Ejemplo n.º 1
0
    def components(self, start, window):
        component_data = self.transformer.fit_transform(
            self.data.iloc[start:(start + window), :].T)

        if self.labels:
            data_labels = reduce(
                mul,
                pd.DataFrame(
                    component_data,
                    index=self.data.columns.tolist(),
                    columns=["Component_1", "Component_2"],
                ).reset_index().apply(
                    lambda x: hv.Text(
                        x[1], x[2], " ".join(x[0].split()[:-1]), fontsize=8),
                    axis=1,
                ).tolist(),
            )
        else:
            data_labels = hv.Text(0, 0, "")

        return (pd.DataFrame(
            component_data, columns=["Component_1", "Component_2"]
        ).hvplot.scatter(x="Component_1", y="Component_2").redim(
            Component_2={
                "range": (-0.1, 0.3)
            },
            Component_1={
                "range": (-0.03, 0.05)
            }).redim.label(
                Component_1=
                f"Component 1 {self.transformer.explained_variance_ratio_[0].round(4)}%",
                Component_2=
                f"Component 2 {self.transformer.explained_variance_ratio_[1].round(4)}%",
            ).options(alpha=1) * data_labels)
Ejemplo n.º 2
0
 def scalebar_cropped(self, x_range, y_range):
     if x_range and y_range:
         x0, x1 = x_range
         y0, y1 = y_range
         x_span = x1 - x0
         y_span = y1 - y0
         y0 = y0 + int(y_span / 20)
         y1 = y0 + int(y_span / 50)
         ytext = y1 + int(y_span / 30)
         x0 = x1 - self.scalebar_size_cropped - int(x_span / 30)
         x1 = x1 - int(x_span / 30)
         rect = hv.Rectangles((x0, y0, x1, y1)).opts(color="w")
         text = hv.Text(x0, ytext, str(self.scalebar_size_cropped) + " um").opts(
             text_color="w", text_align="left", text_font="Helvetica"
         )
         scalebar = rect * text
         return scalebar
     else:
         x0 = self.x_range[0]
         y0 = self.y_range[0]
         x1 = self.x_range[1]
         y1 = self.y_range[1]
         x_span = x1 - x0
         y_span = y1 - y0
         y0 = y0 + int(y_span / 20)
         y1 = y0 + int(y_span / 50)
         x0 = x1 - self.scalebar_size_cropped - int(x_span / 40)
         x1 = x1 - int(x_span / 30)
         ytext = y1 + int(y_span / 30)
         rect = hv.Rectangles((x0, y0, x1, y1)).opts(color="w")
         text = hv.Text(x0, ytext, str(self.scalebar_size_cropped) + " um").opts(
             text_color="w", text_align="left", text_font="Helvetica"
         )
         scalebar = rect * text
         return scalebar
Ejemplo n.º 3
0
 def scalebar(self, x_range, y_range):
     if x_range and y_range:
         x0, x1 = x_range
         y0, y1 = y_range
         x_span = x1 - x0
         y_span = y1 - y0
         y0 = y0 + int(y_span / 20)
         y1 = y0 + int(y_span / 50)
         ytext = y1 + int(y_span / 30)
         x0 = x1 - self.scalebar_size - int(x_span / 30)
         x1 = x1 - int(x_span / 30)
         rect = hv.Rectangles((x0, y0, x1, y1)).opts(color="w")
         text = hv.Text(x0, ytext, str(self.scalebar_size) + " um").opts(
             text_color="w", text_align="left", text_font="Helvetica"
         )
         scalebar = rect * text
         return scalebar
     else:
         x0 = 0
         y0 = 0
         x1 = self.rendered_image.data["x"].size
         y1 = self.rendered_image.data["y"].size
         x_span = x1 - x0
         y_span = y1 - y0
         y0 = y0 + int(y_span / 20)
         y1 = y0 + int(y_span / 50)
         x0 = x1 - self.scalebar_size - int(x_span / 40)
         x1 = x1 - int(x_span / 30)
         ytext = y1 + int(y_span / 30)
         rect = hv.Rectangles((x0, y0, x1, y1)).opts(color="w")
         text = hv.Text(x0, ytext, str(self.scalebar_size) + " um").opts(
             text_color="w", text_align="left", text_font="Helvetica"
         )
         scalebar = rect * text
         return scalebar
 def h_text(data): #function to write ycrop value
     center=frame.shape[1]//2 
     try:
         y=int(np.around(data['y'][0]))
         htext=hv.Text(center,y+10,'ycrop: {x}'.format(x=y))
         return htext
     except:
         htext=hv.Text(center,10, 'ycrop: 0')
         return htext
Ejemplo n.º 5
0
 def cross_hair_info(x, y):
     text = hv.Text(x + 0.05,
                    y,
                    "%.3f %.3f %.3f" % (x, y, img[x, y]),
                    halign="left",
                    valign="bottom")
     return hv.HLine(y) * hv.VLine(x) * text
Ejemplo n.º 6
0
    def __init__(self, data, configs):
        '''removes wrong data'''
        for file in list(data.keys()):
            if "contact chain" not in data[file]["header"][3].lower():
                data.pop(file)

