def __init__(self, lf, occ_model, projector): '''Localize canonical HF orbitals. **Arguments:** lf A LinalgFactory instance. occ_model Occupation model. Projector Projectors for atomic basis function. A list of TwoIndex instances. **Optional arguments:** ''' self._lf = lf self._proj = projector self._nocc = occ_model.noccs[0] self._nbasis = lf.default_nbasis self._nvirt = (lf.default_nbasis - occ_model.noccs[0]) self._cache = Cache() self._locblock = None self._popmatrix = None
def __init__(self, lf, nbasis, occ_model=None, norb=None): """ **Arguments:** lf A LinalgFactory instance. nbasis The number of basis functions. **Optional arguments:** occ_model A model to assign new occupation numbers when the orbitals are updated by a diagonalization of a Fock matrix. norb the number of orbitals (occupied + virtual). When not given, it is set to nbasis. """ self._lf = lf self._nbasis = nbasis self._occ_model = occ_model if norb is None: self._norb = nbasis else: self._norb = norb # The cache is used to store different representations of the # wavefunction, i.e. as expansion, as density matrix or both. self._cache = Cache() # Write some screen log self._log_init()
def __init__(self, system, grid, local, slow, lmax, moldens=None): ''' **Arguments:** system The system to be partitioned. grid The integration grid local Whether or not to use local (non-periodic) grids. slow When ``True``, also the AIM properties are computed that use the AIM overlap operators. lmax The maximum angular momentum in multipole expansions. **Optional arguments:** moldens The all-electron density grid data. ''' JustOnceClass.__init__(self) self._system = system self._grid = grid self._local = local self._slow = slow self._lmax = lmax # Caching stuff, to avoid recomputation of earlier results self._cache = Cache() # Caching of work arrays to avoid reallocation if moldens is not None: self._cache.dump('moldens', moldens) # Initialize the subgrids if local: self._init_subgrids() # Some screen logging self._init_log_base() self._init_log_scheme() self._init_log_memory() if log.do_medium: log.blank()
def __init__(self, terms, external=None): ''' **Arguments:** terms The terms in the Hamiltonian. **Optional arguments:** external A dictionary with external energy contributions that do not depend on the wavefunction, e.g. nuclear-nuclear interactions or QM/MM mechanical embedding terms. Use ``nn`` as key for the nuclear-nuclear term. ''' # check arguments: if len(terms) == 0: raise ValueError( 'At least one term must be present in the Hamiltonian.') # Assign attributes self.terms = list(terms) self.external = {} if external is None else external # Create a cache for shared intermediate results. This cache should only # be used for derived quantities that depend on the wavefunction and # need to be updated at each SCF cycle. self.cache = Cache()
def __init__(self, lf, occ_model, projector): '''Localize canonical HF orbitals. **Arguments:** lf A LinalgFactory instance. occ_model Occupation model. Projector Projectors for atomic basis function. A list of TwoIndex instances. **Optional arguments:** ''' self._lf = lf self._proj = projector self._nocc = occ_model.noccs[0] self._nbasis = lf.default_nbasis self._nvirt = (lf.default_nbasis-occ_model.noccs[0]) self._cache = Cache() self._locblock = None self._popmatrix = None
def __init__(self, system, terms, grid=None, idiot_proof=True): ''' **Arguments:** system The System object for which the energy must be computed. terms The terms in the Hamiltonian. **Optional arguments:** grid The integration grid, in case some terms need one. idiot_proof When set to False, the kinetic energy, external potential and Hartree terms are not added automatically and a error is raised when no exchange is present. ''' # check arguments: if len(terms) == 0: raise ValueError('At least one term must be present in the Hamiltonian.') for term in terms: if term.require_grid and grid is None: raise TypeError('The term %s requires a grid, but not grid is given.' % term) # Assign attributes self.system = system self.terms = list(terms) self.grid = grid if idiot_proof: # Check if an exchange term is present if not any(term.exchange for term in self.terms): raise ValueError('No exchange term is given and idiot_proof option is set to True.') # Add standard terms if missing # 1) Kinetic energy if sum(isinstance(term, KineticEnergy) for term in terms) == 0: self.terms.append(KineticEnergy()) # 2) Hartree (or HatreeFock, which is a subclass of Hartree) if sum(isinstance(term, Hartree) for term in terms) == 0: self.terms.append(Hartree()) # 3) External Potential if sum(isinstance(term, ExternalPotential) for term in terms) == 0: self.terms.append(ExternalPotential()) # Create a cache for shared intermediate results. This cache should only # be used for derived quantities that depend on the wavefunction and # need to be updated at each SCF cycle. self.cache = Cache() # bind the terms to this hamiltonian such that certain shared # intermediated results can be reused for the sake of efficiency. for term in self.terms: term.set_hamiltonian(self)
def __init__(self, lf, occ_model, npairs=None, nvirt=None): ''' **Arguments:** lf A LinalgFactory instance. occ_model Occupation model **Optional arguments:** npairs Number of electron pairs, if not specified, npairs = number of occupied orbitals nvirt Number of virtual orbitals, if not specified, nvirt = (nbasis-npairs) ''' check_type('pairs', npairs, int, type(None)) check_type('virtuals', nvirt, int, type(None)) self._lf = lf self._nocc = occ_model.noccs[0] self._nbasis = lf.default_nbasis if npairs is None: npairs = occ_model.noccs[0] elif npairs >= lf.default_nbasis: raise ValueError( 'Number of electron pairs (%i) larger than number of basis functions (%i)' % (npairs, self.nbasis)) if nvirt is None: nvirt = (lf.default_nbasis - npairs) elif nvirt >= lf.default_nbasis: raise ValueError( 'Number of virtuals (%i) larger than number of basis functions (%i)' % (nvirt, self.nbasis)) self._npairs = npairs self._nvirt = nvirt self._cache = Cache() self._ecore = 0 self._geminal = lf.create_two_index(npairs, nvirt) self._lagrange = lf.create_two_index(npairs, nvirt)
def __init__(self, lf, occ_model, npairs=None, nvirt=None): ''' **Arguments:** lf A LinalgFactory instance. occ_model Occupation model **Optional arguments:** npairs Number of electron pairs, if not specified, npairs = number of occupied orbitals nvirt Number of virtual orbitals, if not specified, nvirt = (nbasis-npairs) ''' check_type('pairs', npairs, int, type(None)) check_type('virtuals', nvirt, int, type(None)) self._lf = lf self._nocc = occ_model.noccs[0] self._nbasis = lf.default_nbasis if npairs is None: npairs = occ_model.noccs[0] elif npairs >= lf.default_nbasis: raise ValueError('Number of electron pairs (%i) larger than number of basis functions (%i)' %(npairs, self.nbasis)) if nvirt is None: nvirt = (lf.default_nbasis-npairs) elif nvirt >= lf.default_nbasis: raise ValueError('Number of virtuals (%i) larger than number of basis functions (%i)' %(nvirt, self.nbasis)) self._npairs = npairs self._nvirt = nvirt self._cache = Cache() self._ecore = 0 self._geminal = lf.create_two_index(npairs, nvirt) self._lagrange = lf.create_two_index(npairs, nvirt)
class Geminal(object): '''A collection of geminals and optimization routines. This is just a base class that serves as a template for specific implementations. ''' def __init__(self, lf, occ_model, npairs=None, nvirt=None): ''' **Arguments:** lf A LinalgFactory instance. occ_model Occupation model **Optional arguments:** npairs Number of electron pairs, if not specified, npairs = number of occupied orbitals nvirt Number of virtual orbitals, if not specified, nvirt = (nbasis-npairs) ''' check_type('pairs', npairs, int, type(None)) check_type('virtuals', nvirt, int, type(None)) self._lf = lf self._nocc = occ_model.noccs[0] self._nbasis = lf.default_nbasis if npairs is None: npairs = occ_model.noccs[0] elif npairs >= lf.default_nbasis: raise ValueError('Number of electron pairs (%i) larger than number of basis functions (%i)' %(npairs, self.nbasis)) if nvirt is None: nvirt = (lf.default_nbasis-npairs) elif nvirt >= lf.default_nbasis: raise ValueError('Number of virtuals (%i) larger than number of basis functions (%i)' %(nvirt, self.nbasis)) self._npairs = npairs self._nvirt = nvirt self._cache = Cache() self._ecore = 0 self._geminal = lf.create_two_index(npairs, nvirt) self._lagrange = lf.create_two_index(npairs, nvirt) def __call__(self, one, two, core, orb, olp, scf, **kwargs): '''Optimize geminal coefficients and---if required---find optimal set of orbitals. **Arguments:** one, two One- and two-body integrals (some Hamiltonian matrix elements). core The core energy (not included in 'one' and 'two'). orb An expansion instance. It contains the MO coefficients (orbitals). olp The AO overlap matrix. A TwoIndex instance. scf A boolean. If True: Initializes orbital optimization. **Keywords:** See :py:meth:`RAp1rog.solve` and :py:meth:`RAp1rog.solve_scf` ''' if scf: return self.solve_scf(one, two, core, orb, olp, **kwargs) else: return self.solve(one, two, core, orb, olp, **kwargs) def solve(self, one, two, core, orb, olp, **kwargs): raise NotImplementedError def solve_scf(self, one, two, core, orb, olp, **kwargs): raise NotImplementedError def _get_nbasis(self): '''The number of basis functions''' return self._nbasis nbasis = property(_get_nbasis) def _get_nocc(self): '''The number of occupied orbitals''' return self._nocc nocc = property(_get_nocc) def _get_nvirt(self): '''The number of virtual orbitals''' return self._nvirt nvirt = property(_get_nvirt) def _get_npairs(self): '''The number of electron pairs''' return self._npairs npairs = property(_get_npairs) def _get_lf(self): '''The LinalgFactory instance''' return self._lf lf = property(_get_lf) def _get_ecore(self): '''The core energy''' return self._ecore ecore = property(_get_ecore) def _get_dimension(self): '''The number of unknowns (i.e. the number of geminal coefficients)''' return self._npairs*self._nvirt dimension = property(_get_dimension) def _get_geminal(self): '''The geminal coefficients''' return self._geminal geminal = property(_get_geminal) def _get_lagrange(self): '''The Lagrange multipliers''' return self._lagrange lagrange = property(_get_lagrange) def __clear__(self): self.clear() def clear(self): '''Clear all wavefunction information''' self._cache.clear() def clear_dm(self): '''Clear RDM information''' self._cache.clear(tags='d', dealloc=True) def clear_geminal(self): '''Clear geminal information''' self._geminal.clear() def clear_lagrange(self): '''Clear lagrange information''' self._lagrange.clear() def update_ecore(self, new): '''Update core energy''' self._ecore = new def update_geminal(self, geminal=None): '''Update geminal matrix **Optional arguments:** geminal When provided, this geminal matrix is stored. ''' if geminal is None: raise NotImplementedError else: self._geminal.assign(geminal) def update_lagrange(self, lagrange=None, dim1=None, dim2=None): '''Update Lagragne multipliers **Optional arguments:** lagrange When provided, this set of Lagrange multipliers is stored. ''' if lagrange is None: raise NotImplementedError else: self.lagrange.assign(lagrange) def update_auxmatrix(self, select, two_mo, one_mo=None): '''Update auxiliary matrices''' raise NotImplementedError def get_auxmatrix(self, select): '''Get auxiliary matrices''' raise NotImplementedError def init_one_dm(self, select): '''Initialize 1-RDM as OneIndex object The 1-RDM expressed in the natural orbital basis is diagonal and only the diagonal elements are stored. **Arguments** select 'ps2' or 'response'. ''' check_options('onedm', select, 'ps2', 'response') dm, new = self._cache.load('one_dm_%s' % select, alloc=(self._lf.create_one_index, self.nbasis), tags='d') if not new: raise RuntimeError('The density matrix one_dm_%s already exists. Call one_dm_%s.clear prior to updating the 1DM.' % select) return dm def init_two_dm(self, select): r'''Initialize 2-RDM as TwoIndex object Only the symmetry-unique elements of the (response) 2-RDM are stored. These are matrix elements of type .. math:: Gamma_{p\bar{q}p\bar{q}} (spin-up and spin-down (bar-sign)) or .. math:: Gamma_{p\bar{p}q\bar{q}} and are stored as elements :math:`{pq}` of two_dm_pqpq, and two_dm_ppqq. **Arguments** select '(r(esponse))ppqq', or '(r(esponse))pqpq'. ''' check_options('twodm', select, 'ppqq', 'pqpq', 'rppqq', 'rpqpq') dm, new = self._cache.load('two_dm_%s' % select, alloc=(self._lf.create_two_index, self.nbasis), tags='d') if not new: raise RuntimeError('The density matrix two_dm_%s already exists. Call two_dm_%s.clear prior to updating the 2DM.' % select) return dm def init_three_dm(self, select): '''Initialize 3-RDM **Arguments** select ''' raise NotImplementedError def init_four_dm(self, select): '''Initialize 4-RDM **Arguments** select ''' raise NotImplementedError def get_one_dm(self, select): '''Get a density matrix (1-RDM). If not available, it will be created (if possible) **Arguments:** select 'ps2', or 'response'. ''' if not 'one_dm_%s' % select in self._cache: self.update_one_dm(select) return self._cache.load('one_dm_%s' % select) def get_two_dm(self, select): '''Get a density matrix (2-RDM). If not available, it will be created (if possible) **Arguments:** select '(r(esponse))ppqq', or '(r(esponse))pqpq'. ''' if not 'two_dm_%s' % select in self._cache: self.update_two_dm(select) return self._cache.load('two_dm_%s' % select) def get_three_dm(self, select): '''Get a density matrix (3-RDM). If not available, it will be created (if possible) **Arguments:** select ''' raise NotImplementedError def get_four_dm(self, select): '''Get a density matrix (4-RDM). If not available, it will be created (if possible) **Arguments:** select ''' raise NotImplementedError one_dm_ps2 = PropertyHelper(get_one_dm, 'ps2', 'Alpha 