Ejemplo n.º 1
0
    def hist(self, x, y, data=None):
        plot_opts = dict(self._plot_opts)
        invert = self.kwds.get('orientation', False) == 'horizontal'
        opts = dict(plot=dict(plot_opts, labelled=['x'], invert_axes=invert),
                    style=self._style_opts,
                    norm=self._norm_opts)
        hist_opts = {
            'num_bins': self.kwds.get('bins', 10),
            'bin_range': self.kwds.get('bin_range', None),
            'normed': self.kwds.get('normed', False)
        }

        data = self.data if data is None else data
        ds = Dataset(data)
        if y and self.by:
            return histogram(ds.to(Dataset, [], y, self.by), **hist_opts).\
                overlay().opts({'Histogram': opts})
        elif y:
            return histogram(ds, dimension=y, **hist_opts).\
                opts({'Histogram': opts})

        hists = {}
        columns = self.columns or data.columns
        for col in columns:
            hist = histogram(ds, dimension=col, **hist_opts)
            ranges = {hist.vdims[0].name: self._dim_ranges['y']}
            hists[col] = (hist.redim.range(**ranges).relabel(
                **self._relabel).opts(**opts))
        return NdOverlay(hists)
Ejemplo n.º 2
0
def plot_phase_diagrams(filenames,fileout):
    for i in range(len(filenames)):
        print 'i: ',i
        ds = yt.load(filenames[i])
        center_guess = initial_center_guess(ds,track_name)
        halo_center = get_halo_center(ds,center_guess)
        rb = sym_refine_box(ds,halo_center)

        args = filenames[i].split('/')
        sim_label = args[-3]

        dens = np.log10(rb['H_nuclei_density'])
        temp = np.log10(rb['Temperature'])

        df = pd.DataFrame({'temp':temp, 'dens':dens})
        phase_scatter = hv.Scatter(df,kdims=['dens'],vdims=['temp'],label=sim_label)

        #phase_data = np.zeros((len(rb['H_nuclei_density']),2))
        #phase_data[:,0] = np.log10(rb['H_nuclei_density'])
        #phase_data[:,1] = np.log10(rb['Temperature'])

        #points = hv.Points(phase_data,kdims=['nH','temp'],label=sim_label)
        hv.opts({'Histogram': {'style': {'alpha':0.3, 'fill_color':'k'}}})
        xhist = (histogram(phase_scatter, bin_range=(-7.5, 1), dimension='dens',normed=True)) #,alpha=0.3, fill_color='k'))
        yhist = (histogram(phase_scatter, bin_range=(3, 8.5), dimension='temp',normed=True)) #,alpha=0.3, fill_color='k'))

        if i == 0:
            phase_plot = (datashade(phase_scatter,cmap=cm.plasma, dynamic=False,x_range=(-7.5,1),y_range=(3,8.5))) << yhist(plot=dict(width=125)) << xhist(plot=dict(height=125))
        else:
            plot2 = (datashade(phase_scatter,cmap=cm.plasma, dynamic=False,x_range=(-7.5,1),y_range=(3,8.5))) << yhist(plot=dict(width=125)) << xhist(plot=dict(height=125))
            phase_plot = phase_plot + plot2

        renderer = hv.renderer('bokeh').instance(fig='html')
        renderer.save(phase_plot, fileout)
    return
        def _h(Counts, index, fine_index, **kwargs):
            #print index, kwargs
            from holoviews.operation import histogram

            m = {
                Counts: "Value",
                "{}_frequency": "frequency",
            }
            if len(index) > 0:
                d = self._data.embedding.iloc[index]
                if len(fine_index) > 0:
                    d = d.iloc[fine_index]
                #print "Trying", Counts
                label = "{} {} points".format(Counts, len(d))
                r = histogram(
                    hv.Points(d),
                    #self.selected_table,
                    dimension=Counts,
                    dynamic=False).redim(**m)
            else:
                label = "{} {} points".format(Counts,
                                              len(self._data.embedding))
                #print "Alt", Counts
                r = histogram(self._points[Counts],
                              dimension="Value",
                              dynamic=False).redim(Value_frequency="frequency")