        self.log = logging.getLogger(__name__)
        self.data = convert_to_df(data, abs=False)
        self.config = configs
        self.df = []
        self.basePlots = None
        self.analysisname = "Contact_Chain"
        self.PlotDict = {"Name": self.analysisname}
        self.measurements = self.data["columns"]

        self.sort_parameter = self.config["Contact_Chain"]["Bar_chart"][
            "CreateBarChart"]
        self.Substrate_Type = ["Polysilicon", "N+", "P+"]
        self.filename_df = pd.DataFrame(columns=[
            "Filename", "Substrate Type", "_", "Batch", "Wafer No.", "_",
            "HM location", "Test structure", "Resistance", "Standard deviation"
        ])
        self.PlotDict["All"] = None
        self.limits = {"Polysilicon": 4 * 10**7, "N+": 10**5, "P+": 8 * 10**4}
        self.files_to_fit = self.config["files_to_fit"]

        hvtext = hv.Text(0, 0, self.analysisname,
                         fontsize=20).opts(color="black", xlabel='', ylabel='')
        box = hv.Polygons(hv.Box(0, 0,
                                 1).opts(color="black")).opts(color="white")
        self.PlotDict["All"] = box * hvtext
Ejemplo n.º 7
0
def integrated_charge(limit_a, limit_b, y, iteration):
    # compute 1D histogram
    energy_hist, bin_edges, nbins = particle_energy_histogram(
        tseries=time_series,
        it=iteration,
        cutoff=np.inf,  # no cutoff
        energy_max=e_max,
    )

    histogram = hv.Histogram((bin_edges, energy_hist),
                             kdims=energy,
                             vdims=count)
    curve = hv.Curve(histogram)

    e_min = histogram.edges[0]

    limit_a = e_min if limit_a is None else np.clip(limit_a, e_min, e_max)
    limit_b = e_max if limit_b is None else np.clip(limit_b, e_min, e_max)

    area = hv.Area((curve.dimension_values('energy'),
                    curve.dimension_values('frequency')))[limit_a:limit_b]
    charge = np.sum(
        np.diff(histogram[limit_a:limit_b].edges) *
        histogram[limit_a:limit_b].values)

    return curve * area * hv.VLine(limit_a) * hv.VLine(limit_b) * hv.Text(
        limit_b - 2., 5, 'Q = %.0f pC' % charge)
Ejemplo n.º 8
0
    def plot_ana(self, x, y, dy, file, ana_type):
        curve = hv.Curve(zip(x, y), kdims=self.measurements[1], vdims=self.measurements[2])
        derivative = hv.Curve(zip(x, dy)).opts(color="gray")
        df = pd.DataFrame({"x": x, "y": y, "dy": dy})

        '''returns voltage and: for Ana 1 fit line, for Ana 2/3 line to show where the voltage is'''
        voltage, line = self.find_voltage(df, x, ana_type)
        voltage = round(voltage, 4)

        text_str = "voltage: " + str(voltage)
        if ana_type == "Ana 3":
            text_str += "\nDerivative scaled down by: \n/ (2 * 10^6)"
        text = hv.Text(min(dy) * (6 / 4), max(dy) * (7 / 8), text_str, fontsize=20)

        curve = curve * derivative * line * text
        if ana_type == "Ana 3":
            curve.opts(**self.config["FET"].get("General", {}), ylim=(min(dy) - 3 * min(y) / 20, max(dy) + max(dy) / 10))
        else:
            curve.opts(**self.config["FET"].get("General", {}), ylim=(min(y) - 3 * min(y) / 20, max(y) + max(y) / 10))

        self.data[file][ana_type] = voltage
        if self.PlotDict["All"] is None:
            self.PlotDict["All"] = curve
        else:
            self.PlotDict["All"] = self.PlotDict["All"] + curve
Ejemplo n.º 9
0
def plot_flatband_v(x, y, ana_type, **kwargs):
    '''
    **kwargs for customizing the plot, ana_type must ether be "fit" or "derivative"
    '''
    x, y = list(x), list(y)
    if ana_type == "fit":
        voltage, middle_line, right_line = fit_analysis(x, y)
    elif ana_type == "derivative":
        voltage = derivative_analysis(x, y)
    else:
        log.error("ana_type must either be 'derivative' or 'fit'")
        exit(1)
    curve = hv.Curve(zip(x, y), kdims="voltage_hvsrc", vdims="capactiance")

    text_str = "Flatband Voltage: " + str(voltage) + "\nAnalysis Type: " + ana_type
    text = hv.Text(max(x) * (3 / 4), max(y) * (3 / 4), text_str, fontsize=20)
    line = hv.VLine(voltage).opts(color="black", line_width=1.0)

    curve = curve * text * line
    if ana_type == "fit":
        mid = hv.Curve([*middle_line]).opts(color="red", line_width=1.5)
        right = hv.Curve([*right_line]).opts(color="blue", line_width=1.0)
        curve = curve * text * line * mid * right
    curve.opts(ylim=(min(y) - 3 * min(y) / 20, max(y) + max(y) / 10), **kwargs)
    return curve
Ejemplo n.º 10
0
    def fetch_mpl_obj(self):
        group = "Gas Concentration vs Time"
        plot = dict(aspect=2)
        legend = dict(legend_position='best', aspect=2)
        graph = None