1-RDM') one_dm_response = PropertyHelper(get_one_dm, 'response', 'Alpha 1-RDM') two_dm_ppqq = PropertyHelper(get_two_dm, 'ppqq', 'Alpha-beta PS2 (ppqq) 2-RDM') two_dm_pqpq = PropertyHelper(get_two_dm, 'pqpq', 'Alpha-beta PS2 (pqpq) 2-RDM') two_dm_rppqq = PropertyHelper(get_two_dm, 'rppqq', 'Alpha-beta (ppqq) 2-RDM') two_dm_rpqpq = PropertyHelper(get_two_dm, 'rpqpq', 'Alpha-beta (pqpq) 2-RDM') def update_one_dm(self, one_dm=None): '''Update 1-RDM **Optional arguments:** one_dm When provided, this 1-RDM is stored. ''' raise NotImplementedError def update_two_dm(self, two_dm=None): '''Update 2-RDM **Optional arguments:** two_dm When provided, this 2-RDM is stored. ''' raise NotImplementedError def update_three_dm(self, three_dm=None): '''Update 3-RDM **Optional arguments:** three_dm When provided, this 3-RDM is stored. ''' raise NotImplementedError def update_four_dm(self, four_dm=None): '''Update 2-RDM **Optional arguments:** four_dm When provided, this 4-RDM is stored. ''' raise NotImplementedError # Initial guess generators: def generate_guess(self, guess, dim=None): '''Generate a guess of type 'guess'. **Arguments:** guess A dictionary, containing the type of guess. **Optional arguments:** dim Length of guess. ''' check_options('guess.type', guess['type'], 'random', 'const') check_type('guess.factor', guess['factor'], int, float) if guess['factor'] == 0: raise ValueError('Scaling factor must be different from 0.') if dim is None: dim = self.dimension if guess['type'] == 'random': return np.random.random(dim)*guess['factor'] elif guess['type'] == 'const': return np.ones(dim)*guess['factor'] def compute_rotation_matrix(self, coeff): '''Compute orbital rotation matrix''' raise NotImplementedError # Check convergence: def check_convergence(self, e0, e1, gradient, thresh): '''Check convergence. **Arguements:** e0, e1 Used to calculate energy difference e0-e1 gradient The gradient, a OneIndex instance thresh Dictionary containing threshold parameters ('energy', 'gradientmax', 'gradientnorm') **Returns:** True if energy difference, norm of orbital gradient, largest element of orbital gradient are smaller than some threshold values. ''' return abs(e0-e1) < thresh['energy'] and \ gradient.get_max() < thresh['gradientmax'] and \ gradient.norm() < thresh['gradientnorm'] def check_stepsearch(self, linesearch): '''Check trustradius. Abort calculation if trustradius is smaller than 1e-8 ''' return linesearch.method == 'trust-region' and \ linesearch.trustradius < 1e-8 def prod(self, lst): return reduce(mul, lst) def perm(self, a): '''Calculate the permament of a matrix **Arguements** a A np array ''' check_type('matrix', a, np.ndarray) n = len(a) r = range(n) s = permutations(r) import math # FIXME: fsum really needed for accuracy? return math.fsum(self.prod(a[i][sigma[i]] for i in r) for sigma in s)
class MeanFieldWFN(object): def __init__(self, lf, nbasis, occ_model=None, norb=None): """ **Arguments:** lf A LinalgFactory instance. nbasis The number of basis functions. **Optional arguments:** occ_model A model to assign new occupation numbers when the orbitals are updated by a diagonalization of a Fock matrix. norb the number of orbitals (occupied + virtual). When not given, it is set to nbasis. """ self._lf = lf self._nbasis = nbasis self._occ_model = occ_model if norb is None: self._norb = nbasis else: self._norb = norb # The cache is used to store different representations of the # wavefunction, i.e. as expansion, as density matrix or both. self._cache = Cache() # Write some screen log self._log_init() @classmethod def from_hdf5(cls, grp, lf): # make the wfn object from horton.checkpoint import load_hdf5_low occ_model = load_hdf5_low(grp['occ_model'], lf) if 'occ_model' in grp else None result = cls(lf, grp['nbasis'][()], occ_model, grp['norb'][()]) # load stuff into cache for spin in 'alpha', 'beta': if 'exp_%s' % spin in grp: exp = result.init_exp(spin) exp.read_from_hdf5(grp['exp_%s' % spin]) if 'dm_%s' % spin in grp: dm = result.init_dm(spin) dm.read_from_hdf5(grp['dm_%s' % spin]) return result def to_hdf5(self, grp): grp.attrs['class'] = self.__class__.__name__ grp['nbasis'] = self._nbasis grp['norb'] = self._norb if self.occ_model is not None: tmp = grp.create_group('occ_model') self.occ_model.to_hdf5(tmp) for spin in 'alpha', 'beta': if 'exp_%s' % spin in self._cache: tmp = grp.create_group('exp_%s' % spin) self._cache.load('exp_%s' % spin).to_hdf5(tmp) if 'dm_%s' % spin in self._cache: tmp = grp.create_group('dm_%s' % spin) self._cache.load('dm_%s' % spin).to_hdf5(tmp) def _get_nbasis(self): '''The number of basis functions.''' return self._nbasis nbasis = property(_get_nbasis) def _get_norb(self): '''The number of orbitals in the expansion(s)''' return self._norb norb = property(_get_norb) def _get_occ_model(self): '''The model for the orbital occupations''' return self._occ_model def _set_occ_model(self, occ_model): self._occ_model = occ_model occ_model = property(_get_occ_model, _set_occ_model) def _get_temperature(self): '''The electronic temperature used for the Fermi smearing''' if self._occ_model is None: return 0 else: return self._occ_model.temperature temperature = property(_get_temperature) def _get_cache(self): '''The cache object in which the main attributes are stored''' return self._cache cache = property(_get_cache) def _log_init(self): '''Write a summary of the wavefunction to the screen logger''' if log.do_medium: log('Initialized: %s' % self) if self.occ_model is not None: self.occ_model.log() log.blank() def _iter_expansions(self): '''Iterate over all expansion in the cache''' for spin in 'alpha', 'beta': if 'exp_%s' % spin in self._cache: yield self._cache.load('exp_%s' % spin) def _iter_density_matrices(self): '''Iterate over all density matrices in the cache''' for select in 'alpha', 'beta', 'full', 'spin': if 'dm_%s' % select in self._cache: yield self._cache.load('dm_%s' % select) def _assign_dm_full(self, dm): raise NotImplementedError def _assign_dm_spin(self, dm): raise NotImplementedError def __clear__(self): self.clear() def clear(self): '''Clear all wavefunction information''' self._cache.clear() def clear_exp(self): '''Clear the wavefunction expansions''' self._cache.clear(tags='e') def clear_dm(self): '''Clear the density matrices''' self._cache.clear(tags='d') def init_exp(self, spin, norb=None): if spin not in ['alpha', 'beta']: raise ValueError('The select argument must be alpha or beta') if norb is None: norb = self._norb exp, new = self._cache.load('exp_%s' % spin, alloc=(self._lf.create_expansion, self._nbasis, norb), tags='e') if not new: raise RuntimeError('The expansion exp_%s already exists. Call wfn.clear prior to updating the wfn.' % spin) return exp def init_dm(self, select): if select not in ['alpha', 'beta', 'full', 'spin']: raise ValueError('The select argument must be one of alpha, beta, full or spin.') dm, new = self._cache.load('dm_%s' % select, alloc=(self._lf.create_one_body, self.nbasis), tags='d') if not new: raise RuntimeError('The density matrix dm_%s already exists. Call wfn.clear prior to updating the wfn.' % select) return dm def update_dm(self, select, dm=None): """Derive the density matrix from the expansion(s) and store in cache **Arguments:** select 'alpha', 'beta', 'full' or 'spin'. **Optional arguments:** dm When provided, this density matrix is stored instead of one derived from the orbitals. """ cached_dm = self.init_dm(select) if dm is None: if select == 'alpha': self.exp_alpha.compute_density_matrix(cached_dm) elif select == 'beta': self.exp_beta.compute_density_matrix(cached_dm) elif select == 'full': self._assign_dm_full(cached_dm) elif select == 'spin': self._assign_dm_spin(cached_dm) else: cached_dm.assign(dm) return cached_dm def get_dm(self, select): '''Get a density matrix. If not available, it will be created (if possible) **Arguments:** select 'alpha', 'beta', 'full' or 'spin'. ''' if not 'dm_%s' % select in self._cache: self.update_dm(select) return self._cache.load('dm_%s' % select) def get_exp(self, spin): '''Return an expansion of the wavefunction, if available. **Arguments:** select the spin component: 'alpha' or 'beta'. ''' return self._cache.load('exp_%s' % spin) def get_level_shift(self, spin, overlap): '''Return a level shift operator for the given spin component. **Arguments:** select the spin component: 'alpha' or 'beta'. ''' level_shift, new = self._cache.load('level_shift_%s' % spin, alloc=(self._lf.create_one_body, self.nbasis)) if not new: level_shift.assign(overlap) level_shift.idot(self.get_dm(spin)) level_shift.idot(overlap) return level_shift dm_alpha = PropertyHelper(get_dm, 'alpha', 'Alpha density matrix') dm_beta = PropertyHelper(get_dm, 'beta', 'Beta density matrix') dm_full = PropertyHelper(get_dm, 'full', 'Full density matrix') dm_spin = PropertyHelper(get_dm, 'spin', 'Spin density matrix') exp_alpha = PropertyHelper(get_exp, 'alpha', 'Alpha orbital expansion') exp_beta = PropertyHelper(get_exp, 'beta', 'Beta orbital expansion') def apply_basis_permutation(self, permutation): """Reorder the expansion coefficients and the density matrices""" for exp in self._iter_expansions(): exp.apply_basis_permutation(permutation) for dm in self._iter_density_matrices(): dm.apply_basis_permutation(permutation) def apply_basis_signs(self, signs): """Fix the signs of the expansion coefficients and the density matrices""" for exp in self._iter_expansions(): exp.apply_basis_signs(signs) for dm in self._iter_density_matrices(): dm.apply_basis_signs(signs) def check_normalization(self, olp, eps=1e-4): '''Run an internal test to see if the orbitals are normalized **Arguments:** olp The overlap one_body operators **Optional arguments:** eps The allowed deviation from unity, very loose by default. ''' for exp in self._iter_expansions(): exp.check_normalization(olp, eps)
def __init__(self, coordinates, numbers, pseudo_numbers, grid, moldens, spindens, local, lmax): ''' **Arguments:** coordinates An array (N, 3) with centers for the atom-centered grids. numbers An array (N,) with atomic numbers. pseudo_numbers An array (N,) with effective charges. When set to None, this defaults to``numbers.astype(float)``. grid The integration grid moldens The spin-summed electron density on the grid. spindens The spin difference density on the grid. (Can be None) local Whether or not to use local (non-periodic) subgrids for atomic integrals. lmax The maximum angular momentum in multipole expansions. ''' # Init base class JustOnceClass.__init__(self) # Some type checking for first three arguments natom, coordinates, numbers, pseudo_numbers = typecheck_geo(coordinates, numbers, pseudo_numbers) self._natom = natom self._coordinates = coordinates self._numbers = numbers self._pseudo_numbers = pseudo_numbers # Assign remaining arguments as attributes self._grid = grid self._moldens = moldens self._spindens = spindens self._local = local self._lmax = lmax # Caching stuff, to avoid recomputation of earlier results self._cache = Cache() # Initialize the subgrids if local: self._init_subgrids() # Some screen logging self._init_log_base() self._init_log_scheme() self._init_log_memory() if log.do_medium: log.blank()
class Part(JustOnceClass): name = None linear = False # whether the populations are linear in the density matrix. def __init__(self, coordinates, numbers, pseudo_numbers, grid, moldens, spindens, local, lmax): ''' **Arguments:** coordinates An array (N, 3) with centers for the atom-centered grids. numbers An array (N,) with atomic numbers. pseudo_numbers An array (N,) with effective charges. When set to None, this defaults to``numbers.astype(float)``. grid The integration grid moldens The spin-summed electron density on the grid. spindens The spin difference density on the grid. (Can be None) local Whether or not to use local (non-periodic) subgrids for atomic integrals. lmax The maximum angular momentum in multipole expansions. ''' # Init base class JustOnceClass.