Ejemplo n.º 1
0
def check_methyl_os_tpss(scf_solver):
    """Try to converge the SCF for the methyl radical molecule with the TPSS functional.

    Parameters
    ----------
    scf_solver : one of the SCFSolver types in HORTON
                 A configured SCF solver that must be tested.
    """
    fn_fchk = context.get_fn('test/methyl_tpss_321g.fchk')
    mol = IOData.from_file(fn_fchk)
    grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'fine',
                        random_rotate=False)
    olp = mol.obasis.compute_overlap()
    kin = mol.obasis.compute_kinetic()
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers)
    er = mol.obasis.compute_electron_repulsion()
    external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}
    terms = [
        UTwoIndexTerm(kin, 'kin'),
        UDirectTerm(er, 'hartree'),
        UGridGroup(mol.obasis, grid, [
            ULibXCMGGA('x_tpss'),
            ULibXCMGGA('c_tpss'),
        ]),
        UTwoIndexTerm(na, 'ne'),
    ]
    ham = UEffHam(terms, external)

    # compute the energy before converging
    dm_alpha = mol.orb_alpha.to_dm()
    dm_beta = mol.orb_beta.to_dm()
    ham.reset(dm_alpha, dm_beta)
    ham.compute_energy()
    assert abs(ham.cache['energy'] - -39.6216986265) < 1e-3

    # The convergence should be reasonable, not perfect because of limited
    # precision in the molden file:
    assert convergence_error_eigen(ham, olp, mol.orb_alpha, mol.orb_beta) < 1e-3

    # keep a copy of the orbital energies
    expected_alpha_energies = mol.orb_alpha.energies.copy()
    expected_beta_energies = mol.orb_beta.energies.copy()

    # Converge from scratch
    occ_model = AufbauOccModel(5, 4)
    check_solve(ham, scf_solver, occ_model, olp, kin, na, mol.orb_alpha, mol.orb_beta)

    # test orbital energies
    assert abs(mol.orb_alpha.energies - expected_alpha_energies).max() < 2e-3
    assert abs(mol.orb_beta.energies - expected_beta_energies).max() < 2e-3

    ham.compute_energy()
    # compare with
    assert abs(ham.cache['energy_kin'] - 38.98408965928) < 1e-2
    assert abs(ham.cache['energy_ne'] - -109.2368837076) < 1e-2
    assert abs(ham.cache['energy_hartree'] + ham.cache['energy_libxc_mgga_x_tpss'] +
               ham.cache['energy_libxc_mgga_c_tpss'] - 21.55131145126) < 1e-2
    assert abs(ham.cache['energy'] - -39.6216986265) < 1e-3
    assert abs(ham.cache['energy_nn'] - 9.0797839705) < 1e-5
Ejemplo n.º 2
0
def check_h3_os_pbe(scf_solver):
    fn_fchk = context.get_fn("test/h3_pbe_321g.fchk")
    mol = IOData.from_file(fn_fchk)
    grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, "veryfine", random_rotate=False)
    olp = mol.obasis.compute_overlap(mol.lf)
    kin = mol.obasis.compute_kinetic(mol.lf)
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers, mol.lf)
    er = mol.obasis.compute_electron_repulsion(mol.lf)
    external = {"nn": compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}
    terms = [
        UTwoIndexTerm(kin, "kin"),
        UDirectTerm(er, "hartree"),
        UGridGroup(mol.obasis, grid, [ULibXCGGA("x_pbe"), ULibXCGGA("c_pbe")]),
        UTwoIndexTerm(na, "ne"),
    ]
    ham = UEffHam(terms, external)

    # compute the energy before converging
    dm_alpha = mol.exp_alpha.to_dm()
    dm_beta = mol.exp_beta.to_dm()
    ham.reset(dm_alpha, dm_beta)
    ham.compute_energy()
    assert abs(ham.cache["energy"] - -1.593208400939354e00) < 1e-5

    # The convergence should be reasonable, not perfect because of limited
    # precision in Gaussian fchk file:
    assert convergence_error_eigen(ham, mol.lf, olp, mol.exp_alpha, mol.exp_beta) < 2e-6

    # Converge from scratch
    occ_model = AufbauOccModel(2, 1)
    check_solve(ham, scf_solver, occ_model, mol.lf, olp, kin, na, mol.exp_alpha, mol.exp_beta)

