def test(self) : self.assertEquals(breaks("hello world"),"\nhello world\n") self.assertEquals(p('hello world'),"<p>hello world</p>") self.assertEquals(div('hello world'),"<div>hello world</div>") self.assertEquals(div({'class':'myclass','id':'myd'},'hello world'), """<div class="myclass" id="myd">hello world</div>""") self.assertEquals(div('a','b'),'<div>ab</div>') self.assertEquals(p(),'<p/>') self.assertEquals(html( head(), body( h2("Header"), p('para1'), p('para2') )), """<html><head/><body><h2>Header</h2><p>para1</p><p>para2</p></body></html>""")
def do_dataset(dataset='ia21h2eaq', fileroot='observations', local='no'): ''' Make html files for a single dataset 110203 ksl Added local swithch which controls where the real working directory is to make testing easier 140307 ksl Added information about scans and subarray observations ''' record = per_list.read_ordered_list_one(fileroot, dataset) if len(record) == 0: return 'NOK: make_html failed becaouse could not find dataset %s' % dataset work_dir = per_list.set_path( record[0], 'no', local) # This will be the Persist directory for the dataset fig_dir = work_dir + '/Figs/' # This will be the directory where figures are stored html_filename = work_dir + dataset + '_persist.html' # page=markup.page() title = 'Persistence Removal Evaluation for dataset %s' % dataset page = html.begin(title) # page.init(title='Persistence Removal Evaluation for dataset %s' % dataset) # page.h1('Persistence Removal Evaluation for %s' % dataset) # page.p('''This page contains images for the evaluation of how well persistence has been removed from an image''') page = page + html.paragraph( '''This page contains images for the evaluation of how well persistence has been removed from an image''' ) # Look for the history file for this dataset history_file = dataset + '.txt' if os.path.exists(work_dir + history_file): string = '''The history file for the processing of this dataset is ''' string = string + html.link("here", href=history_file) page = page + html.paragraph(string) # read history simply returns all of the lines in the history file that begin with ! # And so any processing of these lines still has to be done lines, table1, table2 = read_history(work_dir + history_file) for line in lines: page = page + html.paragraph(line) if len(table1) > 0: page = page + html.h2( 'Earlier exposures that could affect this image') page = page + html.table(table1) if len(table2) > 0: page = page + html.h2( 'External and total persistence for this image') string = '''External persistence is persistance from previous visits; internal persistence is persistence induced from exposures in this vist. Total persistence includes both internal and external persistence. . Generally, self-induced or internal persistence is only important if the dithers larger than the psf have been used within the visit''' page = page + html.paragraph(string) page = page + html.table(table2) else: page = page + html.paragraph( ''' The history file for this dataset appears to be missing. Check that the file has been processed''' ) page = page + html.hline(size='3', width='100') string = '''The next 4-panel image shows the original flt image (upper left), the corrected flt image (upper right), the persistence model (lower left) and the stimulus (lower right). The stimulus is simply the image constructed maximum value in electrons of any of the images that went into the stimulus model''' # Look for the summary image xname = dataset + '_subtract.png' if os.path.exists(fig_dir + xname): # page.img(src='Figs/'+xname,width=600,height=600,alt="Thumbnails") page = page + html.image( image='Figs/' + xname, width=600, height=600, alt="Thumbnails") else: # page.p('''The summary image is missing''') page = page + html.paragraph('''The summary image is missing''') # page.hr(size='3',width='100%') page = page + html.hline(size='3', width='100') # Now include the evaluation images string = '''As a qualitative indicator of how well the persistence correction has worked, some of the regions with the highest predicted persistence have been examined. The next two images give an indication of how well the persistence has been subtracted from the images. Both images have the original data in red and the persistence-subtracted data