__init__(self) # Some type checking for first three arguments natom, coordinates, numbers, pseudo_numbers = typecheck_geo(coordinates, numbers, pseudo_numbers) self._natom = natom self._coordinates = coordinates self._numbers = numbers self._pseudo_numbers = pseudo_numbers # Assign remaining arguments as attributes self._grid = grid self._moldens = moldens self._spindens = spindens self._local = local self._lmax = lmax # Caching stuff, to avoid recomputation of earlier results self._cache = Cache() # Initialize the subgrids if local: self._init_subgrids() # Some screen logging self._init_log_base() self._init_log_scheme() self._init_log_memory() if log.do_medium: log.blank() def __getitem__(self, key): return self.cache.load(key) def _get_natom(self): return self._natom natom = property(_get_natom) def _get_coordinates(self): return self._coordinates coordinates = property(_get_coordinates) def _get_numbers(self): return self._numbers numbers = property(_get_numbers) def _get_pseudo_numbers(self): return self._pseudo_numbers pseudo_numbers = property(_get_pseudo_numbers) def _get_grid(self): return self.get_grid() grid = property(_get_grid) def _get_local(self): return self._local local = property(_get_local) def _get_lmax(self): return self._lmax lmax = property(_get_lmax) def _get_cache(self): return self._cache cache = property(_get_cache) def __clear__(self): self.clear() def clear(self): '''Discard all cached results, e.g. because wfn changed''' JustOnceClass.clear(self) self.cache.clear() def get_grid(self, index=None): '''Return an integration grid **Optional arguments:** index The index of the atom. If not given, a grid for the entire system is returned. If self.local is False, a full system grid is always returned. ''' if index is None or not self.local: return self._grid else: return self._subgrids[index] def get_moldens(self, index=None, output=None): result = self.to_atomic_grid(index, self._moldens) if output is not None: output[:] = result return result def get_spindens(self, index=None, output=None): result = self.to_atomic_grid(index, self._spindens) if output is not None: output[:] = result return result def get_wcor(self, index): '''Return the weight corrections on a grid See get_grid for the meaning of the optional arguments ''' raise NotImplementedError def _init_subgrids(self): raise NotImplementedError def _init_log_base(self): raise NotImplementedError def _init_log_scheme(self): raise NotImplementedError def _init_log_memory(self): if log.do_medium: # precompute arrays sizes for certain grids nbyte_global = self.grid.size*8 nbyte_locals = np.array([self.get_grid(i).size*8 for i in xrange(self.natom)]) # compute and report usage estimates = self.get_memory_estimates() nbyte_total = 0 log('Coarse estimate of memory usage for the partitioning:') log(' Label Memory[GB]') log.hline() for label, nlocals, nglobal in estimates: nbyte = np.dot(nlocals, nbyte_locals) + nglobal*nbyte_global log('%30s %10.3f' % (label, nbyte/1024.0**3)) nbyte_total += nbyte log('%30s %10.3f' % ('Total', nbyte_total/1024.0**3)) log.hline() log.blank() def get_memory_estimates(self): return [ ('Atomic weights', np.ones(self.natom), 0), ('Promolecule', np.zeros(self.natom), 1), ('Working arrays', np.zeros(self.natom), 2), ] def to_atomic_grid(self, index, data): raise NotImplementedError def compute_pseudo_population(self, index): grid = self.get_grid(index) dens = self.get_moldens(index) at_weights = self.cache.load('at_weights', index) wcor = self.get_wcor(index) return grid.integrate(at_weights, dens, wcor) @just_once def do_partitioning(self): self.update_at_weights() do_partitioning.names = [] def update_at_weights(self): '''Updates the at_weights arrays in the case (and all related arrays)''' raise NotImplementedError @just_once def do_populations(self): populations, new = self.cache.load('populations', alloc=self.natom, tags='o') if new: self.do_partitioning() pseudo_populations = self.cache.load('pseudo_populations', alloc=self.natom, tags='o')[0] if log.do_medium: log('Computing atomic populations.') for i in xrange(self.natom): pseudo_populations[i] = self.compute_pseudo_population(i) populations[:] = pseudo_populations populations += self.numbers - self.pseudo_numbers @just_once def do_charges(self): charges, new = self._cache.load('charges', alloc=self.natom, tags='o') if new: self.do_populations() populations = self._cache.load('populations') if log.do_medium: log('Computing atomic charges.') charges[:] = self.numbers - populations @just_once def do_spin_charges(self): if self._spindens is not None: spin_charges, new = self._cache.load('spin_charges', alloc=self.natom, tags='o') self.do_partitioning() if log.do_medium: log('Computing atomic spin charges.') for index in xrange(self.natom): grid = self.get_grid(index) spindens = self.get_spindens(index) at_weights = self.cache.load('at_weights', index) wcor = self.get_wcor(index) spin_charges[index] = grid.integrate(at_weights, spindens, wcor) @just_once def do_moments(self): ncart = get_ncart_cumul(self.lmax) cartesian_multipoles, new1 = self._cache.load('cartesian_multipoles', alloc=(self.natom, ncart), tags='o') npure = get_npure_cumul(self.lmax) pure_multipoles, new1 = self._cache.load('pure_multipoles', alloc=(self.natom, npure), tags='o') nrad = self.lmax+1 radial_moments, new2 = self._cache.load('radial_moments', alloc=(self.natom, nrad), tags='o') if new1 or new2: self.do_partitioning() if log.do_medium: log('Computing cartesian and pure AIM multipoles and radial AIM moments.') for i in xrange(self.natom): # 1) Define a 'window' of the integration grid for this atom center = self.coordinates[i] grid = self.get_grid(i) # 2) Compute the AIM aim = self.get_moldens(i)*self.cache.load('at_weights', i) # 3) Compute weight corrections wcor = self.get_wcor(i) # 4) Compute Cartesian multipole moments # The minus sign is present to account for the negative electron # charge. cartesian_multipoles[i] = -grid.integrate(aim, wcor, center=center, lmax=self.lmax, mtype=1) cartesian_multipoles[i, 0] += self.pseudo_numbers[i] # 5) Compute Pure multipole moments # The minus sign is present to account for the negative electron # charge. pure_multipoles[i] = -grid.integrate(aim, wcor, center=center, lmax=self.lmax, mtype=2) pure_multipoles[i, 0] += self.pseudo_numbers[i] # 6) Compute Radial moments # For the radial moments, it is not common to put a minus sign # for the negative electron charge. radial_moments[i] = grid.integrate(aim, wcor, center=center, lmax=self.lmax, mtype=3) def do_all(self): '''Computes all properties and return a list of their keys.''' for attr_name in dir(self): attr = getattr(self, attr_name) if callable(attr) and attr_name.startswith('do_') and attr_name != 'do_all': attr() return list(self.cache.iterkeys(tags='o'))
class Part(JustOnceClass): name = None linear = False # whether the populations are linear in the density matrix. def __init__(self, system, grid, local, slow, lmax, moldens=None): ''' **Arguments:** system The system to be partitioned. grid The integration grid local Whether or not to use local (non-periodic) grids. slow When ``True``, also the AIM properties are computed that use the AIM overlap operators. lmax The maximum angular momentum in multipole expansions. **Optional arguments:** moldens The all-electron density grid data. ''' JustOnceClass.__init__(self) self._system = system self._grid = grid self._local = local self._slow = slow self._lmax = lmax # Caching stuff, to avoid recomputation of earlier results self._cache = Cache() # Caching of work arrays to avoid reallocation if moldens is not None: self._cache.dump('moldens', moldens) # Initialize the subgrids if local: self._init_subgrids() # Some screen logging self._init_log_base() self._init_log_scheme() self._init_log_memory() if log.do_medium: log.blank() def __getitem__(self, key): return self.cache.load(key) def _get_system(self): return self._system system = property(_get_system) def _get_grid(self): return self.get_grid() grid = property(_get_grid) def _get_local(self): return self._local local = property(_get_local) def _get_slow(self): return self._slow slow = property(_get_slow) def _get_lmax(self): return self._lmax lmax = property(_get_lmax) def _get_cache(self): return self._cache cache = property(_get_cache) def __clear__(self): self.clear() def clear(self): '''Discard all cached results, e.g. because wfn changed''' JustOnceClass.clear(self) self.cache.clear() def update_grid(self, grid): '''Specify a new grid **Arguments:** grid The new grid When the new and old grid are the same, no action is taken. When a really new grid is provided, the subgrids are updated and the cache is cleared. ''' if not (grid is self._grid): self._grid = grid if self.local: self._init_subgrids() self.clear() def get_grid(self, index=None): '''Return an integration grid **Optional arguments:** index The index of the atom. If not given, a grid for the entire system is returned. If self.local is False, a full system grid is always returned. ''' if index is None or not self.local: return self._grid else: return self._subgrids[index] def get_moldens(self, index=None, output=None): self.do_moldens() moldens = self.cache.load('moldens') result = self.to_atomic_grid(index, moldens) if output is not None: output[:] = result return result def get_spindens(self, index=None, output=None): self.do_spindens() spindens = self.cache.load('spindens') result = self.to_atomic_grid(index, spindens) if output is not None: output[:] = result return result def get_wcor(self, index): '''Return the weight corrections on a grid See get_grid for the meaning of the optional arguments ''' raise NotImplementedError def _init_subgrids(self): raise NotImplementedError def _init_log_base(self): raise NotImplementedError def _init_log_scheme(self): raise NotImplementedError def _init_log_memory(self): if log.do_medium: # precompute arrays sizes for certain grids nbyte_global = self.grid.size * 8 nbyte_locals = np.array( [self.get_grid(i).size * 8 for i in xrange(self.system.natom)]) # compute and report usage estimates = self.get_memory_estimates() nbyte_total = 0 log('Coarse estimate of memory usage for the partitioning:') log(' Label Memory[GB]') log.hline() for label, nlocals, nglobal in estimates: nbyte = np.dot(nlocals, nbyte_locals) + nglobal * nbyte_global log('%30s %10.3f' % (label, nbyte / 1024.0**3)) nbyte_total += nbyte log('%30s %10.3f' % ('Total', nbyte_total / 1024.0**3)) log.hline() log.blank() def get_memory_estimates(self): return [ ('Atomic weights', np.ones(self.system.natom), 0), ('Promolecule', np.zeros(self.system.natom), 1), ('Working arrays', np.zeros(self.system.natom), 2), ] def to_atomic_grid(self, index, data): raise NotImplementedError def compute_pseudo_population(self, index): grid = self.get_grid(index) dens = self.get_moldens(index) at_weights = self.cache.load('at_weights', index) wcor = self.get_wcor(index) return grid.integrate(at_weights, dens, wcor) @just_once def do_moldens(self): raise NotImplementedError @just_once def do_spindens(self): raise NotImplementedError @just_once def do_partitioning(self): self.update_at_weights() do_partitioning.names = [] def update_at_weights(self): '''Updates the at_weights arrays in the case (and all related arrays)''' raise NotImplementedError @just_once def do_populations(self): populations, new = self.cache.load('populations', alloc=self.system.natom, tags='o') if new: self.do_partitioning() self.do_moldens() pseudo_populations = self.cache.load('pseudo_populations', alloc=self.system.natom, tags='o')[0] if log.do_medium: log('Computing atomic populations.') for i in xrange(self.system.natom): pseudo_populations[i] = self.compute_pseudo_population(i) populations[:] = pseudo_populations populations += self.system.numbers - self.system.pseudo_numbers @just_once def do_charges(self): charges, new = self._cache.load('charges', alloc=self.system.natom, tags='o') if new: self.do_populations() populations = self._cache.load('populations') if log.do_medium: log('Computing atomic charges.') charges[:] = self.system.numbers - populations @just_once def do_spin_charges(self): spin_charges, new = self._cache.load('spin_charges', alloc=self.system.natom, tags='o') if new: if isinstance(self.system.wfn, RestrictedWFN): spin_charges[:] = 0.0 else: try: self.do_spindens() except NotImplementedError: self.cache.clear_item('spin_charges') return self.do_partitioning() if log.do_medium: log('Computing atomic spin charges.') for index in xrange(self.system.natom): grid = self.get_grid(index) spindens = self.get_spindens(index) at_weights = self.cache.load('at_weights', index) wcor = self.get_wcor(index) spin_charges[index] = grid.integrate( at_weights, spindens, wcor) @just_once def do_moments(self): if log.do_medium: log('Computing cartesian and pure AIM multipoles and radial AIM moments.' ) ncart = get_ncart_cumul(self.lmax) cartesian_multipoles, new1 = self._cache.load( 'cartesian_multipoles', alloc=(self._system.natom, ncart), tags='o') npure = get_npure_cumul(self.lmax) pure_multipoles, new1 = self._cache.load('pure_multipoles', alloc=(self._system.natom, npure), tags='o') nrad = self.lmax + 1 radial_moments, new2 = self._cache.load('radial_moments', alloc=(self._system.natom, nrad), tags='o') if new1 or new2: self.do_partitioning() for i in xrange(self._system.natom): # 1) Define a 'window' of the integration grid for this atom center = self._system.coordinates[i] grid = self.get_grid(i) # 2) Compute the AIM aim = self.get_moldens(i) * self.cache.load('at_weights', i) # 3) Compute weight corrections (TODO: needs to be assessed!) wcor = self.get_wcor(i) # 4) Compute Cartesian multipole moments # The minus sign is present to account for the negative electron # charge. cartesian_multipoles[i] = -grid.integrate( aim, wcor, center=center, lmax=self.lmax, mtype=1) cartesian_multipoles[i, 0] += self.system.pseudo_numbers[i] # 5) Compute Pure multipole moments # The minus sign is present to account for the negative electron # charge. pure_multipoles[i] = -grid.integrate( aim, wcor, center=center, lmax=self.lmax, mtype=2) pure_multipoles[i, 0] += self.system.pseudo_numbers[i] # 6) Compute Radial moments # For the radial moments, it is not common to put a minus sign # for the negative electron charge. radial_moments[i] = grid.integrate(aim, wcor, center=center, lmax=self.lmax, mtype=3) def do_all(self): '''Computes all properties and return a list of their names.''' slow_methods = [ 'do_overlap_operators', 'do_bond_order', 'do_noninteracting_response' ] for attr_name in dir(self): attr = getattr(self, attr_name) if callable(attr) and attr_name.startswith( 'do_') and attr_name != 'do_all': if self._slow or (not attr_name in slow_methods): attr() return list(self.cache.iterkeys(tags='o'))