    # test orbital energies
    expected_energies = np.array(
        [-5.41141676e-01, -1.56826691e-01, 2.13089637e-01, 7.13565167e-01, 7.86810564e-01, 1.40663544e00]
    )
    assert abs(mol.exp_alpha.energies - expected_energies).max() < 2e-5
    expected_energies = np.array(
        [-4.96730336e-01, -5.81411249e-02, 2.73586652e-01, 7.41987185e-01, 8.76161160e-01, 1.47488421e00]
    )
    assert abs(mol.exp_beta.energies - expected_energies).max() < 2e-5

    ham.compute_energy()
    # compare with g09
    assert abs(ham.cache["energy_ne"] - -6.934705182067e00) < 1e-5
    assert abs(ham.cache["energy_kin"] - 1.948808793424e00) < 1e-5
    assert (
        abs(
            ham.cache["energy_hartree"]
            + ham.cache["energy_libxc_gga_x_pbe"]
            + ham.cache["energy_libxc_gga_c_pbe"]
            - 1.502769385597e00
        )
        < 1e-5
    )
    assert abs(ham.cache["energy"] - -1.593208400939354e00) < 1e-5
    assert abs(ham.cache["energy_nn"] - 1.8899186021) < 1e-8
Ejemplo n.º 3
0
def check_co_cs_pbe(scf_solver):
    fn_fchk = context.get_fn('test/co_pbe_sto3g.fchk')
    mol = IOData.from_file(fn_fchk)
    grid = BeckeMolGrid(mol.coordinates,
                        mol.numbers,
                        mol.pseudo_numbers,
                        'fine',
                        random_rotate=False)
    olp = mol.obasis.compute_overlap(mol.lf)
    kin = mol.obasis.compute_kinetic(mol.lf)
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates,
                                               mol.pseudo_numbers, mol.lf)
    er = mol.obasis.compute_electron_repulsion(mol.lf)
    external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}
    terms = [
        RTwoIndexTerm(kin, 'kin'),
        RDirectTerm(er, 'hartree'),
        RGridGroup(mol.obasis, grid, [
            RLibXCGGA('x_pbe'),
            RLibXCGGA('c_pbe'),
        ]),
        RTwoIndexTerm(na, 'ne'),
    ]
    ham = REffHam(terms, external)

    # Test energy before scf
    energy, focks = helper_compute(ham, mol.lf, mol.exp_alpha)
    assert abs(energy - -1.116465967841901E+02) < 1e-4

    # The convergence should be reasonable, not perfect because of limited
    # precision in Gaussian fchk file:
    assert convergence_error_eigen(ham, mol.lf, olp, mol.exp_alpha) < 1e-5

    # Converge from scratch
    occ_model = AufbauOccModel(7)
    check_solve(ham, scf_solver, occ_model, mol.lf, olp, kin, na,
                mol.exp_alpha)

    # test orbital energies
    expected_energies = np.array([
        -1.86831122E+01, -9.73586915E+00, -1.03946082E+00, -4.09331776E-01,
        -3.48686522E-01, -3.48686522E-01, -2.06049056E-01, 5.23730418E-02,
        5.23730418E-02, 6.61093726E-01
    ])
    assert abs(mol.exp_alpha.energies - expected_energies).max() < 1e-2

    ham.compute_energy()
    # compare with g09
    assert abs(ham.cache['energy_ne'] - -3.072370116827E+02) < 1e-2
    assert abs(ham.cache['energy_kin'] - 1.103410779827E+02) < 1e-2
    assert abs(ham.cache['energy_hartree'] +
               ham.cache['energy_libxc_gga_x_pbe'] +
               ham.cache['energy_libxc_gga_c_pbe'] - 6.273115782683E+01) < 1e-2
    assert abs(ham.cache['energy'] - -1.116465967841901E+02) < 1e-4
    assert abs(ham.cache['energy_nn'] - 22.5181790889) < 1e-7
Ejemplo n.º 4
0
def check_water_cs_hfs(scf_solver):
    fn_fchk = context.get_fn('test/water_hfs_321g.fchk')
    mol = IOData.from_file(fn_fchk)

    grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, random_rotate=False)
    olp = mol.obasis.compute_overlap(mol.lf)
    kin = mol.obasis.compute_kinetic(mol.lf)
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers, mol.lf)
    er = mol.obasis.compute_electron_repulsion(mol.lf)
    external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}
    terms = [
        RTwoIndexTerm(kin, 'kin'),
        RDirectTerm(er, 'hartree'),
        RGridGroup(mol.obasis, grid, [
            RDiracExchange(),
        ]),
        RTwoIndexTerm(na, 'ne'),
    ]
    ham = REffHam(terms, external)

    # The convergence should be reasonable, not perfect because of limited
    # precision in Gaussian fchk file and different integration grids:
    assert convergence_error_eigen(ham, mol.lf, olp, mol.exp_alpha) < 3e-5