            #print(r)
            return r.relabel(label)
Ejemplo n.º 4
0
    def generateCombined(self, decimated, SSC, FSC, cachebust, counter_max=20):
        renderer = hv.renderer('bokeh')
        body = None
        points = None
        point_collect = []
        for key in decimated.keys():
            print(key)
            point = hv.Scatter(decimated[key], SSC, FSC, label=key)
            point_collect.append(point)
            if points is None:
                points = point
            else:
                points *= point
        if body is None:
            body = points.opts(title='Default {0}: SSC vs FSC'.format("Combined"), height=450, width=450)
        else:
            body += points.opts(title='Default {0}: SSC vs FSC'.format("Combined"))

        for dim in (SSC, FSC):
            hists = None
            for point in point_collect:
                hist = histogram(point, dimension=dim)
                if hists is None:
                    hists = hist
                else:
                    hists *= hist
            body += hists

        potentialCols = [c for c in decimated[list(decimated.keys())[0]].columns if c != SSC and c != FSC]
        for i in range(len(potentialCols)):
            for j in range(i+1, len(potentialCols)):
                points = None
                point_collect = []
                for key in decimated.keys():
                    point = hv.Scatter(decimated[key], potentialCols[i], potentialCols[j], label=key)
                    point_collect.append(point)
                    if points is None:
                        points = point
                    else:
                        points *= point
                body += points.opts(title='Combined: {0} vs {1}'.format(potentialCols[i], potentialCols[j]), height=450, width=450)

                for dim in (potentialCols[i], potentialCols[j]):
                    hists = None
                    for point in point_collect:
                        hist = histogram(point, dimension=dim)
                        if hists is None:
                            hists = hist
                        else:
                            hists *= hist
                    body += hists
        body = body.opts(
            opts.Scatter(alpha=0.9),
            opts.Histogram(alpha=0.9, height=450),
            opts.Layout(shared_axes=True, shared_datasource=True)).cols(3)
        renderer.save(body, os.path.join(self.directory, cachebust+"combined_gating"))
Ejemplo n.º 5
0
    def hist(self, x, y, data=None):
        data, x, y = self._process_args(data, x, y)

        labelled = ['y'] if self.invert else ['x']
        plot_opts = dict(self._plot_opts, labelled=labelled)
        opts = dict(plot=plot_opts,
                    style=self._style_opts,
                    norm=self._norm_opts)
        hist_opts = {
            'bin_range': self.kwds.get('bin_range', None),
            'normed': self.kwds.get('normed', False),
            'cumulative': self.kwds.get('cumulative', False)
        }
        if 'bins' in self.kwds:
            bins = self.kwds['bins']
            if isinstance(bins, int):
                hist_opts['num_bins'] = bins
            else:
                hist_opts['bins'] = bins

        if not isinstance(y, (list, tuple)):
            if self.stacked and not self.subplots and not 'bin_range' in self.kwds:
                ys = data[y]
                hist_opts['bin_range'] = (ys.min(), ys.max())

            ds = Dataset(data, self.by, y)
            hist = hists = histogram(ds.to(Dataset, [], y, self.by),
                                     **hist_opts)
            if self.by:
                hist = hists.last
                hists = hists.layout() if self.subplots else hists.overlay()
            ranges = {
                hist.kdims[0].name: self._dim_ranges['x'],
                hist.vdims[0].name: self._dim_ranges['y']
            }
            return hists.opts({
                'Histogram': opts
            }).redim(**self._redim).redim.range(**ranges)

