Ejemplo n.º 1
0
class BOOptimizer(object):
    def __init__(self, hptuning_config):
        self.hptuning_config = hptuning_config
        self.n_initial_trials = self.hptuning_config.bo.n_initial_trials
        self.space = SearchSpace(hptuning_config=hptuning_config)
        self.utility_function = UtilityFunction(
            config=hptuning_config.bo.utility_function,
            seed=hptuning_config.seed)
        self.n_warmup = hptuning_config.bo.utility_function.n_warmup or 5000
        self.n_iter = hptuning_config.bo.utility_function.n_iter or 150

    def _maximize(self):
        """ Find argmax of the acquisition function."""
        if not self.space.is_observations_valid():
            return None
        y_max = self.space.y.max()
        self.utility_function.gaussian_process.fit(self.space.x, self.space.y)
        return self.utility_function.max_compute(y_max=y_max,
                                                 bounds=self.space.bounds,
                                                 n_warmup=self.n_warmup,
                                                 n_iter=self.n_iter)

    def add_observations(self, configs, metrics):
        # Turn configs and metrics into data points
        self.space.add_observations(configs=configs, metrics=metrics)

    def get_suggestion(self):
        x = self._maximize()
        return self.space.get_suggestion(x)
Ejemplo n.º 2
0
class BOOptimizer(object):

    def __init__(self, hptuning_config):
        self.hptuning_config = hptuning_config
        self.n_initial_trials = self.hptuning_config.bo.n_initial_trials
        self.space = SearchSpace(hptuning_config=hptuning_config)
        self.utility_function = UtilityFunction(
            config=hptuning_config.bo.utility_function, seed=hptuning_config.seed)
        self.n_warmup = hptuning_config.bo.utility_function.n_warmup or 5000
        self.n_iter = hptuning_config.bo.utility_function.n_iter or 150

    def _maximize(self):
        """ Find argmax of the acquisition function."""
        if not self.space.is_observations_valid():
            return None
        y_max = self.space.y.max()
        self.utility_function.gaussian_process.fit(self.space.x, self.space.y)
        return self.utility_function.max_compute(y_max=y_max,
                                                 bounds=self.space.bounds,
                                                 n_warmup=self.n_warmup,
                                                 n_iter=self.n_iter)

    def add_observations(self, configs, metrics):
        # Turn configs and metrics into data points
        self.space.add_observations(configs=configs, metrics=metrics)

    def get_suggestion(self):
        x = self._maximize()
        return self.space.get_suggestion(x)
Ejemplo n.º 3
0
    def test_space_get_suggestion(self):
        space1 = SearchSpace(hptuning_config=self.manager1.hptuning_config)

        suggestion = space1.get_suggestion(suggestion=[1, 1, 1])
        assert suggestion == {'feature1': 1, 'feature2': 1, 'feature3': 1}

        suggestion = space1.get_suggestion(suggestion=[1, 1.2, 2])
        assert suggestion == {'feature1': 1, 'feature2': 1.25, 'feature3': 2}

        suggestion = space1.get_suggestion(suggestion=[1, 1.5, 3])
        assert suggestion == {'feature1': 1, 'feature2': 1.5, 'feature3': 3}

        space2 = SearchSpace(hptuning_config=self.manager2.hptuning_config)

        suggestion = space2.get_suggestion(suggestion=[1, 1, 1, 1, 1, 0, 0])
        assert suggestion == {'feature1': 1,
                              'feature2': 1,
                              'feature3': 1,
                              'feature4': 1,
                              'feature5': 'a'}

        suggestion = space2.get_suggestion(suggestion=[1, 1.2, 2, 3, 0, 0, 1])
        assert suggestion == {'feature1': 1,
                              'feature2': 1,
                              'feature3': 2,
                              'feature4': 3,
                              'feature5': 'c'}

        suggestion = space2.get_suggestion(suggestion=[1, 1.8, 3, 3, 0, 1, 0])
        assert suggestion == {'feature1': 1,
                              'feature2': 2,
                              'feature3': 3,
                              'feature4': 3,
                              'feature5': 'b'}
Ejemplo n.º 4
0
    def test_space_get_suggestion(self):
        space1 = SearchSpace(hptuning_config=self.manager1.hptuning_config)

        suggestion = space1.get_suggestion(suggestion=[1, 1, 1])
        assert suggestion == {'feature1': 1, 'feature2': 1, 'feature3': 1}

        suggestion = space1.get_suggestion(suggestion=[1, 1.2, 2])
        assert suggestion == {'feature1': 1, 'feature2': 1.25, 'feature3': 2}

        suggestion = space1.get_suggestion(suggestion=[1, 1.5, 3])
        assert suggestion == {'feature1': 1, 'feature2': 1.5, 'feature3': 3}

        space2 = SearchSpace(hptuning_config=self.manager2.hptuning_config)

        suggestion = space2.get_suggestion(suggestion=[1, 1, 1, 1, 1, 0, 0])
        assert suggestion == {'feature1': 1,
                              'feature2': 1,
                              'feature3': 1,
                              'feature4': 1,
                              'feature5': 'a'}

        suggestion = space2.get_suggestion(suggestion=[1, 1.2, 2, 3, 0, 0, 1])
        assert suggestion == {'feature1': 1,
                              'feature2': 1,
                              'feature3': 2,
                              'feature4': 3,
                              'feature5': 'c'}

        suggestion = space2.get_suggestion(suggestion=[1, 1.8, 3, 3, 0, 1, 0])
        assert suggestion == {'feature1': 1,
                              'feature2': 2,
                              'feature3': 3,
                              'feature4': 3,
                              'feature5': 'b'}