    # Recompute the orbitals and orbital energies. This should be reasonably OK.
    dm_alpha = mol.exp_alpha.to_dm()
    ham.reset(dm_alpha)
    ham.compute_energy()
    fock_alpha = mol.lf.create_two_index()
    ham.compute_fock(fock_alpha)
    mol.exp_alpha.from_fock(fock_alpha, olp)

    expected_energies = np.array([
        -1.83691041E+01, -8.29412411E-01, -4.04495188E-01, -1.91740814E-01,
        -1.32190590E-01, 1.16030419E-01, 2.08119657E-01, 9.69825207E-01,
        9.99248500E-01, 1.41697384E+00, 1.47918828E+00, 1.61926596E+00,
        2.71995350E+00
    ])

    assert abs(mol.exp_alpha.energies - expected_energies).max() < 2e-4
    assert abs(ham.cache['energy_ne'] - -1.977921986200E+02) < 1e-7
    assert abs(ham.cache['energy_kin'] - 7.525067610865E+01) < 1e-9
    assert abs(ham.cache['energy_hartree'] + ham.cache['energy_x_dirac'] - 3.864299848058E+01) < 2e-4
    assert abs(ham.cache['energy'] - -7.474134898935590E+01) < 2e-4
    assert abs(ham.cache['energy_nn'] - 9.1571750414) < 2e-8

    # Converge from scratch and check energies
    occ_model = AufbauOccModel(5)
    check_solve(ham, scf_solver, occ_model, mol.lf, olp, kin, na, mol.exp_alpha)

    ham.compute_energy()
    assert abs(ham.cache['energy_ne'] - -1.977921986200E+02) < 1e-4
    assert abs(ham.cache['energy_kin'] - 7.525067610865E+01) < 1e-4
    assert abs(ham.cache['energy_hartree'] + ham.cache['energy_x_dirac'] - 3.864299848058E+01) < 2e-4
    assert abs(ham.cache['energy'] - -7.474134898935590E+01) < 2e-4
Ejemplo n.º 5
0
def check_water_cs_m05(scf_solver):
    """Try to converge the SCF for the water molecule with the M05 functional.

    Parameters
    ----------
    scf_solver : one of the SCFSolver types in HORTON
                 A configured SCF solver that must be tested.
    """
    fn_fchk = context.get_fn('test/water_m05_321g.fchk')
    mol = IOData.from_file(fn_fchk)
    grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'fine',
                        random_rotate=False)
    olp = mol.obasis.compute_overlap()
    kin = mol.obasis.compute_kinetic()
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers)
    er = mol.obasis.compute_electron_repulsion()
    external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}
    libxc_term = RLibXCHybridMGGA('xc_m05')
    terms = [
        RTwoIndexTerm(kin, 'kin'),
        RDirectTerm(er, 'hartree'),
        RGridGroup(mol.obasis, grid, [libxc_term]),
        RExchangeTerm(er, 'x_hf', libxc_term.get_exx_fraction()),
        RTwoIndexTerm(na, 'ne'),
    ]
    ham = REffHam(terms, external)

    # compute the energy before converging
    dm_alpha = mol.orb_alpha.to_dm()
    ham.reset(dm_alpha)
    ham.compute_energy()
    assert abs(ham.cache['energy'] - -75.9532086800) < 1e-3

    # The convergence should be reasonable, not perfect because of limited
    # precision in the molden file:
    assert convergence_error_eigen(ham, olp, mol.orb_alpha) < 1e-3

    # keep a copy of the orbital energies
    expected_alpha_energies = mol.orb_alpha.energies.copy()

    # Converge from scratch
    occ_model = AufbauOccModel(5)
    check_solve(ham, scf_solver, occ_model, olp, kin, na, mol.orb_alpha)

    # test orbital energies
    assert abs(mol.orb_alpha.energies - expected_alpha_energies).max() < 2e-3

    ham.compute_energy()
    # compare with
    assert abs(ham.cache['energy_kin'] - 75.54463056278) < 1e-2
    assert abs(ham.cache['energy_ne'] - -198.3003887880) < 1e-2
    assert abs(ham.cache['energy_hartree'] + ham.cache['energy_x_hf'] +
               ham.cache['energy_libxc_hyb_mgga_xc_m05'] - 3.764537450376E+01) < 1e-2
    assert abs(ham.cache['energy'] - -75.9532086800) < 1e-3
    assert abs(ham.cache['energy_nn'] - 9.1571750414) < 1e-5
Ejemplo n.º 6
0
def check_water_cs_hfs(scf_solver):
    fn_fchk = context.get_fn('test/water_hfs_321g.fchk')
    mol = IOData.from_file(fn_fchk)

    grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, random_rotate=False)
    olp = mol.obasis.compute_overlap()
    kin = mol.obasis.compute_kinetic()
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers)
    er = mol.obasis.compute_electron_repulsion()
    external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}
    terms = [
        RTwoIndexTerm(kin, 'kin'),
        RDirectTerm(er, 'hartree'),
        RGridGroup(mol.obasis, grid, [
            RDiracExchange(),
        ]),
        RTwoIndexTerm(na, 'ne'),
    ]
    ham = REffHam(terms, external)

