from corpus import get_data, get_lexicon from hmm import get_HMM from viterbi import decode from evaluation import eval_model import random train_set = get_data("corpus.xml")[:] lexicon = get_lexicon("lexicon.txt") model = get_HMM(train_set, lexicon) results = eval_model(train_set, model) print("\nworst_tags\n", results["worst_tags"]) print("\nworst_words:\n", results["worst_words"]) print("\nacc: ", results["accuracy"]) #print("confusion matrix:") #print(results["confusion"].tabulate())
from corpus import get_data #,get_lexicon from hmm import get_HMM from viterbi import decode from evaluation import eval_model import random train_set = get_data("corpus.xml")[:50] model = get_HMM(train_set) results = eval_model(train_set, model) print("\nworst_tags\n", results["worst_tags"]) print("\nworst_words:\n", results["worst_words"]) print("\nacc: ", results["accuracy"]) print("confusion matrix:") print(results["confusion"].tabulate())