        ds = Dataset(data)
        hists = []
        for col in y:
            hist = histogram(ds, dimension=col, **hist_opts)
            ranges = {
                hist.kdims[0].name: self._dim_ranges['x'],
                hist.vdims[0].name: self._dim_ranges['y']
            }
            hists.append((col, hist.redim.range(**ranges).relabel(
                **self._relabel).opts(**opts)))
        return self._by_type(hists, sort=False).redim(**self._redim)
Ejemplo n.º 6
0
 def test_histogram_datetime64_plot(self):
     dates = np.array([dt.datetime(2017, 1, i) for i in range(1, 5)])
     hist = histogram(Dataset(dates, 'Date'), num_bins=4)
     plot = bokeh_renderer.get_plot(hist)
     source = plot.handles['source']
     data = {
         'top':
         np.array([
             3.85802469e-18, 3.85802469e-18, 3.85802469e-18, 3.85802469e-18
         ]),
         'left':
         np.array([
             '2017-01-01T00:00:00.000000', '2017-01-01T17:59:59.999999',
             '2017-01-02T12:00:00.000000', '2017-01-03T06:00:00.000000'
         ],
                  dtype='datetime64[us]'),
         'right':
         np.array([
             '2017-01-01T17:59:59.999999', '2017-01-02T12:00:00.000000',
             '2017-01-03T06:00:00.000000', '2017-01-04T00:00:00.000000'
         ],
                  dtype='datetime64[us]')
     }
     for k, v in data.items():
         self.assertEqual(source.data[k], v)
     xaxis = plot.handles['xaxis']
     range_x = plot.handles['x_range']
     self.assertIsInstance(xaxis, DatetimeAxis)
     self.assertEqual(range_x.start,
                      np.datetime64('2017-01-01T00:00:00.000000', 'us'))
     self.assertEqual(range_x.end,
                      np.datetime64('2017-01-04T00:00:00.000000', 'us'))
Ejemplo n.º 7
0
    def update_hist(self):
        hv.extension("matplotlib")
        dcrop = (self.da_masked *
                 self.da_zone.sel(id=self.id_i)).isel(step=self.step)
        dcrop.name = self.da.name
        var_name = self.da.name
        if self.levels:
            hv_img = hv.Image(hv.Dataset(dcrop),
                              kdims=["longitude", "latitude"
                                     ]).opts(colorbar=True,
                                             color_levels=self.levels,
                                             cmap=self.colors)
            html_map = hv.renderer("matplotlib").html(hv_img)
        else:
            hv_img = hv.Image(hv.Dataset(dcrop),
                              kdims=["longitude",
                                     "latitude"]).opts(colorbar=True,
                                                       color_levels=30)
            html_map = hv.renderer("matplotlib").html(hv_img)

    # Si besoin de specifier le range : hv_img.redim.__getattribute__("range")(**{var_name:(self.vmin,self.vmax)}))

        dstack = dcrop.stack(z=("latitude", "longitude")).reset_index("z")
        dstack["z"] = range(len(dstack.z))
        dstack.name = self.da.name
        hv_dst = hv.Dataset(dstack)
        k = histogram(hv_dst, dynamic=True, name="Test")

        html = ''' <h4> Histogramme sur {} </h4> de {}'''.format(
            self.hist_name, self.variable)
        self.html2.value = html + hv.renderer("matplotlib").html(k) + html_map
Ejemplo n.º 8
0
 def test_dynamic_operation_init_renamed_stream_params(self):
     img = Image(sine_array(0, 5))
     stream = RangeX(rename={'x_range': 'bin_range'})
     dmap_with_fn = histogram(img,
                              bin_range=(0, 1),
                              streams=[stream],
                              dynamic=True)
     self.assertEqual(stream.x_range, (0, 1))
Ejemplo n.º 9
0
 def test_dynamic_operation_init_stream_params(self):
     img = Image(sine_array(0, 5))
     stream = Stream.define('TestStream', bin_range=None)()
     dmap_with_fn = histogram(img,
                              bin_range=(0, 1),
                              streams=[stream],
                              dynamic=True)
     self.assertEqual(stream.bin_range, (0, 1))
Ejemplo n.º 10
0
 def test_histogram_datetime64_plot(self):
     dates = np.array([dt.datetime(2017, 1, i) for i in range(1, 5)])
     hist = histogram(Dataset(dates, 'Date'), num_bins=4)
     plot = mpl_renderer.get_plot(hist)
     artist = plot.handles['artist']
     ax = plot.handles['axis']
     self.assertEqual(ax.get_xlim(), (736330.0, 736333.0))
     bounds = [736330.0, 736330.75, 736331.5, 736332.25]
     self.assertEqual([p.get_x() for p in artist.patches], bounds)
def modify_doc(doc):
    points = hv.Points(np.random.randn(10000, 2))
    points2 = hv.Points(np.random.randn(100, 2) * 2 + 1)
    xhist, yhist = (histogram(points2, bin_range=(-5, 5), dimension=dim) *
                    histogram(points, bin_range=(-5, 5), dimension=dim)
                    for dim in 'xy')

