Ejemplo n.º 1
0
def test_one_second_buckets():
	r = fakeredis.FakeStrictRedis()
	bucket_size = 1
	distribution = RedisPopularityDistribution(
		r,
		"DECKS",
		namespace="test",
		ttl=3600,
		bucket_size=bucket_size
	)
	current_ts = datetime.utcnow()
	td = timedelta(microseconds=current_ts.microsecond)
	t_0 = current_ts - td
	t_0_token = int(t_0.timestamp())

	start_token = distribution._to_start_token(t_0)
	assert start_token == t_0_token

	end_token = distribution._to_end_token(t_0)
	assert end_token == t_0_token

	end_token_from_start_token = distribution._convert_to_end_token(start_token)
	assert end_token_from_start_token == end_token

	next_token = distribution._next_token(start_token)
	assert next_token == (start_token + bucket_size)

	t_3 = t_0 + timedelta(seconds=3)
	buckets = distribution._generate_bucket_tokens_between(
		start_token,
		distribution._to_end_token(t_3)
	)
	for index, bucket in enumerate(buckets):
		assert bucket[0] == t_0_token + index
		assert bucket[1] == bucket[0] + (bucket_size - 1)
Ejemplo n.º 2
0
def test_bucket_sizes():
	r = fakeredis.FakeStrictRedis()
	td = timedelta(days=1)
	current_ts = datetime.utcnow()
	yesterday_ts = current_ts - td

	# Test bucket sizes between 15 minutes and 6 hours in 15 minute increments
	for bucket_size in range(900, 21600, 900):
		dist = RedisPopularityDistribution(
			r, "DECKS", namespace="test", bucket_size=bucket_size
		)
		start_token = dist._to_start_token(current_ts)
		end_token = dist._to_end_token(current_ts)
		next_start_token = dist._next_token(start_token)
		assert end_token + 1 == next_start_token
		assert end_token - start_token == bucket_size - 1
		assert dist._convert_to_end_token(start_token) == end_token

		yesterday_start_token = dist._to_start_token(yesterday_ts)
		buckets = dist._generate_bucket_tokens_between(yesterday_start_token, end_token)

		# Assert the first bucket contains the start token
		first_bucket = buckets[0]
		assert first_bucket[0] == yesterday_start_token

		# Assert the last bucket matches the end token
		last_bucket = buckets[-1]
		assert last_bucket[1] == end_token

		# Assert the total number of buckets matches the expected number
		expected_num_buckets = ceil((end_token - yesterday_start_token) / bucket_size)
		assert len(buckets) == expected_num_buckets
Ejemplo n.º 3
0
 def __init__(self, redis, name, max_items=9, bucket_size=5, ttl=600):
     self.name = name
     self.max_items = max_items
     self.bucket_size = bucket_size
     self.observations = RedisPopularityDistribution(
         redis,
         name="%s_OBSERVATIONS" % self.name,
         namespace="POPULARITY",
         ttl=ttl,
         max_items=self.max_items,
         bucket_size=self.bucket_size)
     self.wins = RedisPopularityDistribution(redis,
                                             name="%s_WINS" % self.name,
                                             namespace="POPULARITY",
                                             ttl=ttl,
                                             max_items=self.max_items,
                                             bucket_size=self.bucket_size)
Ejemplo n.º 4
0
 def _popularity_distribution(self, node):
     dist = RedisPopularityDistribution(
         self.redis_primary,
         name=node.key,
         namespace="POPULARITY",
         ttl=self.popularity_ttl,
         max_items=self._max_collection_size_for_depth(node.depth),
         bucket_size=self.bucket_size)
     return dist
Ejemplo n.º 5
0
def get_played_cards_distribution(game_type, redis_client=None, ttl=600):
    if redis_client:
        redis = redis_client
    else:
        redis = get_live_stats_redis()

    name = "PLAYED_CARDS_%s" % game_type
    return RedisPopularityDistribution(redis,
                                       name=name,
                                       namespace="POPULARITY",
                                       ttl=ttl,
                                       max_items=5000,
                                       bucket_size=5)
Ejemplo n.º 6
0
def test_bucket_sizes_and_ttls(_mock_lock):
	r = fakeredis.FakeStrictRedis()
	distribution = RedisPopularityDistribution(
		r,
		"DECKS",
		ttl=5,
		namespace="test",
		bucket_size=1
	)