class Hamiltonian(object): def __init__(self, system, terms, grid=None, idiot_proof=True): ''' **Arguments:** system The System object for which the energy must be computed. terms The terms in the Hamiltonian. **Optional arguments:** grid The integration grid, in case some terms need one. idiot_proof When set to False, the kinetic energy, external potential and Hartree terms are not added automatically and a error is raised when no exchange is present. ''' # check arguments: if len(terms) == 0: raise ValueError('At least one term must be present in the Hamiltonian.') for term in terms: if term.require_grid and grid is None: raise TypeError('The term %s requires a grid, but not grid is given.' % term) # Assign attributes self.system = system self.terms = list(terms) self.grid = grid if idiot_proof: # Check if an exchange term is present if not any(term.exchange for term in self.terms): raise ValueError('No exchange term is given and idiot_proof option is set to True.') # Add standard terms if missing # 1) Kinetic energy if sum(isinstance(term, KineticEnergy) for term in terms) == 0: self.terms.append(KineticEnergy()) # 2) Hartree (or HatreeFock, which is a subclass of Hartree) if sum(isinstance(term, Hartree) for term in terms) == 0: self.terms.append(Hartree()) # 3) External Potential if sum(isinstance(term, ExternalPotential) for term in terms) == 0: self.terms.append(ExternalPotential()) # Create a cache for shared intermediate results. This cache should only # be used for derived quantities that depend on the wavefunction and # need to be updated at each SCF cycle. self.cache = Cache() # bind the terms to this hamiltonian such that certain shared # intermediated results can be reused for the sake of efficiency. for term in self.terms: term.set_hamiltonian(self) def add_term(self, term): '''Add a new term to the hamiltonian''' self.terms.append(term) term.set_hamiltonian(self) def clear(self): '''Mark the properties derived from the wfn as outdated. This method does not recompute anything, but just marks operators as outdated. They are recomputed as they are needed. ''' self.cache.clear() def compute(self): '''Compute the energy. **Returns:** The total energy, including nuclear-nuclear repulsion. ''' total = 0.0 for term in self.terms: energy = term.compute() self.system.extra['energy_%s' % term.label] = energy total += energy energy = self.system.compute_nucnuc() self.system.extra['energy_nn'] = energy total += energy self.system.extra['energy'] = total # Store result in chk file self.system.update_chk('extra') return total def log_energy(self): '''Write an overview of the last energy computation on screen''' log('Contributions to the energy:') log.hline() log(' Energy term Value') log.hline() for term in self.terms: energy = self.system.extra['energy_%s' % term.label] log('%50s %20.12f' % (term.label, energy)) log('%50s %20.12f' % ('nn', self.system.extra['energy_nn'])) log('%50s %20.12f' % ('total', self.system.extra['energy'])) log.hline() log.blank() def compute_fock(self, fock_alpha, fock_beta): '''Compute alpha (and beta) Fock matrix(es). **Arguments:** fock_alpha A One-Body operator output argument for the alpha fock matrix. fock_alpha A One-Body operator output argument for the beta fock matrix. In the case of a closed-shell computation, the argument fock_beta is ``None``. ''' # Loop over all terms and add contributions to the Fock matrix. Some # terms will actually only evaluate potentials on grids and add these # results to the total potential on a grid. for term in self.terms: term.add_fock_matrix(fock_alpha, fock_beta, postpone_grid=True) # Collect all the total potentials and turn them into contributions # for the fock matrix/matrices. # Collect potentials for alpha electrons # d = density if 'dpot_total_alpha' in self.cache: dpot = self.cache.load('dpot_total_alpha') self.system.compute_grid_density_fock(self.grid.points, self.grid.weights, dpot, fock_alpha) # g = gradient if 'gpot_total_alpha' in self.cache: gpot = self.cache.load('gpot_total_alpha') self.system.compute_grid_gradient_fock(self.grid.points, self.grid.weights, gpot, fock_alpha) if isinstance(self.system.wfn, UnrestrictedWFN): # Colect potentials for beta electrons # d = density if 'dpot_total_beta' in self.cache: dpot = self.cache.load('dpot_total_beta') self.system.compute_grid_density_fock(self.grid.points, self.grid.weights, dpot, fock_beta) # g = gradient if 'gpot_total_beta' in self.cache: gpot = self.cache.load('gpot_total_beta') self.system.compute_grid_gradient_fock(self.grid.points, self.grid.weights, gpot, fock_beta)
class Geminal(object): '''A collection of geminals and optimization routines. This is just a base class that serves as a template for specific implementations. ''' def __init__(self, lf, occ_model, npairs=None, nvirt=None): ''' **Arguments:** lf A LinalgFactory instance. occ_model Occupation model **Optional arguments:** npairs Number of electron pairs, if not specified, npairs = number of occupied orbitals nvirt Number of virtual orbitals, if not specified, nvirt = (nbasis-npairs) ''' check_type('pairs', npairs, int, type(None)) check_type('virtuals', nvirt, int, type(None)) self._lf = lf self._nocc = occ_model.noccs[0] self._nbasis = lf.default_nbasis if npairs is None: npairs = occ_model.noccs[0] elif npairs >= lf.default_nbasis: raise ValueError( 'Number of electron pairs (%i) larger than number of basis functions (%i)' % (npairs, self.nbasis)) if nvirt is None: nvirt = (lf.default_nbasis - npairs) elif nvirt >= lf.default_nbasis: raise ValueError( 'Number of virtuals (%i) larger than number of basis functions (%i)' % (nvirt, self.nbasis)) self._npairs = npairs self._nvirt = nvirt self._cache = Cache() self._ecore = 0 self._geminal = lf.create_two_index(npairs, nvirt) self._lagrange = lf.create_two_index(npairs, nvirt) def __call__(self, one, two, core, orb, olp, scf, **kwargs): '''Optimize geminal coefficients and---if required---find optimal set of orbitals. **Arguments:** one, two One- and two-body integrals (some Hamiltonian matrix elements). core The core energy (not included in 'one' and 'two'). orb An expansion instance. It contains the MO coefficients (orbitals). olp The AO overlap matrix. A TwoIndex instance. scf A boolean. If True: Initializes orbital optimization. **Keywords:** See :py:meth:`RAp1rog.solve` and :py:meth:`RAp1rog.solve_scf` ''' if scf: return self.solve_scf(one, two, core, orb, olp, **kwargs) else: return self.solve(one, two, core, orb, olp, **kwargs) def solve(self, one, two, core, orb, olp, **kwargs): raise NotImplementedError def solve_scf(self, one, two, core, orb, olp, **kwargs): raise NotImplementedError def _get_nbasis(self): '''The number of basis functions''' return self._nbasis nbasis = property(_get_nbasis) def _get_nocc(self): '''The number of occupied orbitals''' return self._nocc nocc = property(_get_nocc) def _get_nvirt(self): '''The number of virtual orbitals''' return self._nvirt nvirt = property(_get_nvirt) def _get_npairs(self): '''The number of electron pairs''' return self._npairs npairs = property(_get_npairs) def _get_lf(self): '''The LinalgFactory instance''' return self._lf lf = property(_get_lf) def _get_ecore(self): '''The core energy''' return self._ecore ecore = property(_get_ecore) def _get_dimension(self): '''The number of unknowns (i.e. the number of geminal coefficients)''' return self._npairs * self._nvirt dimension = property(_get_dimension) def _get_geminal(self): '''The geminal coefficients''' return self._geminal geminal = property(_get_geminal) def _get_lagrange(self): '''The Lagrange multipliers''' return self._lagrange lagrange = property(_get_lagrange) def __clear__(self): self.clear() def clear(self): '''Clear all wavefunction information''' self._cache.clear() def clear_dm(self): '''Clear RDM information''' self._cache.clear(tags='d', dealloc=True) def clear_geminal(self): '''Clear geminal information''' self._geminal.clear() def clear_lagrange(self): '''Clear lagrange information''' self._lagrange.clear() def update_ecore(self, new): '''Update core energy''' self._ecore = new def update_geminal(self, geminal=None): '''Update geminal matrix **Optional arguments:** geminal When provided, this geminal matrix is stored. ''' if geminal is None: raise NotImplementedError else: self._geminal.assign(geminal) def update_lagrange(self, lagrange=None, dim1=None, dim2=None): '''Update Lagragne multipliers **Optional arguments:** lagrange When provided, this set of Lagrange multipliers is stored. ''' if lagrange is None: raise NotImplementedError else: self.lagrange.assign(lagrange) def update_auxmatrix(self, select, two_mo, one_mo=None): '''Update auxiliary matrices''' raise NotImplementedError def get_auxmatrix(self, select): '''Get auxiliary matrices''' raise NotImplementedError def init_one_dm(self, select): '''Initialize 1-RDM as OneIndex object The 1-RDM expressed in the natural orbital basis is diagonal and only the diagonal elements are stored. **Arguments** select 'ps2' or 'response'. ''' check_options('onedm', select, 'ps2', 'response') dm, new = self._cache.load('one_dm_%s' % select, alloc=(self._lf.create_one_index, self.nbasis), tags='d') if not new: raise RuntimeError( 'The density matrix one_dm_%s already exists. Call one_dm_%s.clear prior to updating the 1DM.' % select) return dm def init_two_dm(self, select): r'''Initialize 2-RDM as TwoIndex object Only the symmetry-unique elements of the (response) 2-RDM are stored. These are matrix elements of type .. math:: Gamma_{p\bar{q}p\bar{q}} (spin-up and spin-down (bar-sign)) or .. math:: Gamma_{p\bar{p}q\bar{q}} and are stored as elements :math:`{pq}` of two_dm_pqpq, and two_dm_ppqq. **Arguments** select '(r(esponse))ppqq', or '(r(esponse))pqpq'. ''' check_options('twodm', select, 'ppqq', 'pqpq', 'rppqq', 'rpqpq') dm, new = self._cache.load('two_dm_%s' % select, alloc=(self._lf.create_two_index, self.nbasis), tags='d') if not new: raise RuntimeError( 'The density matrix two_dm_%s already exists. Call two_dm_%s.clear prior to updating the 2DM.' % select) return dm def init_three_dm(self, select): '''Initialize 3-RDM **Arguments** select ''' raise NotImplementedError def init_four_dm(self, select): '''Initialize 4-RDM **Arguments** select ''' raise NotImplementedError def get_one_dm(self, select): '''Get a density matrix (1-RDM). If not available, it will be created (if possible) **Arguments:** select 'ps2', or 'response'. ''' if not 'one_dm_%s' % select in self._cache: self.update_one_dm(select) return self._cache.load('one_dm_%s' % select) def get_two_dm(self, select): '''Get a density matrix (2-RDM). If not available, it will be created (if possible) **Arguments:** select '(r(esponse))ppqq', or '(r(esponse))pqpq'. ''' if not 'two_dm_%s' % select in self._cache: self.update_two_dm(select) return self._cache.load('two_dm_%s' % select) def get_three_dm(self, select): '''Get a density matrix (3-RDM). If not available, it will be created (if possible) **Arguments:** select ''' raise NotImplementedError def get_four_dm(self, select): '''Get a density matrix (4-RDM). If not available, it will be created (if possible) **Arguments:** select ''' raise NotImplementedError one_dm_ps2 = PropertyHelper(get_one_dm, 'ps2', 'Alpha 1-RDM') one_dm_response = PropertyHelper(get_one_dm, 'response', 'Alpha 1-RDM') two_dm_ppqq = PropertyHelper(get_two_dm, 'ppqq', 'Alpha-beta PS2 (ppqq) 2-RDM') two_dm_pqpq = PropertyHelper(get_two_dm, 'pqpq', 'Alpha-beta PS2 (pqpq) 2-RDM') two_dm_rppqq = PropertyHelper(get_two_dm, 'rppqq', 'Alpha-beta (ppqq) 2-RDM') two_dm_rpqpq = PropertyHelper(get_two_dm, 'rpqpq', 'Alpha-beta (pqpq) 2-RDM') def update_one_dm(self, one_dm=None): '''Update 1-RDM **Optional arguments:** one_dm When provided, this 1-RDM is stored. ''' raise NotImplementedError def update_two_dm(self, two_dm=None): '''Update 2-RDM **Optional arguments:** two_dm When provided, this 2-RDM is stored. ''' raise NotImplementedError def update_three_dm(self, three_dm=None): '''Update 3-RDM **Optional arguments:** three_dm When provided, this 3-RDM is stored. ''' raise NotImplementedError def update_four_dm(self, four_dm=None): '''Update 2-RDM **Optional arguments:** four_dm When provided, this 4-RDM is stored. ''' raise NotImplementedError # Initial guess generators: def generate_guess(self, guess, dim=None): '''Generate a guess of type 'guess'. **Arguments:** guess A dictionary, containing the type of guess. **Optional arguments:** dim Length of guess. ''' check_options('guess.type', guess['type'], 'random', 'const') check_type('guess.factor', guess['factor'], int, float) if guess['factor'] == 0: raise ValueError('Scaling factor must be different from 0.') if dim is None: dim = self.dimension if guess['type'] == 'random': return np.random.random(dim) * guess['factor'] elif guess['type'] == 'const': return np.ones(dim) * guess['factor'] def compute_rotation_matrix(self, coeff): '''Compute orbital rotation matrix''' raise NotImplementedError # Check convergence: def check_convergence(self, e0, e1, gradient, thresh): '''Check convergence. **Arguements:** e0, e1 Used to calculate energy difference e0-e1 gradient The gradient, a OneIndex instance thresh Dictionary containing threshold parameters ('energy', 'gradientmax', 'gradientnorm') **Returns:** True if energy difference, norm of orbital gradient, largest element of orbital gradient are smaller than some threshold values. ''' return abs(e0-e1) < thresh['energy'] and \ gradient.get_max() < thresh['gradientmax'] and \ gradient.norm() < thresh['gradientnorm'] def check_stepsearch(self, linesearch): '''Check trustradius. Abort calculation if trustradius is smaller than 1e-8 ''' return linesearch.method == 'trust-region' and \ linesearch.trustradius < 1e-8 def prod(self, lst): return reduce(mul, lst) def perm(self, a): '''Calculate the permament of a matrix **Arguements** a A np array ''' check_type('matrix', a, np.ndarray) n = len(a) r = range(n) s = permutations(r) import math # FIXME: fsum really needed for accuracy? return math.fsum(self.prod(a[i][sigma[i]] for i in r) for sigma in s)
def __init__(self, system, terms, grid=None, idiot_proof=True): ''' **Arguments:** system The System object for which the energy must be computed. terms The terms in the Hamiltonian. **Optional arguments:** grid The integration grid, in case some terms need one. idiot_proof When set to False, the kinetic energy, external potential and Hartree terms are not added automatically and a error is raised when no exchange is present. ''' # check arguments: if len(terms) == 0: raise ValueError( 'At least one term must be present in the Hamiltonian.') for term in terms: if term.require_grid and grid is None: raise TypeError( 'The term %s requires a grid, but not grid is given.' % term) # Assign attributes self.system = system self.terms = list(terms) self.grid = grid if idiot_proof: # Check if an exchange term is present if not any(term.exchange for term in self.terms): raise ValueError( 'No exchange term is given and idiot_proof option is set to True.' ) # Add standard terms if missing # 1) Kinetic energy if sum(isinstance(term, KineticEnergy) for term in terms) == 0: self.terms.append(KineticEnergy()) # 2) Hartree (or HatreeFock, which is a subclass of Hartree) if sum(isinstance(term, Hartree) for term in terms) == 0: self.terms.append(Hartree()) # 3) External Potential if sum(isinstance(term, ExternalPotential) for term in terms) == 0: self.terms.append(ExternalPotential()) # Create a cache for shared intermediate results. This cache should only # be used for derived quantities that depend on the wavefunction and # need to be updated at each SCF cycle. self.cache = Cache() # bind the terms to this hamiltonian such that certain shared # intermediated results can be reused for the sake of efficiency. for term in self.terms: term.set_hamiltonian(self)