in blue. The first image is a plot of flux vs the persisence model, the second is flux as a function of the stimulus. Ideally the blue curves would all center around 0. The utility of these plots depends on how isolated the persistence peaks are from stars in the image. If these plots are empty, no good regions for evaluation persistence were found.''' page = page + html.paragraph(string) xname = dataset + '.sum1.png' if os.path.exists(fig_dir + xname): # page.img(src='Figs/'+xname,width=300,height=300,alt="Thumbnails") page = page + html.image( 'Figs/' + xname, width=300, height=300, alt="Thumbnails") else: # page.p('''The first evaluation image showing the subtraction is missing''') page = page + '''The first evaluation image showing the subtraction is missing''' xname = dataset + '.sum2.png' if os.path.exists(fig_dir + xname): # page.img(src='Figs/'+xname,width=300,height=300,alt="Thumbnails") page = page + html.image( 'Figs/' + xname, width=300, height=300, alt="Thumbnails") else: # page.p('''The second evaluation image showing the subtraction is missing''') page = page + html.paragraph( '''The second evaluation image showing the subtraction is missing''' ) # page.hr(size='3',width='100%') page = page + html.hline(size=3, width=100) # Look for the peaks summary string = '''This figures indicates what regions were selected for evaluation. The two panels are identical except the regions selected are indicated in the lower panel. ''' page = page + html.paragraph(string) xname = dataset + '_persist.peaks.png' if os.path.exists(fig_dir + xname): # page.img(src='Figs/'+xname,width=600,height=1000,alt="Thumbnails") page = page + html.image( 'Figs/' + xname, width=900, height=900, alt="Thumbnails") else: # page.p('''The summary figure for peak identification is missing''') page = page + html.paragraph( '''The summary figure for peak identification is missing''') # Now find all of the individual peak files: searchstring = fig_dir + dataset + '.peak.*.1.png' print searchstring try: peaks_file = work_dir + dataset + '_persist.peaks.dat' p = open(peaks_file, 'r') lines = p.readlines() p.close except IOError: print 'Warning: %s not found' % peaks_file lines = [] xlines = [] for one in lines: one = one.strip() if one[0] != '#' and len(one) > 0: xlines.append(one) if len(xlines) > 0: string = '''The results for individual regions are shown below. The four panels are a subsection of the original flt file, the predicted persistence in that region, the persistence subtracted flt file, and a plot of pixel values as a function of predicted persistence in the region. Green points are the original values; yellow point are the corrected values. The red and blue lines show the mean values in the original and corrected and corrected images, respectively.''' page = page + html.paragraph(string) page = page + html.hline(size='3', width='100') for one in xlines: word = one.split() x = int(word[0]) y = int(word[1]) z = eval(word[2]) zz = eval(word[3]) # page.p('Persistence at x = %3d, y=%3d' %(x,y)) page = page + html.paragraph( 'Persistence at x = %3d, y=%3d is about %6.3f e/s compared to science image flux of %6.3f e/s' % (x, y, z, zz)) xname = '%s.peak.%03d_%03d.1.png' % (dataset, x, y) if os.path.exists(fig_dir + xname): # page.img(src='Figs/'+xname,width=400,height=400,alt="Thumbnails") page = page + html.image( 'Figs/' + xname, width=400, height=400, alt="Thumbnails") else: # page.p('Figure %s not present' % (work_dir+xname)) page = page + html.paragraph('Figure %s not present' % (work_dir + xname)) # page.hr(size='3',width='100%') page = page + html.hline(size='3', width='100') else: string = '''Unfortunately, no good regions for evaluating persistence were found.''' page = page + html.paragraph(string) page = page + html.hline(size='3', width='100') page = page + html.end() # Open the html file with the appropriate permissions, and then write it g = per_list.open_file(html_filename) g.write('%s' % page) g.close() return 'OK: subtract_html: %s' % html_filename