        options = hv.Store.options(backend='matplotlib')
        options.Curve = hv.Options('style',
                                   color=hv.Cycle(values=self.gases.values()),
                                   linewidth=2)

        for data in self.graph_data:
            graph_inter = hv.Curve(data['data'],
                                   vdims=['Gas Concentration'],
                                   kdims=['Time'],
                                   label=data['label'],
                                   group=group)
            if graph:
                graph *= graph_inter
            else:
                graph = graph_inter
        for data in self.text_labels:
            graph *= hv.Text(data['key'],
                             data['value'],
                             data['date'],
                             fontsize=10)

        opts = {'Curve': {'plot': plot}, 'Overlay': {'plot': legend}}
        self.mpl_obj = graph(opts) if graph else None
Ejemplo n.º 11
0
    def plot_flatband(self, file, ana_type, interpol):
        '''plot function for both "derivative" and "fit" analysis'''
        x, y = self.data[file][ana_type]["dataframe"]['x'], self.data[file][
            ana_type]["dataframe"]['y']
        curve = hv.Curve(zip(x, y),
                         kdims=self.measurements[1],
                         vdims=self.measurements[3])

        text_str = "Flatband Voltage: " + str(
            self.data[file][ana_type]["flatband"]
        ) + "\nAnalysis Type: " + ana_type + "\nInterpolated: " + str(interpol)
        text = hv.Text(x.max() * (3 / 4),
                       y.max() * (3 / 4),
                       text_str,
                       fontsize=20)
        line = hv.VLine(self.data[file][ana_type]["flatband"]).opts(
            color="black", line_width=1.0)

        curve = curve * text * line
        if ana_type == "fit":
            curve = curve * text * line * self.data[file]["fit"]["lines"][
                0] * self.data[file]["fit"]["lines"][1]
        curve.opts(**self.config["MOS_CV"].get("General", {}),
                   ylim=(y.min() - 3 * y.min() / 20, y.max() + y.max() / 10))

        if self.PlotDict["All"] is None:
            self.PlotDict["All"] = curve
        else:
            self.PlotDict["All"] = self.PlotDict["All"] + curve
Ejemplo n.º 12
0
def _legend_texts(df):
    width = _max_width(df)
    text_opts = LEGEND_TEXT_OPTS.copy()
    text_opts.update({"xlim": (-1, width)})
    texts = []
    for _, r in df.iterrows():
        texts.append(hv.Text(r["x"] + 1, r["y"], r["name"]).opts(**text_opts))
    return texts
def integral(limit_a, limit_b, y, time):
    limit_a = -3 if limit_a is None else np.clip(limit_a, -3, 3)
    limit_b = 3 if limit_b is None else np.clip(limit_b, -3, 3)
    curve = hv.Curve((xs, function(xs, time)))
    area = hv.Area((xs, function(xs, time)))[limit_a:limit_b]
    summed = area.dimension_values('y').sum() * 0.015  # Numeric approximation
    return (area * curve * hv.VLine(limit_a) * hv.VLine(limit_b) *
            hv.Text(limit_b - 0.8, 2.0, '%.2f' % summed))
Ejemplo n.º 14
0
def make_text(content):
    return hv.Text(0, 0, content).opts(img_opts).opts(toolbar=None,
                                                      height=100,
                                                      width=150,
                                                      xaxis=None,
                                                      yaxis=None,
                                                      text_alpha=1.0,
                                                      bgcolor='lightgrey')
Ejemplo n.º 15
0
def plot_surface(obj, **args):
    region = args.get('region', None)
    idx = obj.tag2idx(region)
    tags = args.get('tags', False)
    coord = args.get('coord', None)
    locator = args.get('locator', False)
    fill = args.get('fill', None)

    amin = np.min(obj.bbox_min[idx], axis=0)
    amax = np.max(obj.bbox_max[idx], axis=0)
    wh = amax - amin
    if np.min(wh) < 250:
        wh = wh / np.min(wh) * 250
    hvobj = hv.Path([obj.boundary[i]
                     for i in idx]).opts(style=dict(color='k'),
                                         plot=dict(yaxis=None,
                                                   xaxis=None,
                                                   aspect='equal',
                                                   width=int(ceil(wh[0])),
                                                   height=int(ceil(wh[1]))))

    if fill is not None:
        vals = np.nan * np.zeros((obj.num, ))
        for k in fill.keys():
            _idx = obj.tag2idx(k)
            for i in _idx:
                vals[i] = fill[k]

        imin = np.min(obj.bbox_min[idx], axis=0).astype(int)
        imax = np.max(obj.bbox_max[idx], axis=0).astype(int)
        im = np.nan * np.zeros(tuple((imax - imin + 1)[::-1].tolist()))
        for i in idx:
            im[obj._coords[i][:, 1] - imin[1],
               obj._coords[i][:, 0] - imin[0]] = vals[i]
        hvobj = hv.Image(np.flipud(im),
                         bounds=(imin[0], imin[1], imax[0], imax[1])).opts(
                             plot=dict(yaxis=None, xaxis=None))

    if coord is not None:
        hvobj *= hv.Curve([obj.hand2pixel((0,0)),obj.hand2pixel((coord,0))]) *\
            hv.Curve([obj.hand2pixel((0,0)),obj.hand2pixel((0,coord))])
    if tags:
        hvobj *= hv.Labels({
            'x': [obj._centers[i][0] for i in idx],
            'y': [obj._centers[i][1] for i in idx],
            'Label': [str(i) + ' ' + ''.join(obj.tags[i]) for i in idx]
        })

