Ejemplo n.º 1
0
 def _do_forward_pass(self, framelogprob):
     n_samples, n_components = framelogprob.shape
     fwdlattice = np.zeros((n_samples, n_components))
     _hmmc._forward(n_samples, n_components, log_mask_zero(self.startprob_),
                    log_mask_zero(self.transmat_), framelogprob, fwdlattice)
     with np.errstate(under="ignore"):
         return logsumexp(fwdlattice[-1]), fwdlattice
Ejemplo n.º 2
0
 def _compute_logprob(self, X, startprob, transmat, **kwargs):
     logprobX = self._logprob_X(X, **kwargs)
     n_samples, n_components = logprobX.shape
     fwdlattice = np.zeros((n_samples, n_components))
     _forward(n_samples, n_components, np.log(startprob), np.log(transmat),
              logprobX, fwdlattice)
     return logsumexp(fwdlattice[-1])
Ejemplo n.º 3
0
def _do_forward_pass(log_startprob, log_transmat, framelogprob):
    n_samples, n_components = framelogprob.shape
    fwdlattice = np.zeros((n_samples, n_components))
    _hmmc._forward(
        n_samples, n_components, log_startprob, log_transmat, framelogprob,
        fwdlattice
    )
    return logsumexp(fwdlattice[-1]), fwdlattice
Ejemplo n.º 4
0
 def _do_forward_pass(self, framelogprob):
     # Based on hmmlearn's _BaseHMM
     safe_startmat = self.startprob_ + np.finfo(float).eps
     safe_transmat = self.transmat_ + np.finfo(float).eps
     n_samples, n_components = framelogprob.shape
     fwdlattice = np.zeros((n_samples, n_components))
     _hmmc._forward(n_samples, n_components, np.log(safe_startmat),
                    np.log(safe_transmat), framelogprob, fwdlattice)
     return logsumexp(fwdlattice[-1]), fwdlattice
Ejemplo n.º 5
0
 def _do_forward_pass(self, framelogprob):
     # Based on hmmlearn's _BaseHMM
     safe_startmat = self.startprob_ + np.finfo(float).eps
     safe_transmat = self.transmat_ + np.finfo(float).eps
     n_samples, n_components = framelogprob.shape
     fwdlattice = np.zeros((n_samples, n_components))
     _hmmc._forward(n_samples, n_components,
                    np.log(safe_startmat),
                    np.log(safe_transmat),
                    framelogprob, fwdlattice)
     return logsumexp(fwdlattice[-1]), fwdlattice
Ejemplo n.º 6
0
    def _do_forward_pass(self, framelogprob):
        n_samples, n_components = framelogprob.shape
        # archived numpy version
        # fwdlattice = _routines._forward(n_samples, n_components,
        #                log_mask_zero(self.startprob_),
        #                log_mask_zero(self.transmat_),
        #                framelogprob)

        fwdlattice = np.zeros((n_samples, n_components))
        _hmmc._forward(n_samples, n_components,
                       log_mask_zero(self.startprob_),
                       log_mask_zero(self.transmat_),
                       framelogprob, fwdlattice)

        with np.errstate(under="ignore"):
            return special.logsumexp(fwdlattice[-1]), fwdlattice
Ejemplo n.º 7
0
print("hmm transition probability: \n{}".format(transmat))

data, mask = batch_data(n_components)
print("batch_framelogprob is: \n{}".format(data))
print("batch_mask is: \n{}".format(mask))

# 2. forward comparison

# 2.1 forward by hmmlearn method:
hmmlearn_fwdlattice = []
hmmlearn_logprob = []
for idx, framelogprob in enumerate(data):
    fwdlattice = np.zeros((mask[idx].sum(), n_components))
    _hmmc._forward(int(mask[idx].sum()), \
                   int(n_components), \
                   np.log(startprob), \
                   np.log(transmat), \
                   framelogprob[mask[idx]>0], \
                   fwdlattice)
    hmmlearn_fwdlattice.append(fwdlattice)
    hmmlearn_logprob.append(logsumexp(fwdlattice[-1]))
print("hmmlearn forward lattice: \n {}\n".format(hmmlearn_fwdlattice))
print("hmmlearn logporb: {}\n".format(hmmlearn_logprob))
# 2.2 batch forward in PyTorch

torch_logprob, torch_fwdlattice = _forward(int(data.shape[1]), \
                               int(n_components), \
                               torch.from_numpy(np.log(startprob)), \
                               torch.from_numpy(np.log(transmat)), \
                               torch.from_numpy(data), \
                               torch.from_numpy(mask))
print("torch batch forward: \n {}\n".format(torch_fwdlattice))
Ejemplo n.º 8
0
 def _do_forward_pass(self, framelogprob):
     n_observations, n_components = framelogprob.shape
     fwdlattice = np.zeros((n_observations, n_components))
     _hmmc._forward(n_observations, n_components, self._log_startprob,
                    self._log_transmat, framelogprob, fwdlattice)
     return logsumexp(fwdlattice[-1]), fwdlattice