def main_page(state): global page startPage("Highly Experimental RIF Demonstration Page") page << h.h2("Highly Experimental RIF Demonstration Page") page << h.p("This page currently only does translations between RIF XML and RIF PS, but the idea is to have various non-RIF languages supported as well") #for k in state.keys(): # page << h.p(`k`, '=', `state[k]`) form = h.form(method="GET", class_="f") form << h.h3("Step 1: Select Input Processor") select_input_processor(form, state) form << h.h3("Step 2: Provide Input") select_input(form, state) form << h.h3("Step 3: (Optional) Select transform or analysis plugins") select_middle(form, state) analysis_div = h.div() page << analysis_div form << h.h3("Step 4: Select Output Processor") select_output_processor(form, state) form << h.h3("Step 5: Begin Processing") form << h.br() output_div = h.div() output_done = run(output_div, state, analysis_div) page << form page << output_div if output_done: form << h.input(type="submit", name="action", value="Update Output Below") else: form << h.input(type="submit", name="action", value="Generate Output Below") #form << h.Raw(" ") #form << h.Raw(" ") #form << h.Raw(" ") #form << h.Raw(" ") #form << h.Raw(" ") #form << h.input(type="submit", name="action", value="Generate Output on New Page") if 0: page << h.h3('Translates to...') input = input.replace("\r\n", "\n") action=args.getfirst("action") if action: (notes, output) = translate(input, action) else: notes = "select a processing option" output = "" if notes: page << h.h4('Processor Message:') page << h.pre(notes, style="padding:0.5em; border: 2px solid red;") if output: page << h.pre(output, style="padding:0.5em; border: 2px solid black;") else: page << h.p("-- No Output --") page << h.hr() page << h.p("This page/software was developed by [email protected]. It's too buggy right now to use. Please don't even bother to report bugs.") print page
def make_pages(dbx, dirname): """ Nageneruj stranky a obrazky do adresare dirname """ def add_stat_to_group(groups, groupname, statid): try: groups[groupname].append(statid) except KeyError: groups[groupname] = [statid] def stat_min_date(stat): ''' vrat nejmensi datum v datove rade statistiky stat = [ (datum, hodnota), (datum, hodnota) ...] ''' return min(func.lmap(lambda x: x[0], stat)) if stat else None def stat_max_date(stat): ''' obdobne vrat nejvetsi datum ''' return max(func.lmap(lambda x: x[0], stat)) if stat else None # priprava adresare try: shutil.rmtree(dirname) except: pass try: func.makedir(dirname) except: pass try: func.makedir(dirname + "/img") except: pass s = func.clsMyStat(dbx, '') stats = s.getAllStats() i, statnames, statnames_index, groups = 0, {}, {}, {} # vytvor seznam vsech generovanych grafu: mixed_graphs = {} # pridej automaticky vytvareny seznam nejvice tweetujicich uzivatelu best_twitters = {} for stat in stats: if re.search(r'TWITTER_(.+?)_TWEETS', stat): mystat = Stat(stat, get_stat_for_graph(dbx, stat)) best_twitters[stat] = mystat.max() sorted_twitters = sorted(best_twitters.items(), key=operator.itemgetter(1))[-7:] stat_id = 'BEST_TWITTERS' mixed_graphs[stat_id] = [x[0] for x in sorted_twitters] add_stat_to_group(groups, 'Porovnání', stat_id) # 1) nacti ty z konfigurace, preved na hashtabulku for line in func.getconfig('config/graphs'): lineparts = func.lmap(str.strip, line.split(' ')) mixed_graphs[lineparts[0]] = lineparts[1:] statnames[lineparts[0]] = lineparts[0] add_stat_to_group(groups, 'Porovnání', lineparts[0]) # 2) pridej automaticky vytvarene twitter kombinovane grafy # TWEETS, FOLLOWERS a LIKES for stat in stats: found = re.search(r'TWITTER_(.+?)_TWEETS', stat) if found: statid = "TWITTER_%s" % found.group(1) mixed_graphs[statid] = [ stat, "TWITTER_%s_FOLLOWERS" % found.group(1), "TWITTER_%s_LIKES" % found.group(1) ] statnames[statid] = "Twitter %s" % found.group(1) # default jmeno statnames_index[statid] = "%s" % found.group( 1) # default jmeno na titulni stranku add_stat_to_group(groups, 'Twitteři', statid) # 3) pridej vsechny ostatni statistiky, vynechej TWITTERY # vytvor ponekud nesystemove defaultni nazvy for stat in stats: if not re.search(r'TWITTER_(.+)', stat): mixed_graphs[stat] = [stat] found = re.search(r'BALANCE_(.+)', stat) if found: statnames[stat] = "Zůstatek %s" % found.group(1) add_stat_to_group(groups, 'Finance', stat) continue found = re.search(r'PI_MEMBERS_(.+)', stat) if found: statnames[stat] = "Počet členů %s" % found.group(1) add_stat_to_group(groups, 'Členové', stat) continue found = re.search(r'YOUTUBE_(.