    # The convergence should be reasonable, not perfect because of limited
    # precision in Gaussian fchk file and different integration grids:
    assert convergence_error_eigen(ham, olp, mol.orb_alpha) < 3e-5

    # Recompute the orbitals and orbital energies. This should be reasonably OK.
    dm_alpha = mol.orb_alpha.to_dm()
    ham.reset(dm_alpha)
    ham.compute_energy()
    fock_alpha = np.zeros(dm_alpha.shape)
    ham.compute_fock(fock_alpha)
    mol.orb_alpha.from_fock(fock_alpha, olp)

    expected_energies = np.array([
        -1.83691041E+01, -8.29412411E-01, -4.04495188E-01, -1.91740814E-01,
        -1.32190590E-01, 1.16030419E-01, 2.08119657E-01, 9.69825207E-01,
        9.99248500E-01, 1.41697384E+00, 1.47918828E+00, 1.61926596E+00,
        2.71995350E+00
    ])

    assert abs(mol.orb_alpha.energies - expected_energies).max() < 2e-4
    assert abs(ham.cache['energy_ne'] - -1.977921986200E+02) < 1e-7
    assert abs(ham.cache['energy_kin'] - 7.525067610865E+01) < 1e-9
    assert abs(ham.cache['energy_hartree'] + ham.cache['energy_x_dirac'] - 3.864299848058E+01) < 2e-4
    assert abs(ham.cache['energy'] - -7.474134898935590E+01) < 2e-4
    assert abs(ham.cache['energy_nn'] - 9.1571750414) < 2e-8

    # Converge from scratch and check energies
    occ_model = AufbauOccModel(5)
    check_solve(ham, scf_solver, occ_model, olp, kin, na, mol.orb_alpha)

    ham.compute_energy()
    assert abs(ham.cache['energy_ne'] - -1.977921986200E+02) < 1e-4
    assert abs(ham.cache['energy_kin'] - 7.525067610865E+01) < 1e-4
    assert abs(ham.cache['energy_hartree'] + ham.cache['energy_x_dirac'] - 3.864299848058E+01) < 2e-4
    assert abs(ham.cache['energy'] - -7.474134898935590E+01) < 2e-4
Ejemplo n.º 7
0
def check_h3_os_pbe(scf_solver):
    fn_fchk = context.get_fn('test/h3_pbe_321g.fchk')
    mol = IOData.from_file(fn_fchk)
    grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'veryfine', random_rotate=False)
    olp = mol.obasis.compute_overlap()
    kin = mol.obasis.compute_kinetic()
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers)
    er = mol.obasis.compute_electron_repulsion()
    external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}
    terms = [
        UTwoIndexTerm(kin, 'kin'),
        UDirectTerm(er, 'hartree'),
        UGridGroup(mol.obasis, grid, [
            ULibXCGGA('x_pbe'),
            ULibXCGGA('c_pbe'),
        ]),
        UTwoIndexTerm(na, 'ne'),
    ]
    ham = UEffHam(terms, external)

    # compute the energy before converging
    dm_alpha = mol.orb_alpha.to_dm()
    dm_beta = mol.orb_beta.to_dm()
    ham.reset(dm_alpha, dm_beta)
    ham.compute_energy()
    assert abs(ham.cache['energy'] - -1.593208400939354E+00) < 1e-5

    # The convergence should be reasonable, not perfect because of limited
    # precision in Gaussian fchk file:
    assert convergence_error_eigen(ham, olp, mol.orb_alpha, mol.orb_beta) < 2e-6

    # Converge from scratch
    occ_model = AufbauOccModel(2, 1)
    check_solve(ham, scf_solver, occ_model, olp, kin, na, mol.orb_alpha, mol.orb_beta)

    # test orbital energies
    expected_energies = np.array([
        -5.41141676E-01, -1.56826691E-01, 2.13089637E-01, 7.13565167E-01,
        7.86810564E-01, 1.40663544E+00
    ])
    assert abs(mol.orb_alpha.energies - expected_energies).max() < 2e-5
    expected_energies = np.array([
        -4.96730336E-01, -5.81411249E-02, 2.73586652E-01, 7.41987185E-01,
        8.76161160E-01, 1.47488421E+00
    ])
    assert abs(mol.orb_beta.energies - expected_energies).max() < 2e-5