class MeanFieldWFN(object): def __init__(self, lf, nbasis, occ_model=None, norb=None): """ **Arguments:** lf A LinalgFactory instance. nbasis The number of basis functions. **Optional arguments:** occ_model A model to assign new occupation numbers when the orbitals are updated by a diagonalization of a Fock matrix. norb the number of orbitals (occupied + virtual). When not given, it is set to nbasis. """ self._lf = lf self._nbasis = nbasis self._occ_model = occ_model if norb is None: self._norb = nbasis else: self._norb = norb # The cache is used to store different representations of the # wavefunction, i.e. as expansion, as density matrix or both. self._cache = Cache() # Write some screen log self._log_init() @classmethod def from_hdf5(cls, grp, lf): # make the wfn object from horton.checkpoint import load_hdf5_low occ_model = load_hdf5_low(grp['occ_model'], lf) if 'occ_model' in grp else None result = cls(lf, grp['nbasis'][()], occ_model, grp['norb'][()]) # load stuff into cache for spin in 'alpha', 'beta': if 'exp_%s' % spin in grp: exp = result.init_exp(spin) exp.read_from_hdf5(grp['exp_%s' % spin]) if 'dm_%s' % spin in grp: dm = result.init_dm(spin) dm.read_from_hdf5(grp['dm_%s' % spin]) return result def to_hdf5(self, grp): grp.attrs['class'] = self.__class__.__name__ grp['nbasis'] = self._nbasis grp['norb'] = self._norb if self.occ_model is not None: tmp = grp.create_group('occ_model') self.occ_model.to_hdf5(tmp) for spin in 'alpha', 'beta': if 'exp_%s' % spin in self._cache: tmp = grp.create_group('exp_%s' % spin) self._cache.load('exp_%s' % spin).to_hdf5(tmp) if 'dm_%s' % spin in self._cache: tmp = grp.create_group('dm_%s' % spin) self._cache.load('dm_%s' % spin).to_hdf5(tmp) def _get_nbasis(self): '''The number of basis functions.''' return self._nbasis nbasis = property(_get_nbasis) def _get_norb(self): '''The number of orbitals in the expansion(s)''' return self._norb norb = property(_get_norb) def _get_occ_model(self): '''The model for the orbital occupations''' return self._occ_model def _set_occ_model(self, occ_model): self._occ_model = occ_model occ_model = property(_get_occ_model, _set_occ_model) def _get_temperature(self): '''The electronic temperature used for the Fermi smearing''' if self._occ_model is None: return 0 else: return self._occ_model.temperature temperature = property(_get_temperature) def _get_cache(self): '''The cache object in which the main attributes are stored''' return self._cache cache = property(_get_cache) def _log_init(self): '''Write a summary of the wavefunction to the screen logger''' if log.do_medium: log('Initialized: %s' % self) if self.occ_model is not None: self.occ_model.log() log.blank() def _iter_expansions(self): '''Iterate over all expansion in the cache''' for spin in 'alpha', 'beta': if 'exp_%s' % spin in self._cache: yield self._cache.load('exp_%s' % spin) def _iter_density_matrices(self): '''Iterate over all density matrices in the cache''' for select in 'alpha', 'beta', 'full', 'spin': if 'dm_%s' % select in self._cache: yield self._cache.load('dm_%s' % select) def _assign_dm_full(self, dm): raise NotImplementedError def _assign_dm_spin(self, dm): raise NotImplementedError def __clear__(self): self.clear() def clear(self): '''Clear all wavefunction information''' self._cache.clear() def clear_exp(self): '''Clear the wavefunction expansions''' self._cache.clear(tags='e') def clear_dm(self): '''Clear the density matrices''' self._cache.clear(tags='d') def init_exp(self, spin, norb=None): if spin not in ['alpha', 'beta']: raise ValueError('The select argument must be alpha or beta') if norb is None: norb = self._norb exp, new = self._cache.load('exp_%s' % spin, alloc=(self._lf.create_expansion, self._nbasis, norb), tags='e') if not new: raise RuntimeError( 'The expansion exp_%s already exists. Call wfn.clear prior to updating the wfn.' % spin) return exp def init_dm(self, select): if select not in ['alpha', 'beta', 'full', 'spin']: raise ValueError( 'The select argument must be one of alpha, beta, full or spin.' ) dm, new = self._cache.load('dm_%s' % select, alloc=(self._lf.create_one_body, self.nbasis), tags='d') if not new: raise RuntimeError( 'The density matrix dm_%s already exists. Call wfn.clear prior to updating the wfn.' % select) return dm def update_dm(self, select, dm=None): """Derive the density matrix from the expansion(s) and store in cache **Arguments:** select 'alpha', 'beta', 'full' or 'spin'. **Optional arguments:** dm When provided, this density matrix is stored instead of one derived from the orbitals. """ cached_dm = self.init_dm(select) if dm is None: if select == 'alpha': self.exp_alpha.compute_density_matrix(cached_dm) elif select == 'beta': self.exp_beta.compute_density_matrix(cached_dm) elif select == 'full': self._assign_dm_full(cached_dm) elif select == 'spin': self._assign_dm_spin(cached_dm) else: cached_dm.assign(dm) return cached_dm def get_dm(self, select): '''Get a density matrix. If not available, it will be created (if possible) **Arguments:** select 'alpha', 'beta', 'full' or 'spin'. ''' if not 'dm_%s' % select in self._cache: self.update_dm(select) return self._cache.load('dm_%s' % select) def get_exp(self, spin): '''Return an expansion of the wavefunction, if available. **Arguments:** select the spin component: 'alpha' or 'beta'. ''' return self._cache.load('exp_%s' % spin) def get_level_shift(self, spin, overlap): '''Return a level shift operator for the given spin component. **Arguments:** select the spin component: 'alpha' or 'beta'. ''' level_shift, new = self._cache.load('level_shift_%s' % spin, alloc=(self._lf.create_one_body, self.nbasis)) if not new: level_shift.assign(overlap) level_shift.idot(self.get_dm(spin)) level_shift.idot(overlap) return level_shift dm_alpha = PropertyHelper(get_dm, 'alpha', 'Alpha density matrix') dm_beta = PropertyHelper(get_dm, 'beta', 'Beta density matrix') dm_full = PropertyHelper(get_dm, 'full', 'Full density matrix') dm_spin = PropertyHelper(get_dm, 'spin', 'Spin density matrix') exp_alpha = PropertyHelper(get_exp, 'alpha', 'Alpha orbital expansion') exp_beta = PropertyHelper(get_exp, 'beta', 'Beta orbital expansion') def apply_basis_permutation(self, permutation): """Reorder the expansion coefficients and the density matrices""" for exp in self._iter_expansions(): exp.apply_basis_permutation(permutation) for dm in self._iter_density_matrices(): dm.apply_basis_permutation(permutation) def apply_basis_signs(self, signs): """Fix the signs of the expansion coefficients and the density matrices""" for exp in self._iter_expansions(): exp.apply_basis_signs(signs) for dm in self._iter_density_matrices(): dm.apply_basis_signs(signs) def check_normalization(self, olp, eps=1e-4): '''Run an internal test to see if the orbitals are normalized **Arguments:** olp The overlap one_body operators **Optional arguments:** eps The allowed deviation from unity, very loose by default. ''' for exp in self._iter_expansions(): exp.check_normalization(olp, eps)
class Part(JustOnceClass): name = None linear = False # whether the populations are linear in the density matrix. def __init__(self, system, grid, local, slow, lmax, moldens=None): ''' **Arguments:** system The system to be partitioned. grid The integration grid local Whether or not to use local (non-periodic) grids. slow When ``True``, also the AIM properties are computed that use the AIM overlap operators. lmax The maximum angular momentum in multipole expansions. **Optional arguments:** moldens The all-electron density grid data. ''' JustOnceClass.__init__(self) self._system = system self._grid = grid self._local = local self._slow = slow self._lmax = lmax # Caching stuff, to avoid recomputation of earlier results self._cache = Cache() # Caching of work arrays to avoid reallocation if moldens is not None: self._cache.dump('moldens', moldens) # Initialize the subgrids if local: self._init_subgrids() # Some screen logging self._init_log_base() self._init_log_scheme() self._init_log_memory() if log.do_medium: log.blank() def __getitem__(self, key): return self.cache.load(key) def _get_system(self): return self._system system = property(_get_system) def _get_grid(self): return self.get_grid() grid = property(_get_grid) def _get_local(self): return self._local local = property(_get_local) def _get_slow(self): return self._slow slow = property(_get_slow) def _get_lmax(self): return self._lmax lmax = property(_get_lmax) def _get_cache(self): return self._cache cache = property(_get_cache) def __clear__(self): self.clear() def clear(self): '''Discard all cached results, e.g. because wfn changed''' JustOnceClass.clear(self) self.cache.clear() def update_grid(self, grid): '''Specify a new grid **Arguments:** grid The new grid When the new and old grid are the same, no action is taken. When a really new grid is provided, the subgrids are updated and the cache is cleared. ''' if not (grid is self._grid): self._grid = grid if self.local: self._init_subgrids() self.clear() def get_grid(self, index=None): '''Return an integration grid **Optional arguments:** index The index of the atom. If not given, a grid for the entire system is returned. If self.local is False, a full system grid is always returned. ''' if index is None or not self.local: return self._grid else: return self._subgrids[index] def get_moldens(self, index=None, output=None): self.do_moldens() moldens = self.cache.load('moldens') result = self.to_atomic_grid(index, moldens) if output is not None: output[:] = result return result def get_spindens(self, index=None, output=None): self.do_spindens() spindens = self.cache.load('spindens') result = self.to_atomic_grid(index, spindens) if output is not None: output[:] = result return result def get_wcor(self, index): '''Return the weight corrections on a grid See get_grid for the meaning of the optional arguments ''' raise NotImplementedError def _init_subgrids(self): raise NotImplementedError def _init_log_base(self): raise NotImplementedError def _init_log_scheme(self): raise NotImplementedError def _init_log_memory(self): if log.do_medium: # precompute arrays sizes for certain grids nbyte_global = self.grid.size*8 nbyte_locals = np.array([self.get_grid(i).size*8 for i in xrange(self.system.natom)]) # compute and report usage estimates = self.get_memory_estimates() nbyte_total = 0 log('Coarse estimate of memory usage for the partitioning:') log(' Label Memory[GB]') log.hline() for label, nlocals, nglobal in estimates: nbyte = np.dot(nlocals, nbyte_locals) + nglobal*nbyte_global log('%30s %10.3f' % (label, nbyte/1024.0**3)) nbyte_total += nbyte log('%30s %10.3f' % ('Total', nbyte_total/1024.0**3)) log.hline() log.blank() def get_memory_estimates(self): return [ ('Atomic weights', np.ones(self.system.natom), 0), ('Promolecule', np.zeros(self.system.natom), 1), ('Working arrays', np.zeros(self.system.natom), 2), ] def to_atomic_grid(self, index, data): raise NotImplementedError def compute_pseudo_population(self, index): grid = self.get_grid(index) dens = self.get_moldens(index) at_weights = self.cache.load('at_weights', index) wcor = self.get_wcor(index) return grid.integrate(at_weights, dens, wcor) @just_once def do_moldens(self): raise NotImplementedError @just_once def do_spindens(self): raise NotImplementedError @just_once def do_partitioning(self): self.update_at_weights() do_partitioning.names = [] def update_at_weights(self): '''Updates the at_weights arrays in the case (and all related arrays)''' raise NotImplementedError @just_once def do_populations(self): populations, new = self.cache.load('populations', alloc=self.system.natom, tags='o') if new: self.do_partitioning() self.do_moldens() pseudo_populations = self.cache.load('pseudo_populations', alloc=self.system.natom, tags='o')[0] if log.do_medium: log('Computing atomic populations.') for i in xrange(self.system.natom): pseudo_populations[i] = self.compute_pseudo_population(i) populations[:] = pseudo_populations populations += self.system.numbers - self.system.pseudo_numbers @just_once def do_charges(self): charges, new = self._cache.load('charges', alloc=self.system.natom, tags='o') if new: self.do_populations() populations = self._cache.load('populations') if log.do_medium: log('Computing atomic charges.') charges[:] = self.system.numbers - populations @just_once def do_spin_charges(self): spin_charges, new = self._cache.load('spin_charges', alloc=self.system.natom, tags='o') if new: if isinstance(self.system.wfn, RestrictedWFN): spin_charges[:] = 0.0 else: try: self.do_spindens() except NotImplementedError: self.cache.clear_item('spin_charges') return self.do_partitioning() if log.do_medium: log('Computing atomic spin charges.') for index in xrange(self.system.natom): grid = self.get_grid(index) spindens = self.get_spindens(index) at_weights = self.cache.load('at_weights', index) wcor = self.get_wcor(index) spin_charges[index] = grid.integrate(at_weights, spindens, wcor) @just_once def do_moments(self): if log.do_medium: log('Computing cartesian and pure AIM multipoles and radial AIM moments.') ncart = get_ncart_cumul(self.lmax) cartesian_multipoles, new1 = self._cache.load('cartesian_multipoles', alloc=(self._system.natom, ncart), tags='o') npure = get_npure_cumul(self.lmax) pure_multipoles, new1 = self._cache.load('pure_multipoles', alloc=(self._system.natom, npure), tags='o') nrad = self.lmax+1 radial_moments, new2 = self._cache.load('radial_moments', alloc=(self._system.natom, nrad), tags='o') if new1 or new2: self.do_partitioning() for i in xrange(self._system.natom): # 1) Define a 'window' of the integration grid for this atom center = self._system.coordinates[i] grid = self.get_grid(i) # 2) Compute the AIM aim = self.get_moldens(i)*self.cache.load('at_weights', i) # 3) Compute weight corrections (TODO: needs to be assessed!) wcor = self.get_wcor(i) # 4) Compute Cartesian multipole moments # The minus sign is present to account for the negative electron # charge. cartesian_multipoles[i] = -grid.integrate(aim, wcor, center=center, lmax=self.lmax, mtype=1) cartesian_multipoles[i, 0] += self.system.pseudo_numbers[i] # 5) Compute Pure multipole moments # The minus sign is present to account for the negative electron # charge. pure_multipoles[i] = -grid.integrate(aim, wcor, center=center, lmax=self.lmax, mtype=2) pure_multipoles[i, 0] += self.system.pseudo_numbers[i] # 6) Compute Radial moments # For the radial moments, it is not common to put a minus sign # for the negative electron charge. radial_moments[i] = grid.integrate(aim, wcor, center=center, lmax=self.lmax, mtype=3) def do_all(self): '''Computes all properties and return a list of their names.''' slow_methods = ['do_overlap_operators', 'do_bond_order', 'do_noninteracting_response'] for attr_name in dir(self): attr = getattr(self, attr_name) if callable(attr) and attr_name.startswith('do_') and attr_name != 'do_all': if self._slow or (not attr_name in slow_methods): attr() return list(self.cache.iterkeys(tags='o'))