+)', stat) if found: statnames[stat] = "Youtube %s" % found.group(1) add_stat_to_group(groups, 'Youtube', stat) continue found = re.search(r'PP_(.+)', stat) if found: add_stat_to_group(groups, 'Finanční tým', stat) continue found = re.search(r'REDMINE_(.+)', stat) if found: add_stat_to_group(groups, 'Odbory a složky strany na Redmine', stat) continue add_stat_to_group(groups, 'Ostatní', stat) # donacti jmena statistik z konfigurace for line in func.getconfig('config/statnames'): try: (a, b) = line.split('\t', 2) statnames[a] = b except ValueError: pass # titulni stranka & assets mybody = "" for groupname in groups: paragraph = [] for statid in groups[groupname]: if statid in statnames_index.keys(): statname = statnames_index[statid] elif statid in statnames.keys(): statname = statnames[statid] else: statname = statid paragraph.append(html.a("%s.delta.htm" % statid, statname)) paragraph.sort() mybody += html.h2(groupname) + html.p(",\n".join(paragraph)) page = func.replace_all( func.readfile('templates/index.htm'), { '%body%': mybody, '%stat_date%': '{0:%d.%m.%Y %H:%M:%S}'.format( datetime.datetime.now()) }) func.writefile(page, "%s/index.htm" % dirname) shutil.copytree('templates/assets', "%s/assets" % dirname) # Vytvor vsechny kombinovane grafy, vynech statistiky s nejvyse jednou hodnotou for statid in mixed_graphs: if arg('s') and statid != arg('s'): continue i += 1 # graf involved_stats, involved_deltas = {}, {} statInstances = [] for invstat in mixed_graphs[statid]: tmpstat = get_stat_for_graph(dbx, invstat) involved_stats[invstat] = tmpstat statInstances.append(Stat(invstat, involved_stats[invstat])) # spocitej delta statistiku deltastat, lastvalue = [], None for entry in tmpstat: deltastat.append([ entry[0], 0 if lastvalue is None else entry[1] - lastvalue ]) lastvalue = entry[1] involved_deltas[invstat] = deltastat singlestat = (len(involved_stats.values()) == 1) if max(func.lmap(len, involved_stats.values( ))) > 0: # involved_stats musi obsahovat aspon 1 radu o >=1 hodnotach print("[%s/%s]: Creating %s \r" % (i, len(mixed_graphs), statid), end='\r') # zakladni a delta graf make_graph(involved_stats, "%s/img/%s.png" % (dirname, statid), delta=False) make_graph(involved_deltas, "%s/img/%s.delta.png" % (dirname, statid), delta=True) # metody ziskani dat method_list = "" for stat in involved_stats: try: desc = involved_stats[stat][-1:][0][2] except IndexError: desc = "Neznámá metoda" method_list += "%s: %s<br>" % (stat, desc) # html stranka statname = statnames[statid] if statid in statnames.keys( ) else statid min_date = min( func.lmap(stat_min_date, filter(lambda x: x, involved_stats.values()))) # rozsah dat max_date = max( func.lmap(stat_max_date, filter(lambda x: x, involved_stats.values()))) bottom_links = html.h2("Metody získání dat") + \ html.p("Vypsána je vždy poslední použitá metoda, úplný seznam je v CSV souboru." + html.br()*2 + method_list) + \ ((html.a("%s.csv" % statid, "Zdrojová data ve formátu CSV") + html.br()) if singlestat else "") + \ html.a("index.htm", "Všechny metriky") try: min_value = str(min(map(lambda x: x.min(), statInstances))) except TypeError: min_value = '-' try: max_value = str(max(map(lambda x: x.max(), statInstances))) except TypeError: max_value = '-' common_replaces = { '%stat_name%': statname, '%stat_desc%': '', '%stat_id%': statid, '%stat_date%': '{0:%d.%m.%Y %H:%M:%S}'.format(datetime.datetime.now()), '%bottomlinks%': bottom_links, '%daterange%': '%s - %s' % (min_date, max_date), '%max%': max_value, '%min%': min_value } page = func.replace_all( func.readfile('templates/stat.htm'), merge_dicts( common_replaces, { '%stat_image%': "img/%s.png" % statid, '%stat_type%': "Absolutní hodnoty" })) func.writefile(page, "%s/%s.htm" % (dirname, statid)) page = func.replace_all( func.readfile('templates/stat.htm'), merge_dicts( common_replaces, { '%stat_image%': "img/%s.delta.png" % statid, '%stat_type%': "Denní přírůstky (delta)" })) func.writefile(page, "%s/%s.delta.htm" % (dirname, statid)) # vytvor CSV soubor se zdrojovymi daty if singlestat: csv_rows = [ "%s;%s;%s;%s;" % (statid, "{:%d.%m.%Y}".format(x[0]), x[1], x[2]) for x in list(involved_stats.values())[0] ] func.writefile( "stat_id;date;value;method;\n" + "\n".join(csv_rows), "%s/%s.csv" % (dirname, statid))