    composition = (points2 *
                   points) << yhist.opts(width=125) << xhist.opts(height=125)
    composition.opts(opts.Histogram(alpha=0.3))

    final = composition

    plot = renderer.get_plot(final)
    layout = row(plot.state)
    # renderer.server_doc(layout)

    doc.add_root(layout)
Ejemplo n.º 12
0
 def test_histogram_datetime64_plot(self):
     dates = np.array([dt.datetime(2017, 1, i) for i in range(1, 5)])
     hist = histogram(Dataset(dates, 'Date'), num_bins=4)
     plot = mpl_renderer.get_plot(hist)
     artist = plot.handles['artist']
     ax = plot.handles['axis']
     self.assertEqual(ax.get_xlim(), (736330.0, 736333.0))
     self.assertEqual([p.get_x() for p in artist.patches],
                      [736330.0, 736330.75, 736331.5, 736332.25])
Ejemplo n.º 13
0
 def test_histogram_datetime64_plot(self):
     dates = np.array([dt.datetime(2017, 1, i) for i in range(1, 5)])
     hist = histogram(Dataset(dates, 'Date'), num_bins=4)
     plot = mpl_renderer.get_plot(hist)
     artist = plot.handles['artist']
     ax = plot.handles['axis']
     self.assertEqual(ax.get_xlim(), (17167.0, 17170.0))
     bounds = [17167.0, 17167.75, 17168.5, 17169.25]
     self.assertEqual([p.get_x() for p in artist.patches], bounds)
Ejemplo n.º 14
0

def filter_count(agg, min_count, **kwargs):
    if min_count:
        agg = deepcopy(agg)
        agg.data.Count.data[agg.data.Count.data < min_count] = 0
    return agg


def hline_fn(min_count, **kwargs):
    return hv.VLine(min_count)


def tiles_fn(alpha, **kwargs):
    return tiles.opts(style=dict(alpha=alpha))


explorer = OSMExplorer(name="OpenStreetMap GPS Explorer")

tile = hv.DynamicMap(tiles_fn, streams=[explorer])
agg = aggregate(hv.Points(df))
filtered = hv.util.Dynamic(agg, operation=filter_count, streams=[explorer])
shaded = shade(filtered, streams=[explorer])
hline = hv.DynamicMap(hline_fn, streams=[explorer])
explorer.output = (tile * shaded) << histogram(agg, log=True) * hline

doc = parambokeh.Widgets(explorer,
                         view_position='right',
                         callback=explorer.event,
                         mode='server')
Ejemplo n.º 15
0
shaded = datashade(points, cmap=colors.sequential.Plasma)

# Create Tiles Element dispaying a mapbox light theme map
tiles = hv.Tiles().opts(mapboxstyle="light",
                        accesstoken=get_mapbox_token(),
                        height=500,
                        width=500,
                        padding=0)

# Create overlay of datashaded Scatter element on top of map
map_overlay = tiles * shaded

# Create Histogram Element
hist = histogram(ds,
                 dimension="fare_amount",
                 normed=False,
                 num_bins=20,
                 bin_range=(0, 30.0)).opts(color=colors.qualitative.Plotly[0],
                                           height=500)

# Build selection linking object that can be reused to link across plots
lnk_sel = link_selections.instance()

# Link selections across map overlay and histogram
linked_map_overlay = lnk_sel(map_overlay)
linked_hist = lnk_sel(hist)


# Use plot hook to set the default histogram drag mode to box selection
def set_dragmode(plot, element):
    fig = plot.state
    fig["layout"]["dragmode"] = "select"
Ejemplo n.º 16
0
 def test_dynamic_operation_init_renamed_stream_params(self):
     img = Image(sine_array(0,5))
     stream = RangeX(rename={'x_range': 'bin_range'})
     histogram(img, bin_range=(0, 1), streams=[stream], dynamic=True)
     self.assertEqual(stream.x_range, (0, 1))
Ejemplo n.º 17
0
 def test_dynamic_operation_init_stream_params(self):
     img = Image(sine_array(0,5))
     stream = Stream.define('TestStream', bin_range=None)()
     histogram(img, bin_range=(0, 1), streams=[stream], dynamic=True)
     self.assertEqual(stream.bin_range, (0, 1))