class Localization(object): '''Base class for all localization methods''' def __init__(self, lf, occ_model, projector): '''Localize canonical HF orbitals. **Arguments:** lf A LinalgFactory instance. occ_model Occupation model. Projector Projectors for atomic basis function. A list of TwoIndex instances. **Optional arguments:** ''' self._lf = lf self._proj = projector self._nocc = occ_model.noccs[0] self._nbasis = lf.default_nbasis self._nvirt = (lf.default_nbasis-occ_model.noccs[0]) self._cache = Cache() self._locblock = None self._popmatrix = None @timer.with_section('Localization') def __call__(self, orb, select, **kwargs): '''Localizes the orbitals using a unitary transformation to rotate the AO/MO coefficient matrix. The orbitals are optimized by minimizing an objective function. This works only for restricted orbitals. **Arguments:** orb The AO/MO coefficients. An Expansion instance. select The orbital block to be localised (str). Any of ``occ`` (occupied orbitals), ``virt`` (virtual orbitals) **Keywords:** :maxiter: (int) maximum number of iterations for localization (default 2000) :threshold: (float) localization threshold for objective function (default 1e-6) :levelshift: level shift of Hessian (float) (default 1e-8) :stepsearch: step search options (dictionary) containing: * method: step search method used (str). One of ``trust-region`` (default), ``None``, ``backtracking`` * alpha: scaling factor for Newton step (float), used in ``backtracking`` and ``None`` method (default 0.75) * c1: parameter used in ``backtracking`` (float) (default 1e-4) * minalpha: minimum step length used in ``backracking`` (float) (default 1e-6) * maxiterouter: maximum number of search steps (int) (default 10) * maxiterinner: maximum number of optimization steps in each search step (int) (used only in ``pcg``, default 500) * maxeta: upper bound for estimated vs actual change in ``trust-region`` (float) (default 0.75) * mineta: lower bound for estimated vs actual change in ``trust-region`` (float) (default 0.25) * upscale: scaling factor to increase trustradius in ``trust-region`` (float) (default 2.0) * downscale: scaling factor to decrease trustradius in ``trust-region`` (float) and scaling factor in ``backtracking`` (default 0.25) * trustradius: initial trustradius (float) (default 0.75) * maxtrustradius: maximum trustradius (float) (default 0.75) * threshold: trust-region optimization threshold, only used in ``pcg`` (float) (default 1e-8) * optimizer: optimizes step to boundary of trustradius (str). One of ``pcg``, ``dogleg``, ``ddl`` (default ddl) ''' if log.do_medium: log('Performing localization of %s block' %(select)) log.cite('pipek1989', 'the Pipek-Mezey localization scheme') # # Assign default keyword arguements # names = [] def _helper(x,y): names.append(x) return kwargs.get(x,y) maxiter = _helper('maxiter', 2000) thresh = _helper('threshold', 1e-6) lshift = _helper('levelshift', 1e-8) stepsearch = _helper('stepsearch', dict({})) stepsearch.setdefault('method', 'trust-region') stepsearch.setdefault('minalpha', 1e-6) stepsearch.setdefault('alpha', 1.0) stepsearch.setdefault('c1', 0.0001) stepsearch.setdefault('maxiterouter', 10) stepsearch.setdefault('maxiterinner', 500) stepsearch.setdefault('maxeta', 0.75) stepsearch.setdefault('mineta', 0.25) stepsearch.setdefault('upscale', 2.0) stepsearch.setdefault('downscale', 0.25) stepsearch.setdefault('trustradius', 0.75) stepsearch.setdefault('maxtrustradius', 0.75) stepsearch.setdefault('threshold', 1e-8) stepsearch.setdefault('optimizer', 'ddl') for name, value in kwargs.items(): if name not in names: raise ValueError("Unknown keyword argument %s" % name) if value < 0: raise ValueError('Illegal value for %s: %s' %(name, value)) # # Update information about localization block # self.update_locblock(select) if log.do_medium: log('%3s %12s %10s' %('Iter', 'D(ObjectiveFunction)', 'Steplength')) # # Initialize step search # stepsearch_ = RStepSearch(self.lf, **stepsearch) # # Calculate initial objective function # self.solve_model(orb) objfct_ref = self.compute_objective_function() maxThresh = True maxIter = True it = 0 while maxThresh and maxIter: # # Update population matrix for new orbitals # self.compute_population_matrix(orb) # # Calculate orbital gradient and diagonal approximation to the Hessian # kappa, gradient, hessian = self.orbital_rotation_step(lshift) # # Apply steps search to orbital rotation step 'kappa' and perform # orbital rotation # stepsearch_(self, None, None, orb, **{'kappa': kappa, 'gradient': gradient, 'hessian': hessian }) # # update objective function # objfct = self.compute_objective_function() it += 1 # # Print localization progress # if log.do_medium: log('%4i %14.8f' %(it, abs(objfct-objfct_ref))) # # Check convergence # maxThresh = abs(objfct-objfct_ref)>thresh maxIter = it<maxiter # # Prepare for new iteration # objfct_ref = objfct if maxThresh and not maxIter: if log.do_medium: log(' ') log('Warning: Orbital localization not converged in %i iteration' %(it-1)) log(' ') else: if log.do_medium: log(' ') log('Orbital localization converged in %i iteration' %(it-1)) log(' ') def _get_nbasis(self): '''The number of basis functions''' return self._nbasis nbasis = property(_get_nbasis) def _get_nocc(self): '''The number of occupied orbitals''' return self._nocc nocc = property(_get_nocc) def _get_nvirt(self): '''The number of virtual orbitals''' return self._nvirt nvirt = property(_get_nvirt) def _get_lf(self): '''The LinalgFactory''' return self._lf lf = property(_get_lf) def _get_proj(self): '''The Projectors. A list of TwoIndex instances''' return self._proj proj = property(_get_proj) def _get_locblock(self): '''The orbital block to be localized''' return self._locblock locblock = property(_get_locblock) def _get_popmatrix(self): '''The population matrix. A list of TwoIndex instances''' return self._popmatrix popmatrix = property(_get_popmatrix) def update_locblock(self, new): '''Update localization block''' self._locblock = new def __clear__(self): self.clear() def clear(self): '''Clear all wavefunction information''' self._cache.clear() def compute_rotation_matrix(self, coeff): '''Determine orbital rotation matrix **Arguments:** coeff The non-reduntant orbital rotations, we need only values for p<q ''' indl = np.tril_indices(self.nbasis, -1) kappa = self.lf.create_two_index(self.nbasis, self.nbasis) # # k_pq = -k_qp # kappa.assign(coeff, indl) kappa.iadd_t(kappa, -1.0) out = compute_unitary_matrix(kappa) return out def compute_population_matrix(self, exp): '''Determine population matrix **Arguments:** exp The current AO/MO coefficients. An Expansion instance ''' # # Get orbital block to be localized, a OneIndex instance # block = self.assign_locblock() # # Calculate population matrices for orbital block # popmat = [] for op in self.proj: pop = self.lf.create_two_index() expblock = exp.copy() expblock.imul(block) expblock.itranspose() pop.assign_dot(expblock, op) expblock.itranspose() pop.idot(expblock) popmat.append(pop) self._popmatrix = popmat
class Localization(object): '''Base class for all localization methods''' def __init__(self, lf, occ_model, projector): '''Localize canonical HF orbitals. **Arguments:** lf A LinalgFactory instance. occ_model Occupation model. Projector Projectors for atomic basis function. A list of TwoIndex instances. **Optional arguments:** ''' self._lf = lf self._proj = projector self._nocc = occ_model.noccs[0] self._nbasis = lf.default_nbasis self._nvirt = (lf.default_nbasis - occ_model.noccs[0]) self._cache = Cache() self._locblock = None self._popmatrix = None @timer.with_section('Localization') def __call__(self, orb, select, **kwargs): '''Localizes the orbitals using a unitary transformation to rotate the AO/MO coefficient matrix. The orbitals are optimized by minimizing an objective function. This works only for restricted orbitals. **Arguments:** orb The AO/MO coefficients. An Expansion instance. select The orbital block to be localised (str). Any of ``occ`` (occupied orbitals), ``virt`` (virtual orbitals) **Keywords:** :maxiter: (int) maximum number of iterations for localization (default 2000) :threshold: (float) localization threshold for objective function (default 1e-6) :levelshift: level shift of Hessian (float) (default 1e-8) :stepsearch: step search options (dictionary) containing: * method: step search method used (str). One of ``trust-region`` (default), ``None``, ``backtracking`` * alpha: scaling factor for Newton step (float), used in ``backtracking`` and ``None`` method (default 0.75) * c1: parameter used in ``backtracking`` (float) (default 1e-4) * minalpha: minimum step length used in ``backracking`` (float) (default 1e-6) * maxiterouter: maximum number of search steps (int) (default 10) * maxiterinner: maximum number of optimization steps in each search step (int) (used only in ``pcg``, default 500) * maxeta: upper bound for estimated vs actual change in ``trust-region`` (float) (default 0.75) * mineta: lower bound for estimated vs actual change in ``trust-region`` (float) (default 0.25) * upscale: scaling factor to increase trustradius in ``trust-region`` (float) (default 2.0) * downscale: scaling factor to decrease trustradius in ``trust-region`` (float) and scaling factor in ``backtracking`` (default 0.25) * trustradius: initial trustradius (float) (default 0.75) * maxtrustradius: maximum trustradius (float) (default 0.75) * threshold: trust-region optimization threshold, only used in ``pcg`` (float) (default 1e-8) * optimizer: optimizes step to boundary of trustradius (str). One of ``pcg``, ``dogleg``, ``ddl`` (default ddl) ''' if log.do_medium: log('Performing localization of %s block' % (select)) log.cite('pipek1989', 'the Pipek-Mezey localization scheme') # # Assign default keyword arguements # names = [] def _helper(x, y): names.append(x) return kwargs.get(x, y) maxiter = _helper('maxiter', 2000) thresh = _helper('threshold', 1e-6) lshift = _helper('levelshift', 1e-8) stepsearch = _helper('stepsearch', dict({})) stepsearch.setdefault('method', 'trust-region') stepsearch.setdefault('minalpha', 1e-6) stepsearch.setdefault('alpha', 1.0) stepsearch.setdefault('c1', 0.0001) stepsearch.setdefault('maxiterouter', 10) stepsearch.setdefault('maxiterinner', 500) stepsearch.setdefault('maxeta', 0.75) stepsearch.setdefault('mineta', 0.25) stepsearch.setdefault('upscale', 2.0) stepsearch.setdefault('downscale', 0.25) stepsearch.setdefault('trustradius', 0.75) stepsearch.setdefault('maxtrustradius', 0.75) stepsearch.setdefault('threshold', 1e-8) stepsearch.setdefault('optimizer', 'ddl') for name, value in kwargs.items(): if name not in names: raise ValueError("Unknown keyword argument %s" % name) if value < 0: raise ValueError('Illegal value for %s: %s' % (name, value)) # # Update information about localization block # self.update_locblock(select) if log.do_medium: log('%3s %12s %10s' % ('Iter', 'D(ObjectiveFunction)', 'Steplength')) # # Initialize step search # stepsearch_ = RStepSearch(self.lf, **stepsearch) # # Calculate initial objective function # self.solve_model(orb) objfct_ref = self.compute_objective_function() maxThresh = True maxIter = True it = 0 while maxThresh and maxIter: # # Update population matrix for new orbitals # self.compute_population_matrix(orb) # # Calculate orbital gradient and diagonal approximation to the Hessian # kappa, gradient, hessian = self.orbital_rotation_step(lshift) # # Apply steps search to orbital rotation step 'kappa' and perform # orbital rotation # stepsearch_( self, None, None, orb, **{ 'kappa': kappa, 'gradient': gradient, 'hessian': hessian }) # # update objective function # objfct = self.compute_objective_function() it += 1 # # Print localization progress # if log.do_medium: log('%4i %14.8f' % (it, abs(objfct - objfct_ref))) # # Check convergence # maxThresh = abs(objfct - objfct_ref) > thresh maxIter = it < maxiter # # Prepare for new iteration # objfct_ref = objfct if