    ham.compute_energy()
    # compare with g09
    assert abs(ham.cache['energy_ne'] - -6.934705182067E+00) < 1e-5
    assert abs(ham.cache['energy_kin'] - 1.948808793424E+00) < 1e-5
    assert abs(ham.cache['energy_hartree'] + ham.cache['energy_libxc_gga_x_pbe'] + ham.cache['energy_libxc_gga_c_pbe'] - 1.502769385597E+00) < 1e-5
    assert abs(ham.cache['energy'] - -1.593208400939354E+00) < 1e-5
    assert abs(ham.cache['energy_nn'] - 1.8899186021) < 1e-8
Ejemplo n.º 8
0
def check_co_cs_pbe(scf_solver):
    fn_fchk = context.get_fn('test/co_pbe_sto3g.fchk')
    mol = IOData.from_file(fn_fchk)
    grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'fine', random_rotate=False)
    olp = mol.obasis.compute_overlap(mol.lf)
    kin = mol.obasis.compute_kinetic(mol.lf)
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers, mol.lf)
    er = mol.obasis.compute_electron_repulsion(mol.lf)
    external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}
    terms = [
        RTwoIndexTerm(kin, 'kin'),
        RDirectTerm(er, 'hartree'),
        RGridGroup(mol.obasis, grid, [
            RLibXCGGA('x_pbe'),
            RLibXCGGA('c_pbe'),
        ]),
        RTwoIndexTerm(na, 'ne'),
    ]
    ham = REffHam(terms, external)

    # Test energy before scf
    energy, focks = helper_compute(ham, mol.lf, mol.exp_alpha)
    assert abs(energy - -1.116465967841901E+02) < 1e-4

    # The convergence should be reasonable, not perfect because of limited
    # precision in Gaussian fchk file:
    assert convergence_error_eigen(ham, mol.lf, olp, mol.exp_alpha) < 1e-5

    # Converge from scratch
    occ_model = AufbauOccModel(7)
    check_solve(ham, scf_solver, occ_model, mol.lf, olp, kin, na, mol.exp_alpha)

    # test orbital energies
    expected_energies = np.array([
         -1.86831122E+01, -9.73586915E+00, -1.03946082E+00, -4.09331776E-01,
         -3.48686522E-01, -3.48686522E-01, -2.06049056E-01, 5.23730418E-02,
         5.23730418E-02, 6.61093726E-01
    ])
    assert abs(mol.exp_alpha.energies - expected_energies).max() < 1e-2

    ham.compute_energy()
    # compare with g09
    assert abs(ham.cache['energy_ne'] - -3.072370116827E+02) < 1e-2
    assert abs(ham.cache['energy_kin'] - 1.103410779827E+02) < 1e-2
    assert abs(ham.cache['energy_hartree'] + ham.cache['energy_libxc_gga_x_pbe'] + ham.cache['energy_libxc_gga_c_pbe'] - 6.273115782683E+01) < 1e-2
    assert abs(ham.cache['energy'] - -1.116465967841901E+02) < 1e-4
    assert abs(ham.cache['energy_nn'] - 22.5181790889) < 1e-7
Ejemplo n.º 9
0
 def error(self, ham, lf, overlap, *exps):
     '''See :py:func:`horton.meanfield.convergence.convergence_error_eigen`.'''
     return convergence_error_eigen(ham, lf, overlap, *exps)
Ejemplo n.º 10
0
 def error(self, ham, lf, overlap, *exps):
     '''See :py:func:`horton.meanfield.convergence.convergence_error_eigen`.'''
     return convergence_error_eigen(ham, lf, overlap, *exps)
Ejemplo n.º 11
0
def check_h3_os_hfs(scf_solver):
    fn_fchk = context.get_fn('test/h3_hfs_321g.fchk')
    mol = IOData.from_file(fn_fchk)
    grid = BeckeMolGrid(mol.coordinates,
                        mol.numbers,
                        mol.pseudo_numbers,
                        'veryfine',
                        random_rotate=False)
    olp = mol.obasis.compute_overlap(mol.lf)
    kin = mol.obasis.compute_kinetic(mol.lf)
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates,
                                               mol.pseudo_numbers, mol.lf)
    er = mol.obasis.compute_electron_repulsion(mol.lf)
    external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}

    libxc_term = ULibXCLDA('x')
    terms1 = [
        UTwoIndexTerm(kin, 'kin'),
        UDirectTerm(er, 'hartree'),
        UGridGroup(mol.obasis, grid, [libxc_term]),
        UTwoIndexTerm(na, 'ne'),
    ]
    ham1 = UEffHam(terms1, external)

    builtin_term = UDiracExchange()
    terms2 = [
        UTwoIndexTerm(kin, 'kin'),
        UDirectTerm(er, 'hartree'),
        UGridGroup(mol.obasis, grid, [builtin_term]),
        UTwoIndexTerm(na, 'ne'),
    ]
    ham2 = UEffHam(terms2, external)

