value q1: analytical: ", Eq1_exact, "estimated: ", Eq1
        print "Expected value q2: analytical: ", Eq2_exact, "estimated: ", Eq2
        print "Variance q1: analytical", Vq1_exact, "estimated: ", Varq1
        print "Variance q2: analytical", Vq2_exact, "estimated: ", Varq2
    
    return Eq, Ey1, Ey2, Eq1_exact, Eq2_exact, Varq/nsamples, Vary1/nsamples, Vary2/nsamples