    # show cursor position in hand coordinates (works only in bokeh)
    if locator:
        pointer = hv.streams.PointerXY(x=0, y=0)
        dm = hv.DynamicMap(lambda x, y: hvobj * hv.Text(
            x, y + 5, '(%d,%d)' % tuple(obj.pixel2hand(np.array([x, y])))),
                           streams=[pointer])
        return dm

    return hvobj
Ejemplo n.º 16
0
def _show_sunset_hour(df, geoloc):
    hover = HoverTool(tooltips=[
        ('Date', '@datetime{%m/%d}'),
        ('Hour of Sunset', '@hour{0.1f}'),
        ('Length of Day', '@daylight{0.1f}'),
    ],
                      formatters={
                          'datetime': 'datetime',
                      },
                      mode='vline')

    sunset_df = df.copy()
    sunset_df = df.loc[df['sun_down'] == False, :]
    sunset_df = sunset_df.assign(**{
        'hour': sunset_df['hour'] - 12,
        'hour_24': sunset_df['hour_24'] - 12
    })

    lat, lon = geoloc.latitude, geoloc.longitude
    address = geoloc.address
    sunset_curve = sunset_df.hvplot('datetime',
                                    'hour',
                                    hover_cols=['daylight'],
                                    responsive=True)
    sunset_curve = sunset_curve.opts(
        invert_yaxis=True,
        color='darkblue',
        xlabel='Date',
        ylabel='PM Hour of Sunset [Local Time]',
        title=f'Yearly Sunset Hour at {address} ({lat:.1f} N, {lon:.1f} E)',
        hooks=[_format_datetime_axis],
        show_grid=True,
        gridstyle={'ygrid_line_alpha': 0},
        tools=[hover],
        ylim=(4, 9))

    sun_up = hv.Area(df.loc[df['sun_down'] == False], 'datetime', 'hour')
    sun_up = sun_up.opts(color='tan', alpha=0.15, responsive=True)

    sun_down = hv.Area(sunset_df, 'datetime', ['hour', 'hour_24'])
    sun_down = sun_down.opts(color='darkblue', alpha=0.15, responsive=True)

    five_pm_line = hv.HLine(5).opts(color='black',
                                    alpha=0.1,
                                    line_dash='dotted',
                                    responsive=True)

    five_pm_txt = hv.Text(pd.datetime(2020, 7, 4), 5, '5 PM')
    five_pm_txt = five_pm_txt.opts(text_font_size='1.5em',
                                   text_alpha=0.2,
                                   text_baseline='bottom',
                                   text_align='left',
                                   responsive=True)

    overlay = (sunset_curve * sun_up * sun_down * five_pm_line * five_pm_txt)
    return overlay
Ejemplo n.º 17
0
 def _timetable(self, x, y):
     if self.solutions.empty:
         return (hv.Points((0, 0)).opts(alpha=0) * hv.Text(
             0, 0, 'No Journeys Found').opts(color='firebrick')).opts(
                 xlim=(-1, 1),
                 xaxis=None,
                 yaxis=None,
                 show_frame=False,
                 toolbar=None)
     stop_time = self.stop_time * 10**3
     time_delta = stop_time - self.solutions['start_time'].min()
     boxes_opts = {
         'color':
         'color',
         'line_width':
         0,
         'tools': [
             HoverTool(
                 tooltips=[('From',
                            '@station_name'), ('To', '@station_name_stop'),
                           ('Departure Time',
                            '@departure'), ('Arrival Time', '@arrival'),
                           ('Travel Type',
                            '@transport_type'), (
                                'Line', '@line_text'), ('Trip',
                                                        '@trip_id')])
         ],
     }
     opts = {
         'height':
         int(self.solutions['path'].max() + 3) * 50,
         'width':
         600,
         'ylim': (-1, self.solutions['path'].max() + 2),
         'xlim': (self.solutions['start_time'].min() - time_delta * 0.1,
                  stop_time + time_delta * 0.1),
         'hooks': [datetime_ticks],
         'yaxis':
         None,
         'show_frame':
         False,
         'xlabel':
         '',
         'toolbar':
         None,
         'active_tools': []
     }
     boxes = hv.Rectangles(
         self.line_aggregate, ['start_time', 'y_min', 'stop_time', 'y_max'],
         [
             'color', 'station_name', 'station_name_stop', 'departure',
             'arrival', 'transport_type', 'trip_id', 'line_text'
         ]).opts(**boxes_opts)
     text = self._timetable_text()
     stop_line = hv.VLine(stop_time).opts(line_width=1, line_color='red')
     return (boxes * text * stop_line).opts(**opts)
Ejemplo n.º 18
0
    def _timetable_text(self):
        fontsize = 8
        texts = []
        for _, connection in self.line_aggregate.iterrows():
            start_time = connection['start_time']
            y = connection['y_min']
            icon = transport_icons[connection['transport_type']]
            short_line = connection['line_text']
            texts.append(
                hv.Text(x=start_time,
                        y=y - 0.15,
                        text=f'{icon}{short_line}',
                        halign='left',
                        valign='top',
                        fontsize=fontsize))