    # Compare the potential computed by libxc with the builtin implementation
    energy1, focks1 = helper_compute(ham1, mol.lf, mol.exp_alpha, mol.exp_beta)
    energy2, focks2 = helper_compute(ham2, mol.lf, mol.exp_alpha, mol.exp_beta)
    libxc_pot = ham1.cache.load('pot_libxc_lda_x_both')[:, 0]
    builtin_pot = ham2.cache.load('pot_x_dirac_alpha')
    # Libxc apparently approximates values of the potential below 1e-4 with zero.
    assert abs(libxc_pot - builtin_pot).max() < 1e-4
    # Check of the libxc energy matches our implementation
    assert abs(energy1 - energy2) < 1e-10
    ex1 = ham1.cache['energy_libxc_lda_x']
    ex2 = ham2.cache['energy_x_dirac']
    assert abs(ex1 - ex2) < 1e-10

    # The convergence should be reasonable, not perfect because of limited
    # precision in Gaussian fchk file:
    assert convergence_error_eigen(ham1, mol.lf, olp, mol.exp_alpha,
                                   mol.exp_beta) < 1e-5
    assert convergence_error_eigen(ham2, mol.lf, olp, mol.exp_alpha,
                                   mol.exp_beta) < 1e-5

    occ_model = AufbauOccModel(2, 1)
    for ham in ham1, ham2:
        # Converge from scratch
        check_solve(ham, scf_solver, occ_model, mol.lf, olp, kin, na,
                    mol.exp_alpha, mol.exp_beta)

        # test orbital energies
        expected_energies = np.array([
            -4.93959157E-01, -1.13961330E-01, 2.38730924E-01, 7.44216538E-01,
            8.30143356E-01, 1.46613581E+00
        ])
        assert abs(mol.exp_alpha.energies - expected_energies).max() < 1e-5
        expected_energies = np.array([
            -4.34824166E-01, 1.84114514E-04, 3.24300545E-01, 7.87622756E-01,
            9.42415831E-01, 1.55175481E+00
        ])
        assert abs(mol.exp_beta.energies - expected_energies).max() < 1e-5

        ham.compute_energy()
        # compare with g09
        assert abs(ham.cache['energy_ne'] - -6.832069993374E+00) < 1e-5
        assert abs(ham.cache['energy_kin'] - 1.870784279014E+00) < 1e-5
        assert abs(ham.cache['energy'] - -1.412556114057104E+00) < 1e-5
        assert abs(ham.cache['energy_nn'] - 1.8899186021) < 1e-8

    assert abs(ham1.cache['energy_hartree'] +
               ham1.cache['energy_libxc_lda_x'] - 1.658810998195E+00) < 1e-6
    assert abs(ham2.cache['energy_hartree'] + ham2.cache['energy_x_dirac'] -
               1.658810998195E+00) < 1e-6
Ejemplo n.º 12
0
def check_n2_cs_hfs(scf_solver):
    fn_fchk = context.get_fn('test/n2_hfs_sto3g.fchk')
    mol = IOData.from_file(fn_fchk)
    grid = BeckeMolGrid(mol.coordinates,
                        mol.numbers,
                        mol.pseudo_numbers,
                        'veryfine',
                        random_rotate=False)
    olp = mol.obasis.compute_overlap(mol.lf)
    kin = mol.obasis.compute_kinetic(mol.lf)
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates,
                                               mol.pseudo_numbers, mol.lf)
    er = mol.obasis.compute_electron_repulsion(mol.lf)
    external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}

    libxc_term = RLibXCLDA('x')
    terms1 = [
        RTwoIndexTerm(kin, 'kin'),
        RDirectTerm(er, 'hartree'),
        RGridGroup(mol.obasis, grid, [libxc_term]),
        RTwoIndexTerm(na, 'ne'),
    ]
    ham1 = REffHam(terms1, external)

    builtin_term = RDiracExchange()
    terms2 = [
        RTwoIndexTerm(kin, 'kin'),
        RDirectTerm(er, 'hartree'),
        RGridGroup(mol.obasis, grid, [builtin_term]),
        RTwoIndexTerm(na, 'ne'),
    ]
    ham2 = REffHam(terms2, external)

    # Compare the potential computed by libxc with the builtin implementation
    energy1, focks1 = helper_compute(ham1, mol.lf, mol.exp_alpha)
    energy2, focks2 = helper_compute(ham2, mol.lf, mol.exp_alpha)
    libxc_pot = ham1.cache.load('pot_libxc_lda_x_alpha')
    builtin_pot = ham2.cache.load('pot_x_dirac_alpha')
    # Libxc apparently approximates values of the potential below 1e-4 with zero.
    assert abs(libxc_pot - builtin_pot).max() < 1e-4
    # Check of the libxc energy matches our implementation
    assert abs(energy1 - energy2) < 1e-10
    ex1 = ham1.cache['energy_libxc_lda_x']
    ex2 = ham2.cache['energy_x_dirac']
    assert abs(ex1 - ex2) < 1e-10