maxThresh and not maxIter: if log.do_medium: log(' ') log('Warning: Orbital localization not converged in %i iteration' % (it - 1)) log(' ') else: if log.do_medium: log(' ') log('Orbital localization converged in %i iteration' % (it - 1)) log(' ') def _get_nbasis(self): '''The number of basis functions''' return self._nbasis nbasis = property(_get_nbasis) def _get_nocc(self): '''The number of occupied orbitals''' return self._nocc nocc = property(_get_nocc) def _get_nvirt(self): '''The number of virtual orbitals''' return self._nvirt nvirt = property(_get_nvirt) def _get_lf(self): '''The LinalgFactory''' return self._lf lf = property(_get_lf) def _get_proj(self): '''The Projectors. A list of TwoIndex instances''' return self._proj proj = property(_get_proj) def _get_locblock(self): '''The orbital block to be localized''' return self._locblock locblock = property(_get_locblock) def _get_popmatrix(self): '''The population matrix. A list of TwoIndex instances''' return self._popmatrix popmatrix = property(_get_popmatrix) def update_locblock(self, new): '''Update localization block''' self._locblock = new def __clear__(self): self.clear() def clear(self): '''Clear all wavefunction information''' self._cache.clear() def compute_rotation_matrix(self, coeff): '''Determine orbital rotation matrix **Arguments:** coeff The non-reduntant orbital rotations, we need only values for p<q ''' indl = np.tril_indices(self.nbasis, -1) kappa = self.lf.create_two_index(self.nbasis, self.nbasis) # # k_pq = -k_qp # kappa.assign(coeff, indl) kappa.iadd_t(kappa, -1.0) out = compute_unitary_matrix(kappa) return out def compute_population_matrix(self, exp): '''Determine population matrix **Arguments:** exp The current AO/MO coefficients. An Expansion instance ''' # # Get orbital block to be localized, a OneIndex instance # block = self.assign_locblock() # # Calculate population matrices for orbital block # popmat = [] for op in self.proj: pop = self.lf.create_two_index() expblock = exp.copy() expblock.imul(block) expblock.itranspose() pop.assign_dot(expblock, op) expblock.itranspose() pop.idot(expblock) popmat.append(pop) self._popmatrix = popmat
class System(object): def __init__(self, coordinates, numbers, obasis=None, grid=None, wfn=None, lf=None, cache=None, extra=None, cell=None, pseudo_numbers=None, chk=None): """ **Arguments:** coordinates A (N, 3) float numpy array with Cartesian coordinates of the atoms. numbers A (N,) int numpy vector with the atomic numbers. **Optional arguments:** obasis A string or an instance of either the basis set or basis set description classes, e.g. 'STO-3G', GOBasisDesc('STO-3G'), ... for the orbitals. grid A grid object used for molecular integration. wfn A wavefunction object. lf A LinalgFactory instance. When not given, a DenseLinalgFactory is used by default. cache A cache object with computed results that depend on other attributes of the system class. Cached items should be tagged according to the attributes they depend on: - ``o``: obasis - ``c``: coordinates - ``g``: grid When given as a dictionary, each value must consist of two items: the object to be cached and the tags. extra A dictionary with additional information about the system. The keys must be strings. cell A Cell object that describes the (generally triclinic) periodic boundary conditions. So far, this is nearly nowhere supported in Horton, so don't get too excited. pseudo_numbers The core charges of the pseudo potential, if applicable chk A filename for the checkpoint file or an open h5.File object. If the file does not exist yet, it will be created. If the file already exists, it must be an HDF5 file that is structured such that it adheres to the format that Horton creates itself. If chk is an open h5.File object, it will not be closed when the System instance is deleted. """ # A) Assign all attributes self._coordinates = np.array(coordinates, dtype=float, copy=False) self._numbers = np.array(numbers, dtype=int, copy=False) # some checks if len(self._coordinates.shape ) != 2 or self._coordinates.shape[1] != 3: raise TypeError( 'coordinates argument must be a 2D array with three columns') if len(self._numbers.shape) != 1: raise TypeError('numbers must a vector of integers.') if self._numbers.shape[0] != self._coordinates.shape[0]: raise TypeError( 'numbers and coordinates must have compatible array shapes.') # self._grid = grid # self._wfn = wfn # if cache is None: self._cache = Cache() elif isinstance(cache, Cache): self._cache = cache elif isinstance(cache, dict): self._cache = Cache() for key, (value, tags) in cache.iteritems(): self._cache.dump(key, value, tags=tags) else: raise TypeError('Could not interpret the cache argument.') # if lf is None: self._lf = DenseLinalgFactory() else: self._lf = lf # if extra is None: self._extra = {} else: self._extra = extra # self._obasis = None self._obasis_desc = None if obasis is not None: self.update_obasis(obasis) self._cell = cell self._pseudo_numbers = pseudo_numbers # The checkpoint file self._chk = None self._close_chk = False self.assign_chk(chk) self._log_init() def __del__(self): # Close the HD5 checkpoint file. This must be done carefully to avoid # spurious error messages when an unrelated exception occurs. if hasattr(self, '_chk') and self.chk is not None and self._close_chk: self.chk.close() def _get_natom(self): '''The number of atoms''' return len(self.numbers) natom = property(_get_natom) def _get_coordinates(self): '''The positions of the nuclei''' return self._coordinates.view() coordinates = property(_get_coordinates) def _get_numbers(self): '''An array with the atomic numbers''' return self._numbers.view() numbers = property(_get_numbers) def _get_obasis(self): '''The orbital basis''' return self._obasis obasis = property(_get_obasis) def _get_obasis_desc(self): '''The orbital basis description''' return self._obasis_desc obasis_desc = property(_get_obasis_desc) def _get_grid(self): '''The integration grid''' return self._grid grid = property(_get_grid) def _get_wfn(self): '''The wavefunction''' return self._wfn wfn = property(_get_wfn) def _get_lf(self): '''The LinalgFactory for this system''' return self._lf lf = property(_get_lf) def _get_cache(self): '''A cache of intermediate results that depend on the coordinates''' return self._cache cache = property(_get_cache) def _get_extra(self): '''A dictionary with extra properties of the system.''' return self._extra extra = property(_get_extra) def _get_cell(self): '''A Cell object describing the periodic boundary conditions.''' return self._cell cell = property(_get_cell) def _get_pseudo_numbers(self): result = self._pseudo_numbers if result is None: result = self._numbers return result pseudo_numbers = property(_get_pseudo_numbers) def _get_chk(self): '''A ``h5.File`` instance used as checkpoint file or ``None``''' return self._chk chk = property(_get_chk) @classmethod def from_file(cls, *args, **kwargs): """Create a System object from a file. A list of filenames may be provided, which will be loaded in that order. Each file complements or overrides the information loaded from a previous file in the list. Furthermore, keyword arguments may be used to specify additional constructor arguments. The ``lf`` optional argument is picked up from the kwargs list to contstruct (when needed) arrays to store the results loaded from file. When ``lf`` is not given, a DenseLinalgFactory is created by default. The filenames may also contain checkpoint files and open h5.File objects of checkpoint files. The last such checkpoint file will automatically be used as a checkpoint file for this class. If you want to override this behavior, provide the ``chk`` keyword argument (may be None). """ constructor_args = {} lf = kwargs.get('lf') if lf is None: lf = DenseLinalgFactory() for fn in args: fn_args = load_system_args(fn, lf) constructor_args.update(fn_args) constructor_args.update(kwargs) # If the basis comes from an external code and some operators are # loaded, rows and columns may need to be reordered. Similar for the # orbital coefficients and the density matrices. permutation = constructor_args.get('permutation') if permutation is not None: cache = constructor_args.get('cache') if cache is not None: for value, tags in cache.itervalues(): if isinstance(value, LinalgObject): value.apply_basis_permutation(permutation) wfn = constructor_args.get('wfn') if wfn is not None: wfn.apply_basis_permutation(permutation) del constructor_args['permutation'] # After the permutation, correct for different sign conventions of the # orbitals signs = constructor_args.get('signs') if signs is not None: cache = constructor_args.get('cache') if cache is not None: for value, tags in cache.itervalues(): if isinstance(value, LinalgObject): value.apply_basis_signs(signs) wfn = constructor_args.get('wfn') if wfn is not None: wfn.apply_basis_signs(signs) del constructor_args['signs'] return cls(**constructor_args) def _log_init(self): '''Write some basic information about the system to the screen logger.''' if log.do_medium: log('Initialized: %s' % self) log.deflist([('Number of atoms', self.natom)] + [('Number of %s' % periodic[n].symbol, (self.numbers == n).sum()) for n in sorted(np.unique(self.numbers))] + [ ('Linalg Factory', self._lf), ('Orbital basis', self._obasis), ('Wavefunction', self._wfn), ('Checkpoint file', self._chk), ]) if len(self._cache) > 0: log('The following cached items are present: %s' % (', '.join(self._cache.iterkeys()))) if len(self._extra) > 0: log('The following extra attributes are present: %s' % (', '.join(self._extra.iterkeys()))) log.blank() def assign_chk(self, chk): if self.chk is not None and self._close_chk: self.chk.close() if isinstance(chk, basestring): # Suppose a filename is given. Create or open an HDF5 file. self._chk = h5.File(chk) self._close_chk = True elif isinstance(chk, h5.Group) or chk is None: self._chk = chk self._close_chk = False else: raise TypeError( 'The chk argument, when not None, must be a filename or an open h5.Group object.' ) self.update_chk() def update_chk(self, field_name=None): """Write (a part of) the system to the checkpoint file. **Optional Argument:** field A field string that specifies which part must be written to the checkpoint file. When not given, all possible fields are written. The latter is only useful in specific cases, e.g. upon initialization of the system. The available field names are specified in the attribute register dictionary in the module ``horton.checkpoint``. """ if self._chk is not None: from horton.checkpoint import attribute_register if field_name is None: for field_name, field in attribute_register.iteritems(): field.write(self._chk, self) else: field = attribute_register[field_name] field.write(self._chk, self) def to_file(self, filename): '''Write the system to a file **Arguments:** filename The name of the file to write to. The extension of the file is used to determine the file format. ''' dump_system(filename, self) def _get_charge(self): return self.pseudo_numbers.sum() - self.wfn.nel charge = property(_get_charge) def update_coordinates(self, coordinates=None): '''Update all attributes that depend on coodinates and clear related parts of cache **Optional arguments:** coordinates The new atomic coordinates When one wants to set new coordintes, one may also edit the system.coordinates array in-place and then call this method without any arguments. ''' if coordinates is not None: self._coordinates[:] = coordinates if self._obasis is not None: self._obasis.centers[:] = self._coordinates if self._grid is not None: self._grid.update_centers(self) self.cache.clear(tags='cog') self._extra = {} def update_grid(self, grid=None): '''Define a new integration grid and clear related parts of the cache **Optional arguments:** grid The new integration grid. When not given, it is assumed that the grid was modified in-place and that only derived results in the cache need to be pruned. ''' if grid is not None: self._grid = grid self.cache.clear(tags='g') def update_obasis(self, obasis=None): '''Regenerate the orbital basis and clear all attributes that depend on it. **Optional arguments:** obasis The new basis. This may be a string or an instance of GOBasis or GOBasisDesc. When not given, the orbital basis description stored in the system object (_obasis_desc attribute) will be used. ''' # Get the orbital basis and if possible the orbital basis description. from horton.gbasis import GOBasisDesc, GOBasis if isinstance(obasis, str): obasis_desc = GOBasisDesc(obasis) elif isinstance(obasis, GOBasisDesc): obasis_desc = obasis elif isinstance(obasis, GOBasis): obasis_desc = None elif obasis is None: if self.obasis_desc is None: raise TypeError( 'No orbital basis description (obasis_desc) available to update obasis.' ) obasis_desc = self.obasis_desc else: raise TypeError('Could not interpret the obasis argument.') if obasis_desc is not None: obasis = obasis_desc.apply_to(self) # Discard or reset results that depend on orbital basis if self.obasis is not None: self._cache.clear(tags='o') # Ideally, the user of the system object does some sort of # projection of the wavefunction on the new basis. This should be # done outside the system class as their are too many different ways # to handle this. Here, we set the wfn to None, just to force the # user to do something. self._wfn = None self._extra = {} # Assign new obasis self._lf.set_default_nbasis(obasis.nbasis) self._obasis = obasis self._obasis_desc = obasis_desc # Some consistency checks. These are needed when the initial value of # obasis was None. This may occur when the system object is initialized. if self._wfn is not None and self._obasis.nbasis != self._wfn.nbasis: raise TypeError( 'The nbasis attribute of obasis and wfn are inconsistent.') for key, value in self._cache.iteritems(): if isinstance( value, LinalgObject) and value.nbasis != self._obasis.nbasis: raise TypeError( 