        for _, journey in self.journey_aggregate.iterrows():
            arrival_text = journey['travel_time_str'] + ' - ' + journey[
                'arrival']
            probability_text = f" {journey['probability']:6.3%}"
            texts.extend([
                hv.Text(x=journey['start_time'],
                        y=journey['y_max'],
                        text=journey['departure'],
                        halign='left',
                        valign='bottom',
                        fontsize=fontsize),
                hv.Text(x=journey['stop_time'],
                        y=journey['y_max'],
                        text=arrival_text,
                        halign='right',
                        valign='bottom',
                        fontsize=fontsize),
                hv.Text(x=self.stop_time * 10**3,
                        y=journey['path'],
                        text=probability_text,
                        halign='left',
                        valign='bottom',
                        fontsize=fontsize)
            ])
        return hv.Overlay(texts)
Ejemplo n.º 19
0
def text_box(text,
             xpos,
             ypos,
             boxsize,
             fontsize=30,
             fontcolor="black",
             bgcolor="white"):
    """Generates a box with text in it"""
    hvtext = hv.Text(xpos, ypos, text).opts(fontsize=fontsize, color=fontcolor)
    box = hv.Polygons(hv.Box(xpos, ypos,
                             boxsize).opts(color="black")).opts(color=bgcolor)
    return box * hvtext
Ejemplo n.º 20
0
    def map_indicators(self):
        self.indicateur_dpt_plot()

        for idx in self.df_indic_dpt.index:
            an_indic = self.df_indic_dpt.loc[idx, 'Parametre']
            color = self.determine_color(an_indic,
                                         self.df_indic_dpt.loc[idx,
                                                               'value'], 20)
            self.df_indic_dpt.at[idx, 'color'] = color

        dates_to_print = [
            date.strftime(format='%d-%m-%Y')
            for date in [self.date_ini, self.date_final]
        ]
        tooltips = [
            ("Taux d'incidence", '@tx_incid_2'),
            ('Facteur de reproduction', '@R_2'),
            ("Taux d'occupation des lits en réa", '@taux_occupation_sae_2'),
            ('Taux de positivité', '@tx_pos_2'), ('Région', '@libelle_reg'),
            ('Département', '@libelle_dep')
        ]
        hover = HoverTool(tooltips=tooltips)

        key_dimensions = ['Longitude', 'Latitude', 'Date', 'Parametre']
        MapDataSet = hv.Dataset(self.df_indic_dpt,
                                vdims=[
                                    'value', 'color', 'libelle_reg',
                                    'libelle_dep', 'tx_incid_2', 'R_2',
                                    'taux_occupation_sae_2', 'tx_pos_2'
                                ],
                                kdims=key_dimensions)
        MapDataSet = MapDataSet.to(geoviews.Polygons)
        MapRel = MapDataSet.opts(
            width=1000,
            height=560,
            tools=[hover],
            color='color',
            xaxis=None,
            yaxis=None,
            title=
            f"Cartes des indicateurs du {dates_to_print[0]} au {dates_to_print[1]}"
        )
        MapRel_tot = MapRel * gvts.CartoLight
        sum_map = MapRel_tot

        text = hv.Curve((0, 0)).opts(xaxis=None, yaxis=None) * hv.Text(
            0, 0, 'Source: Santé Publique France\nGraph: C.Houzard')
        MapOutput = (geoviews.Layout(sum_map + text)).cols(1)
        renderer = hv.renderer('bokeh')
        #renderer.save(MapOutput, os.path.normcase(f'map'))
        file_fct.save_fig(MapOutput, 'Map_France_Indic', self.date_final)
Ejemplo n.º 21
0
def plot_pct_of_newborns(name, years):
    name_tot = _query_name(name, years)
    name_tseries = _finalize_obj(name_tot.hvplot(
        YEAR,
        PCT_NB,
        hover=False,
        groupby=[NAME],
        color=DEFAULT_COLORS,
        hover_cols=[COUNT, PCT_FM],
    ).overlay(NAME),
                                 years,
                                 hover=False)

    name_points = _finalize_obj(
        name_tot.hvplot.points(
            YEAR,
            PCT_NB,
            hover=False,
            hover_cols=[NAME, COUNT, PCT_FM],
            cmap='RdYlBu_r').options(
                color_index=PCT_FM,
                colorbar=True,
                marker='o',
                colorbar_opts={
                    'title': '%F'
                },
                size=15,
                alpha=0.15,
                line_color='lightgray',
                line_alpha=0.35).redim.range(pct_female=(0, 100)), years)