    # The convergence should be reasonable, not perfect because of limited
    # precision in Gaussian fchk file:
    assert convergence_error_eigen(ham1, mol.lf, olp, mol.exp_alpha) < 1e-5
    assert convergence_error_eigen(ham2, mol.lf, olp, mol.exp_alpha) < 1e-5

    occ_model = AufbauOccModel(7)
    for ham in ham1, ham2:
        # Converge from scratch
        check_solve(ham, scf_solver, occ_model, mol.lf, olp, kin, na,
                    mol.exp_alpha)

        # test orbital energies
        expected_energies = np.array([
            -1.37107053E+01,
            -1.37098006E+01,
            -9.60673085E-01,
            -3.57928483E-01,
            -3.16017655E-01,
            -3.16017655E-01,
            -2.12998316E-01,
            6.84030479E-02,
            6.84030479E-02,
            7.50192517E-01,
        ])
        assert abs(mol.exp_alpha.energies - expected_energies).max() < 3e-5

        ham.compute_energy()
        assert abs(ham.cache['energy_ne'] - -2.981579553570E+02) < 1e-5
        assert abs(ham.cache['energy_kin'] - 1.061620887711E+02) < 1e-5
        assert abs(ham.cache['energy'] - -106.205213597) < 1e-4
        assert abs(ham.cache['energy_nn'] - 23.3180604505) < 1e-8
    assert abs(ham1.cache['energy_hartree'] +
               ham1.cache['energy_libxc_lda_x'] - 6.247259253877E+01) < 1e-4
    assert abs(ham2.cache['energy_hartree'] + ham2.cache['energy_x_dirac'] -
               6.247259253877E+01) < 1e-4
Ejemplo n.º 13
0
def check_h3_os_hfs(scf_solver):
    fn_fchk = context.get_fn('test/h3_hfs_321g.fchk')
    mol = IOData.from_file(fn_fchk)
    grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'veryfine', random_rotate=False)
    olp = mol.obasis.compute_overlap(mol.lf)
    kin = mol.obasis.compute_kinetic(mol.lf)
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers, mol.lf)
    er = mol.obasis.compute_electron_repulsion(mol.lf)
    external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}

    libxc_term = ULibXCLDA('x')
    terms1 = [
        UTwoIndexTerm(kin, 'kin'),
        UDirectTerm(er, 'hartree'),
        UGridGroup(mol.obasis, grid, [libxc_term]),
        UTwoIndexTerm(na, 'ne'),
    ]
    ham1 = UEffHam(terms1, external)

    builtin_term = UDiracExchange()
    terms2 = [
        UTwoIndexTerm(kin, 'kin'),
        UDirectTerm(er, 'hartree'),
        UGridGroup(mol.obasis, grid, [builtin_term]),
        UTwoIndexTerm(na, 'ne'),
    ]
    ham2 = UEffHam(terms2, external)

    # Compare the potential computed by libxc with the builtin implementation
    energy1, focks1 = helper_compute(ham1, mol.lf, mol.exp_alpha, mol.exp_beta)
    energy2, focks2 = helper_compute(ham2, mol.lf, mol.exp_alpha, mol.exp_beta)
    libxc_pot = ham1.cache.load('pot_libxc_lda_x_both')[:,0]
    builtin_pot = ham2.cache.load('pot_x_dirac_alpha')
    # Libxc apparently approximates values of the potential below 1e-4 with zero.
    assert abs(libxc_pot - builtin_pot).max() < 1e-4
    # Check of the libxc energy matches our implementation
    assert abs(energy1 - energy2) < 1e-10
    ex1 = ham1.cache['energy_libxc_lda_x']
    ex2 = ham2.cache['energy_x_dirac']
    assert abs(ex1 - ex2) < 1e-10

    # The convergence should be reasonable, not perfect because of limited
    # precision in Gaussian fchk file:
    assert convergence_error_eigen(ham1, mol.lf, olp, mol.exp_alpha, mol.exp_beta) < 1e-5
    assert convergence_error_eigen(ham2, mol.lf, olp, mol.exp_alpha, mol.exp_beta) < 1e-5

    occ_model = AufbauOccModel(2, 1)
    for ham in ham1, ham2:
        # Converge from scratch
        check_solve(ham, scf_solver, occ_model, mol.lf, olp, kin, na, mol.exp_alpha, mol.exp_beta)