'The nbasis attribute of the cached object \'%s\' and obasis are inconsistent.' % key) @timer.with_section('OLP integrals') def get_overlap(self): overlap, new = self.cache.load('olp', alloc=self.lf.create_one_body, tags='o') if new: self.obasis.compute_overlap(overlap) self.update_chk('cache.olp') return overlap @timer.with_section('KIN integrals') def get_kinetic(self): kinetic, new = self.cache.load('kin', alloc=self.lf.create_one_body, tags='o') if new: self.obasis.compute_kinetic(kinetic) self.update_chk('cache.kin') return kinetic @timer.with_section('NAI integrals') def get_nuclear_attraction(self): nuclear_attraction, new = self.cache.load( 'na', alloc=self.lf.create_one_body, tags='o') if new: # TODO: ghost atoms and extra charges self.obasis.compute_nuclear_attraction(self.numbers.astype(float), self.coordinates, nuclear_attraction) self.update_chk('cache.na') return nuclear_attraction @timer.with_section('ER integrals') def get_electron_repulsion(self): electron_repulsion, new = self.cache.load( 'er', alloc=self.lf.create_two_body, tags='o') if new: self.obasis.compute_electron_repulsion(electron_repulsion) # ER integrals are not checkpointed by default because they are too heavy. # Can be done manually by user if needed: ``system.update_chk('cache.er')`` #self.update_chk('cache.er') return electron_repulsion @timer.with_section('Orbitals grid') def compute_grid_orbitals(self, points, iorbs=None, orbs=None, select='alpha'): '''Compute the electron density on a grid using self.wfn as input **Arguments:** points A Numpy array with grid points, shape (npoint,3) **Optional arguments:** iorbs The indexes of the orbitals to be computed. If not given, the orbitals with a non-zero occupation number are computed orbs An output array, shape (npoint, len(iorbs)). The results are added to this array. select 'alpha', 'beta' **Returns:** orbs The array with the result. This is the same as the output argument, in case it was provided. ''' exp = self.wfn.get_exp(select) if iorbs is None: iorbs = (exp.occupations > 0).nonzero()[0] shape = (len(points), len(iorbs)) if orbs is None: orbs = np.zeros(shape, float) elif orbs.shape != shape: raise TypeError('The shape of the output array is wrong') self.obasis.compute_grid_orbitals_exp(exp, points, iorbs, orbs) return orbs @timer.with_section('Density grid') def compute_grid_density(self, points, rhos=None, select='full', epsilon=0): '''Compute the electron density on a grid using self.wfn as input **Arguments:** points A Numpy array with grid points, shape (npoint,3) **Optional arguments:** rhos An output array, shape (npoint,). The results are added to this array. select 'alpha', 'beta', 'full' or 'spin'. ('full' is the default.) epsilon Allow errors on the density of this magnitude for the sake of efficiency. **Returns:** rhos The array with the result. This is the same as the output argument, in case it was provided. ''' if rhos is None: rhos = np.zeros(len(points), float) elif rhos.shape != (points.shape[0], ): raise TypeError('The shape of the output array is wrong') dm = self.wfn.get_dm(select) self.obasis.compute_grid_density_dm(dm, points, rhos, epsilon) return rhos @timer.with_section('Gradient grid') def compute_grid_gradient(self, points, gradrhos=None, select='full'): '''Compute the electron density on a grid using self.wfn as input **Arguments:** points A Numpy array with grid points, shape (npoint,3) **Optional arguments:** gradrhos An output array, shape (npoint, 3). The results are added to this array. select 'alpha', 'beta', 'full' or 'spin'. ('full' is the default.) **Returns:** gradrhos The array with the result. This is the same as the output argument, in case it was provided. ''' if gradrhos is None: gradrhos = np.zeros((len(points), 3), float) elif gradrhos.shape != (points.shape[0], 3): raise TypeError('The shape of the output array is wrong') dm = self.wfn.get_dm(select) self.obasis.compute_grid_gradient_dm(dm, points, gradrhos) return gradrhos @timer.with_section('Hartree grid') def compute_grid_hartree(self, points, hartree=None, select='full'): '''Compute the hartree potential on a grid using self.wfn as input **Arguments:** points A Numpy array with grid points, shape (npoint,3) **Optional arguments:** hartree An output array, shape (npoint,). The results are added to this array. select 'alpha', 'beta', 'full' or 'spin'. ('full' is the default.) **Returns:** hartree The array with the result. This is the same as the output argument, in case it was provided. ''' if hartree is None: hartree = np.zeros(len(points), float) elif hartree.shape != (points.shape[0], ): raise TypeError('The shape of the output array is wrong') dm = self.wfn.get_dm(select) self.obasis.compute_grid_hartree_dm(dm, points, hartree) return hartree @timer.with_section('ESP grid') def compute_grid_esp(self, points, esp=None, select='full'): '''Compute the esp on a grid using self.wfn as input **Arguments:** points A Numpy array with grid points, shape (npoint,3) **Optional arguments:** esp An output array, shape (npoint,). The results are added to this array. select 'alpha', 'beta', 'full' or 'spin'. ('full' is the default.) **Returns:** esp The array with the result. This is the same as the output argument, in case it was provided. ''' if esp is None: esp = np.zeros(len(points), float) elif esp.shape != (points.shape[0], ): raise TypeError('The shape of the output array is wrong') dm = self.wfn.get_dm(select) self.obasis.compute_grid_hartree_dm(dm, points, esp) esp *= -1 compute_grid_nucpot(self.numbers, self.coordinates, points, esp) return esp @timer.with_section('Fock grid dens') def compute_grid_density_fock(self, points, weights, pots, fock): '''See documentation self.obasis.compute_grid_density_fock''' self.obasis.compute_grid_density_fock(points, weights, pots, fock) @timer.with_section('Fock grid grad') def compute_grid_gradient_fock(self, points, weights, pots, fock): '''See documentation self.obasis.compute_grid_gradient_fock''' self.obasis.compute_grid_gradient_fock(points, weights, pots, fock) def compute_nucnuc(self): '''Compute interaction energy of the nuclei''' # TODO: move this to low-level code one day. result = 0.0 for i in xrange(self.natom): for j in xrange(i): distance = np.linalg.norm(self.coordinates[i] - self.coordinates[j]) result += self.numbers[i] * self.numbers[j] / distance self._extra['energy_nn'] = result return result
class Hamiltonian(object): def __init__(self, system, terms, grid=None, idiot_proof=True): ''' **Arguments:** system The System object for which the energy must be computed. terms The terms in the Hamiltonian. **Optional arguments:** grid The integration grid, in case some terms need one. idiot_proof When set to False, the kinetic energy, external potential and Hartree terms are not added automatically and a error is raised when no exchange is present. ''' # check arguments: if len(terms) == 0: raise ValueError( 'At least one term must be present in the Hamiltonian.') for term in terms: if term.require_grid and grid is None: raise TypeError( 'The term %s requires a grid, but not grid is given.' % term) # Assign attributes self.system = system self.terms = list(terms) self.grid = grid if idiot_proof: # Check if an exchange term is present if not any(term.exchange for term in self.terms): raise ValueError( 'No exchange term is given and idiot_proof option is set to True.' ) # Add standard terms if missing # 1) Kinetic energy if sum(isinstance(term, KineticEnergy) for term in terms) == 0: self.terms.append(KineticEnergy()) # 2) Hartree (or HatreeFock, which is a subclass of Hartree) if sum(isinstance(term, Hartree) for term in terms) == 0: self.terms.append(Hartree()) # 3) External Potential if sum(isinstance(term, ExternalPotential) for term in terms) == 0: self.terms.append(ExternalPotential()) # Create a cache for shared intermediate results. This cache should only # be used for derived quantities that depend on the wavefunction and # need to be updated at each SCF cycle. self.cache = Cache() # bind the terms to this hamiltonian such that certain shared # intermediated results can be reused for the sake of efficiency. for term in self.terms: term.set_hamiltonian(self) def add_term(self, term): '''Add a new term to the hamiltonian''' self.terms.append(term) term.set_hamiltonian(self) def clear(self): '''Mark the properties derived from the wfn as outdated. This method does not recompute anything, but just marks operators as outdated. They are recomputed as they are needed. ''' self.cache.clear() def compute(self): '''Compute the energy. **Returns:** The total energy, including nuclear-nuclear repulsion. ''' total = 0.0 for term in self.terms: energy = term.compute() self.system.extra['energy_%s' % term.label] = energy total += energy energy = self.system.compute_nucnuc() self.system.extra['energy_nn'] = energy total += energy self.system.extra['energy'] = total # Store result in chk file self.system.update_chk('extra') return total def log_energy(self): '''Write an overview of the last energy computation on screen''' log('Contributions to the energy:') log.hline() log(' Energy term Value' ) log.hline() for term in self.terms: energy = self.system.extra['energy_%s' % term.label] log('%50s %20.12f' % (term.label, energy)) log('%50s %20.12f' % ('nn', self.system.extra['energy_nn'])) log('%50s %20.12f' % ('total', self.system.extra['energy'])) log.hline() log.blank() def compute_fock(self, fock_alpha, fock_beta): '''Compute alpha (and beta) Fock matrix(es). **Arguments:** fock_alpha A One-Body operator output argument for the alpha fock matrix. fock_alpha A One-Body operator output argument for the beta fock matrix. In the case of a closed-shell computation, the argument fock_beta is ``None``. ''' # Loop over all terms and add contributions to the Fock matrix. Some # terms will actually only evaluate potentials on grids and add these # results to the total potential on a grid. for term in self.terms: term.add_fock_matrix(fock_alpha, fock_beta, postpone_grid=True) # Collect all the total potentials and turn them into contributions # for the fock matrix/matrices. # Collect potentials for alpha electrons # d = density if 'dpot_total_alpha' in self.cache: dpot = self.cache.load('dpot_total_alpha') self.system.compute_grid_density_fock(self.grid.points, self.grid.weights, dpot, fock_alpha) # g = gradient if 'gpot_total_alpha' in self.cache: gpot = self.cache.load('gpot_total_alpha') self.system.compute_grid_gradient_fock(self.grid.points, self.grid.weights, gpot, fock_alpha) if isinstance(self.system.wfn, UnrestrictedWFN): # Colect potentials for beta electrons # d = density if 'dpot_total_beta' in self.cache: dpot = self.cache.load('dpot_total_beta') self.system.compute_grid_density_fock(self.grid.points, self.grid.weights, dpot, fock_beta) # g = gradient if 'gpot_total_beta' in self.cache: gpot = self.cache.load('gpot_total_beta') self.system.compute_grid_gradient_fock(self.grid.points, self.grid.weights, gpot, fock_beta)
def __init__(self, coordinates, numbers, obasis=None, grid=None, wfn=None, lf=None, cache=None, extra=None, cell=None, pseudo_numbers=None, chk=None): """ **Arguments:** coordinates A (N, 3) float numpy array with Cartesian coordinates of the atoms. numbers A (N,) int numpy vector with the atomic numbers. **Optional arguments:** obasis A string or an instance of either the basis set or basis set description classes, e.g. 'STO-3G', GOBasisDesc('STO-3G'), ... for the orbitals. grid A grid object used for molecular integration. wfn A wavefunction object. lf A LinalgFactory instance. When not given, a DenseLinalgFactory is used by default. cache A cache object with computed results that depend on other attributes of the system class. Cached items should be tagged according to the attributes they depend on: - ``o``: obasis - ``c``: coordinates - ``g``: grid When given as a dictionary, each value must consist of two items: the object to be cached and the tags. extra A dictionary with additional information about the system. The keys must be strings. cell A Cell object that describes the (generally triclinic) periodic boundary conditions. So far, this is nearly nowhere supported in Horton, so don't get too excited. pseudo_numbers The core charges of the pseudo potential, if applicable chk A filename for the checkpoint file or an open h5.File object. If the file does not exist yet, it will be created. If the file already exists, it must be an HDF5 file that is structured such that it adheres to the format that Horton creates itself. If chk is an open h5.File object, it will not be closed when the System instance is deleted. """ # A) Assign all attributes self._coordinates = np.array(coordinates, dtype=float, copy=False) self._numbers = np.array(numbers, dtype=int, copy=False) # some checks if len(self._coordinates.shape ) != 2 or self._coordinates.shape[1] != 3: raise TypeError( 'coordinates argument must be a 2D array with three columns') if len(self._numbers.shape) != 1: raise TypeError('numbers must a vector of integers.') if self._numbers.shape[0] != self._coordinates.shape[0]: raise TypeError( 'numbers and coordinates must have compatible array shapes.') # self._grid = grid # self._wfn = wfn # if cache is None: self._cache = Cache() elif isinstance(cache, Cache): self._cache = cache elif isinstance(cache, dict): self._cache = Cache() for key, (value, tags) in cache.iteritems(): self._cache.dump(key, value, tags=tags) else: raise TypeError('Could not interpret the cache argument.') # if lf is None: self._lf = DenseLinalgFactory() else: self._lf = lf # if extra is None: self._extra = {} else: self._extra = extra # self._obasis = None self._obasis_desc = None if obasis is not None: self.update_obasis(obasis) self._cell = cell self._pseudo_numbers = pseudo_numbers # The checkpoint file self._chk = None self._close_chk = False self.assign_chk(chk) self._log_init()