    top_year, top_name, top_count, top_pct_female, top_pct_newborns = (
        name_tot.loc[name_tot[COUNT] == name_tot[COUNT].max()].values[0])
    min_year = _decide_year(top_name, name_tot)
    text_align, text_offset = _smart_align(min_year)
    summary_kwds = [
        top_year, top_count, top_name, newborns.loc[top_year][0],
        top_pct_newborns
    ]

    name_summary = (hv.Text(
        min_year + text_offset, name_tot[PCT_NB].quantile(0.985),
        SUMMARY_FMT.format(*summary_kwds)).options(color='#5B5B5B',
                                                   text_align=text_align,
                                                   text_baseline='top',
                                                   text_font_size='1.05em',
                                                   text_font='Helvetica',
                                                   text_alpha=0.65))

    return (name_tseries * name_points * name_summary)
Ejemplo n.º 22
0
    def __init__(self, data, configs):
        '''removes wrong data'''
        for file in list(data.keys()):
            if "Linewidth".lower() not in data[file]["header"][3].lower():
                data.pop(file)

        self.log = logging.getLogger(__name__)
        self.data = convert_to_df(data, abs=False)
        self.config = configs
        self.df = []
        self.basePlots = None
        self.analysisname = "Linewidth"
        self.PlotDict = {"Name": self.analysisname}
        self.measurements = self.data["columns"]

        self.PlotDict["All"] = None
        self.sort_parameter = self.config["Linewidth"]["Bar_chart"][
            "CreateBarChart"]
        self.Substrate_Type = ["P+", "N+", "P-stop"]
        self.filename_df = pd.DataFrame(columns=[
            "Filename", "Substrate Type", "_", "Batch", "Wafer No.", "_",
            "HM location", "Test structure", "Linewidth [um]",
            "Standard deviation"
        ])

        self.limits = {"P+": 0.05, "N+": 0.00001, "P-stop": 0.0005}
        self.files_to_fit = self.config["files_to_fit"]

        self.sheet_dic = {
            "P+": self.config["Linewidth"]["parameter"]["sheet_r_p+"],
            "N+": self.config["Linewidth"]["parameter"]["sheet_r_N+"],
            "P-stop": self.config["Linewidth"]["parameter"]["sheet_r_ps"]
        }
        self.std_dic = {
            "P+": self.config["Linewidth"]["parameter"]["std_p+"],
            "N+": self.config["Linewidth"]["parameter"]["std_N+"],
            "P-stop": self.config["Linewidth"]["parameter"]["std_ps"]
        }

        hvtext = hv.Text(0, 0, self.analysisname,
                         fontsize=25).opts(color="black", xlabel='', ylabel='')
        box = hv.Polygons(hv.Box(0, 0,
                                 300).opts(color="black")).opts(color="white")
        self.PlotDict["All"] = box * hvtext
Ejemplo n.º 23
0
    def __init__(self, data, configs):
        '''removes wrong data'''
        for file in list(data.keys()):
            if "van-der-pauw" not in data[file]["header"][3].lower(
            ) and "bulk cross" not in data[file]["header"][3].lower():
                data.pop(file)

        self.log = logging.getLogger(__name__)
        self.data = convert_to_df(data, abs=False)
        self.config = configs
        self.df = []
        self.basePlots = None
        self.analysisname = "Van_der_Pauw"
        self.PlotDict = {"Name": self.analysisname}
        self.measurements = self.data["columns"]

        self.PlotDict["All"] = None
        self.sort_parameter = self.config["Van_der_Pauw"]["Bar_chart"][
            "CreateBarChart"]
        self.Substrate_Type = [
            "P-stop", "Polysilicon", "N+", "P+", "Metal", "bulk"
        ]
        '''columns have to be fitted according to sample_name + sample_type layout'''
        self.filename_df = pd.DataFrame(columns=[
            "Filename", "Substrate Type", "_", "Batch", "Wafer No.", "_",
            "HM location", "Test structure", "_", "Sheet Resistance [Ohm/sq]",
            "Standard deviation"
        ])

        self.limits = {
            "P-stop": 25000,
            "Polysilicon": 3000,
            "N+": 50,
            "P+": 1300,
            "Metal": 0.03,
            "bulk": 70000
        }
        self.files_to_fit = self.config["files_to_fit"]

        hvtext = hv.Text(0, 0, self.analysisname,
                         fontsize=13).opts(color="black", xlabel='', ylabel='')
        box = hv.Polygons(hv.Box(0, 0,
                                 2).opts(color="black")).opts(color="white")
        self.PlotDict["All"] = box * hvtext
Ejemplo n.º 24
0
    def value_plot(
            value,
            unit='°C',
            palette=palettes.Plasma5,
            ylim=(-20, 40),
            low=0,
            high=40,
    ):
        """
        On représente les mesures environnementales (température, humidité, pression) avec un
        baton et un rond dans lequel sera inscrit la valeur numérique.
        """

        scat = hv.Scatter({0: value})  #le rond en position 0
        spik = hv.Spikes(scat)  #le baton au même endroit
        lab = hv.Text(x=0, y=value,
                      text=f"{value}{unit}")  #la valeur numérique et l'unité