        # test orbital energies
        expected_energies = np.array([
            -4.93959157E-01, -1.13961330E-01, 2.38730924E-01, 7.44216538E-01,
            8.30143356E-01, 1.46613581E+00
        ])
        assert abs(mol.exp_alpha.energies - expected_energies).max() < 1e-5
        expected_energies = np.array([
            -4.34824166E-01, 1.84114514E-04, 3.24300545E-01, 7.87622756E-01,
            9.42415831E-01, 1.55175481E+00
        ])
        assert abs(mol.exp_beta.energies - expected_energies).max() < 1e-5

        ham.compute_energy()
        # compare with g09
        assert abs(ham.cache['energy_ne'] - -6.832069993374E+00) < 1e-5
        assert abs(ham.cache['energy_kin'] - 1.870784279014E+00) < 1e-5
        assert abs(ham.cache['energy'] - -1.412556114057104E+00) < 1e-5
        assert abs(ham.cache['energy_nn'] - 1.8899186021) < 1e-8

    assert abs(ham1.cache['energy_hartree'] + ham1.cache['energy_libxc_lda_x'] - 1.658810998195E+00) < 1e-6
    assert abs(ham2.cache['energy_hartree'] + ham2.cache['energy_x_dirac'] - 1.658810998195E+00) < 1e-6
Ejemplo n.º 14
0
def check_n2_cs_hfs(scf_solver):
    fn_fchk = context.get_fn('test/n2_hfs_sto3g.fchk')
    mol = IOData.from_file(fn_fchk)
    grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'veryfine', random_rotate=False)
    olp = mol.obasis.compute_overlap(mol.lf)
    kin = mol.obasis.compute_kinetic(mol.lf)
    na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers, mol.lf)
    er = mol.obasis.compute_electron_repulsion(mol.lf)
    external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)}

    libxc_term = RLibXCLDA('x')
    terms1 = [
        RTwoIndexTerm(kin, 'kin'),
        RDirectTerm(er, 'hartree'),
        RGridGroup(mol.obasis, grid, [libxc_term]),
        RTwoIndexTerm(na, 'ne'),
    ]
    ham1 = REffHam(terms1, external)

    builtin_term = RDiracExchange()
    terms2 = [
        RTwoIndexTerm(kin, 'kin'),
        RDirectTerm(er, 'hartree'),
        RGridGroup(mol.obasis, grid, [builtin_term]),
        RTwoIndexTerm(na, 'ne'),
    ]
    ham2 = REffHam(terms2, external)

    # Compare the potential computed by libxc with the builtin implementation
    energy1, focks1 = helper_compute(ham1, mol.lf, mol.exp_alpha)
    energy2, focks2 = helper_compute(ham2, mol.lf, mol.exp_alpha)
    libxc_pot = ham1.cache.load('pot_libxc_lda_x_alpha')
    builtin_pot = ham2.cache.load('pot_x_dirac_alpha')
    # Libxc apparently approximates values of the potential below 1e-4 with zero.
    assert abs(libxc_pot - builtin_pot).max() < 1e-4
    # Check of the libxc energy matches our implementation
    assert abs(energy1 - energy2) < 1e-10
    ex1 = ham1.cache['energy_libxc_lda_x']
    ex2 = ham2.cache['energy_x_dirac']
    assert abs(ex1 - ex2) < 1e-10

    # The convergence should be reasonable, not perfect because of limited
    # precision in Gaussian fchk file:
    assert convergence_error_eigen(ham1, mol.lf, olp, mol.exp_alpha) < 1e-5
    assert convergence_error_eigen(ham2, mol.lf, olp, mol.exp_alpha) < 1e-5

    occ_model = AufbauOccModel(7)
    for ham in ham1, ham2:
        # Converge from scratch
        check_solve(ham, scf_solver, occ_model, mol.lf, olp, kin, na, mol.exp_alpha)

        # test orbital energies
        expected_energies = np.array([
            -1.37107053E+01, -1.37098006E+01, -9.60673085E-01, -3.57928483E-01,
            -3.16017655E-01, -3.16017655E-01, -2.12998316E-01, 6.84030479E-02,
            6.84030479E-02, 7.50192517E-01,
        ])
        assert abs(mol.exp_alpha.energies - expected_energies).max() < 3e-5

        ham.compute_energy()
        assert abs(ham.cache['energy_ne'] - -2.981579553570E+02) < 1e-5
        assert abs(ham.cache['energy_kin'] - 1.061620887711E+02) < 1e-5
        assert abs(ham.cache['energy'] - -106.205213597) < 1e-4
        assert abs(ham.cache['energy_nn'] - 23.3180604505) < 1e-8
    assert abs(ham1.cache['energy_hartree'] + ham1.cache['energy_libxc_lda_x'] - 6.247259253877E+01) < 1e-4
    assert abs(ham2.cache['energy_hartree'] + ham2.cache['energy_x_dirac'] - 6.247259253877E+01) < 1e-4