	# Create t_0 as 5 seconds in the past
	current_ts = datetime.utcnow()
	td = timedelta(seconds=5, microseconds=current_ts.microsecond)
	t_0 = current_ts - td

	def t_N(N):
		return t_0 + timedelta(seconds=N)

	distribution.increment("A", as_of=t_N(1))
	distribution.increment("B", as_of=t_N(2))
	distribution.increment("A", as_of=t_N(3))
	distribution.increment("A", as_of=t_N(4))

	# First assert the full distribution exists
	expected_distribution = {"A": 3.0, "B": 1.0}
	actual_distribution = distribution.distribution()
	assert expected_distribution == actual_distribution

	# Then assert accessing a partial distribution (t_2, t_3) within the full time range
	expected_distribution = {"A": 1.0, "B": 1.0}
	actual_distribution = distribution.distribution(start_ts=t_N(2), end_ts=t_N(3))
	assert expected_distribution == actual_distribution

	# Finally, assert that the first observation of "A" has aged out due to the TTL
	time.sleep(1)

	expected_distribution = {"A": 2.0, "B": 1}
	actual_distribution = distribution.distribution()
	assert expected_distribution == actual_distribution
Ejemplo n.º 7
0
def test_redis_popularity_distribution(_mock_lock):
	r = fakeredis.FakeStrictRedis()
	distribution = RedisPopularityDistribution(r, "DECKS", namespace="test")

	actuals = defaultdict(int)
	for deck in DECKS:
		actuals[deck] += 1
		distribution.increment(deck)

	assert distribution.size() == 18
	assert distribution.observations() == len(DECKS)

	actual_most_popular = list(sorted(actuals.items(), key=lambda t: t[1], reverse=True))
	dist_most_popular = list(
		sorted(distribution.distribution().items(), key=lambda t: t[1], reverse=True)
	)
	actual_result = actual_most_popular[0][0]
	expected_result = int(dist_most_popular[0][0])

	assert actual_result == expected_result
	assert distribution.popularity(expected_result) == 32.0
Ejemplo n.º 8
0
class PopularityWinrateDistribution:
	def __init__(self, redis, name, max_items=9, bucket_size=5, ttl=600, use_lua=None):
		self.name = name
		self.max_items = max_items
		self.bucket_size = bucket_size
		self.observations = RedisPopularityDistribution(
			redis,
			name="%s_OBSERVATIONS" % self.name,
			namespace="POPULARITY",
			ttl=ttl,
			max_items=self.max_items,
			bucket_size=self.bucket_size,
			use_lua=use_lua
		)
		self.wins = RedisPopularityDistribution(
			redis,
			name="%s_WINS" % self.name,
			namespace="POPULARITY",
			ttl=ttl,
			max_items=self.max_items,
			bucket_size=self.bucket_size,
			use_lua=use_lua
		)

	def increment(self, key, win=False, as_of=None):
		self.observations.increment(key, as_of=as_of)
		if win:
			self.wins.increment(key, as_of=as_of)

	def distribution(self, start_ts, end_ts):
		games = self.observations.distribution(
			start_ts=start_ts,
			end_ts=end_ts,
		)
		wins = self.wins.distribution(
			start_ts=start_ts,
			end_ts=end_ts,
		)
		result = {}
		for key, val in games.items():
			result[key] = {
				"games": val,
				"wins": wins.get(key, 0)
			}
		return result