        mapper = linear_cmap(
            field_name='y', palette=palette, low=low,
            high=high)  #la couleur du rond dépend de la valeur

        opts = dict(
            ylim=ylim,  #on donne la même limite à tous
            color=mapper,
            responsive=True,  #la dimension sera dynamique ou "responsive"
            xaxis=None,
            yaxis=None,  #pas d'axe pour aléger
            toolbar='disable',  #pas besoin de zoomer ou autre...
            min_width=80,
            height=150,
            border=0)
        layout = (
            spik * scat * lab
        ).opts(  #on met le label tout au dessus, puis le rond, puis le baton caché derrière
            hv.opts.Scatter(size=80, **opts),
            hv.opts.Spikes(line_width=3, **opts),
            hv.opts.Text(color='black'),
        )

        return layout.opts(shared_axes=False)
Ejemplo n.º 25
0
def plot_ana(x, y, dy, ana_type, **kwargs):
    curve = hv.Curve(zip(x, y))
    derivative = hv.Curve(zip(x, dy)).opts(color="gray")
    df = pd.DataFrame({"x": x, "y": y, "dy": dy})

    '''returns voltage and: for Ana 1 fit line, for Ana 2/3 line to show where the voltage is'''
    voltage, line = find_voltage(df, x, ana_type)
    voltage = round(voltage, 4)

    text_str = "voltage: " + str(voltage)
    if ana_type == "Ana 3":
        text_str += "\nDerivative scaled down by: \n/ (2 * 10^6)"
    text = hv.Text(min(dy) * (6 / 4), max(dy) * (7 / 8), text_str, fontsize=20)

    curve = curve * derivative * line * text
    if ana_type == "Ana 3":
        curve.opts(ylim=(min(dy) - 3 * min(y) / 20, max(dy) + max(dy) / 10), **kwargs)
    else:
        curve.opts(ylim=(min(y) - 3 * min(y) / 20, max(y) + max(y) / 10), **kwargs)

    return curve
Ejemplo n.º 26
0
    def __init__(self, data, configs):
        '''removes wrong data'''
        for file in list(data.keys()):
            if "meander" not in data[file]["header"][3]:
                data.pop(file)

        self.log = logging.getLogger(__name__)

        self.data = convert_to_df(
            data, abs=False
        )  ## funktioniert nicht komplet da metal und poly andere messungen haben
        self.complete_df(data)

        self.config = configs
        self.df = []
        self.basePlots = None
        self.analysisname = "Meander"
        self.PlotDict = {"Name": self.analysisname}
        self.measurements = self.data["columns"]
        self.sort_parameter = self.config["Meander"]["Bar_chart"][
            "CreateBarChart"]
        self.Substrate_Type = ["Polysilicon", "Metal"]
        self.filename_df = pd.DataFrame(columns=[
            "Filename", "Substrate Type", "_", "Batch", "Wafer No.", "_",
            "HM location", "Test structure", "_", "Resistivity",
            "Standard deviation", "specific Resistivity [Ohm/sq]"
        ])
        self.PlotDict["All"] = None
        self.limits = {"Polysilicon": 2 * 10**6, "Metal": 450}
        self.files_to_fit = self.config["files_to_fit"]
        self.squares = {
            "Polysilicon": self.config["Meander"]["parameter"]["squares_poly"],
            "Metal": self.config["Meander"]["parameter"]["squares_m"]
        }

        hvtext = hv.Text(0, 0, self.analysisname,
                         fontsize=13).opts(color="black", xlabel='', ylabel='')
        box = hv.Polygons(hv.Box(0, 0,
                                 2).opts(color="black")).opts(color="white")
        self.PlotDict["All"] = box * hvtext
    def value_plot(value,unit='°C',palette=palettes.Plasma5,ylim=(-20,40),low=0,high=40,):
    
        scat = hv.Scatter({0:value},kdims='x',vdims='y')
        spik = hv.Spikes(scat,kdims='x',vdims='y')
        lab = hv.Text(x=0,y=value,text=f"{value}{unit}")

        mapper = linear_cmap(field_name='y',palette=palette,low=low,high=high)

        opts=dict(ylim=ylim,
                  responsive=True,
                  xaxis=None,yaxis=None,
                  toolbar='disable',
                  min_width=80,
                  height=150,
                  border=0)
        layout = (spik*scat*lab).opts(
                                        hv.opts.Scatter(size=80,color=mapper,**opts),
                                        hv.opts.Spikes(line_width=3,**opts),
                                        hv.opts.Text(color='black'),

        )
        
        return layout.opts(shared_axes=False)
Ejemplo n.º 28
0
def Histogram(dfs,
              measurement,
              configs,
              analysisType,
              bins=50,
              iqr=None,
              **addConfigs):
    """Generates a Points Plot with a corresponding Histogram"""
    newConfigs = addConfigs
    log.info("Generating histograms for measurement {}...".format(measurement))
    finalplots = None
    try:
        for key in dfs["keys"]:
            log.info("Generating histograms for measurement {} for file {}...".
                     format(measurement, key))
            # Sanatize data
            data = dfs[key]["data"][measurement].dropna()  # Drop all nan
            if iqr:
                log.info("Outliers correction with iqr: {}".format(iqr))
                data = reject_outliers(data, iqr)
            mean = np.round(np.mean(data), 2)
            rms = np.round(np.sqrt(np.mean(data**2)), 2)
            std = np.round(np.std(data), 2)
            median = np.round(np.median(data), 2)
            data = np.histogram(data, bins=bins)
            plt = hv.Histogram(data,
                               label="Histogram: {}".format(measurement),
                               group="Histogram: {}: {}".format(
                                   measurement, key))

            try:
                xlabel = "{} [{}]".format(
                    measurement, dfs[dfs["keys"][0]]["units"][dfs[
                        dfs["keys"][0]]["measurements"].index(measurement)])
            except Exception as err:
                log.error(
                    "Label could not be generated for Histogram {}. Error: {}".
                    format(measurement, err))
                xlabel = "X-Axis"

            plt.opts(xlabel=xlabel)
            # Update the plot specific options if need be
            generalOptions = configs[analysisType].get("General", {})
            newConfigs.update(generalOptions.copy())
            data_options = configs[analysisType].get(measurement, {}).get(
                "Single Histogram", {}).get("PlotOptions", {})
            newConfigs.update(configs[analysisType].get(
                "{}Options".format("Histogram"), {}))
            newConfigs.update(data_options)
            plots = customize_plot(plt, "", configs[analysisType],
                                   **newConfigs)

            # Add text
            text = '\nMean: {mean} \n' \
                   'Median: {median} \n' \
                   'RMS: {rms}\n' \
                   'std: {std}'.format(mean=mean,
                                       median=median,
                                       rms=rms,
                                       std=std)
            log.info(text)
            y = data[0].max()
            x = data[1][int(len(data[1]) * 0.9)]
            text = hv.Text(x, y, text).opts(fontsize=30)
            #text = text_box(text, x, y, boxsize= (100, 150))
            plots = plots * text

            if finalplots:
                finalplots += plots
            else:
                finalplots = plots
    except Exception as err:
        log.error(
            "Unexpected error happened during Hist plot generation {}. Error: {}"
            .format(measurement, err))
        return None

    return finalplots
Ejemplo n.º 29
0
def concatHistogram(dfs,
                    measurement,
                    configs,
                    analysisType,
                    bins=50,
                    iqr=None,
                    **addConfigs):
    """Concatenates dataframes and generates a Histogram for all passed columns"""
    newConfigs = addConfigs
    log.info("Generating concat histograms for measurements {}...".format(
        measurement))
    try:
        df = dfs["All"]
        # Sanatize data
        data = df[measurement].dropna()  # Drop all nan
        if iqr:
            log.info("Outliers correction with iqr: {}".format(iqr))
            data = reject_outliers(data, iqr)
        mean = np.round(np.mean(data), 2)
        rms = np.round(np.sqrt(np.mean(data**2)), 2)
        std = np.round(np.std(data), 2)
        median = np.round(np.median(data), 2)
        data = np.histogram(data, bins=bins)

        plt = hv.Histogram(
            data,
            label="Concatenated Histogram: {}".format(measurement),
            group="Concatenated Histogram: {}".format(measurement))
        #plt = hv.Histogram(data, vdims=to_plot, group="Concatenated Histogram: {}".format(to_plot))

        try:
            xlabel = "{} [{}]".format(
                measurement, dfs[dfs["keys"][0]]["units"][dfs[
                    dfs["keys"][0]]["measurements"].index(measurement)])
        except Exception as err:
            log.error(
                "Label could not be genereated for concatonated Histogram {}. Error: {}"
                .format(measurement, err))
            xlabel = "X-Axis"

        plt.opts(xlabel=xlabel)
        # Update the plot specific options if need be
        generalOptions = configs[analysisType].get("General", {})
        newConfigs.update(generalOptions.copy())
        data_options = configs[analysisType].get(measurement, {}).get(
            "Concatenated Histogram", {}).get("PlotOptions", {})
        newConfigs.update(configs[analysisType].get(
            "{}Options".format("Histogram"), {}))
        newConfigs.update(data_options)
        #addConfigs.update({"xlabel": measurement})
        plots = customize_plot(plt, "", configs[analysisType], **newConfigs)

        # Add text
        text = '\nMean: {mean} \n' \
               'Median: {median} \n' \
               'RMS: {rms}\n' \
               'std: {std}'.format(mean=mean,
                                median=median,
                                rms=rms,
                                std=std)
        log.info(text)
        y = data[0].max()
        x = data[1][int(len(data[1]) * 0.9)]
        text = hv.Text(x, y, text).opts(fontsize=30)
        plots = plots * text

    except Exception as err:
        log.error(
            "Unexpected error happened during concatHist plot generation {}. Error: {}"
            .format(measurement, err))
        return None

    return plots
 def h_track(x, y): #function to track pointer
     y = int(np.around(y))
     text = hv.Text(x, y, str(y), halign='left', valign='bottom')
     return hv.HLine(y) * text