Ejemplo n.º 1
0
    def testDefaultParameters(self):
        """
    Test multi column object classification
    """
        random.seed(36)
        exp = l2_l4_inference.L4L2Experiment(
            "testClassification",
            numCorticalColumns=1,
            inputSize=1024,
            numInputBits=20,
            externalInputSize=512,
            numExternalInputBits=10,
            numLearningPoints=3,
        )
        net = exp.network

        L4Params = {
            "columnCount": 1024,
            "cellsPerColumn": 16,
            "learn": True,
            "learnOnOneCell": False,
            "initialPermanence": 0.51,
            "connectedPermanence": 0.6,
            "permanenceIncrement": 0.1,
            "permanenceDecrement": 0.02,
            "minThreshold": 8,
            "basalPredictedSegmentDecrement": 0.0,
            "activationThreshold": 8,
            "sampleSize": 15,
        }

        L2Params = {
            "inputWidth": 1024 * 16,
            "cellCount": 4096,
            "sdrSize": 40,
            "synPermProximalInc": 0.1,
            "synPermProximalDec": 0.001,
            "initialProximalPermanence": 0.6,
            "minThresholdProximal": 5,
            "sampleSizeProximal": 10,
            "connectedPermanenceProximal": 0.5,
            "synPermDistalInc": 0.1,
            "synPermDistalDec": 0.001,
            "initialDistalPermanence": 0.41,
            "activationThresholdDistal": 13,
            "sampleSizeDistal": 20,
            "connectedPermanenceDistal": 0.5,
            "distalSegmentInhibitionFactor": 0.999,
            "learningMode": True,
        }
        L4Column = net.regions["L4Column_0"].getSelf()
        L2Column = net.regions["L2Column_0"].getSelf()

        # check the default parameters are correct in L4
        for param, value in L4Params.iteritems():
            self.assertEqual(L4Column.getParameter(param), value)

        # check the default parameters are correct in L2
        for param, value in L2Params.iteritems():
            self.assertEqual(L2Column.getParameter(param), value)
  def testSimpleExperiment(self):
    """Simple test of the basic interface for L4L2Experiment."""
    # Set up experiment
    exp = l2_l4_inference.L4L2Experiment(
      name="sample",
      numCorticalColumns=2,
      numInputBits=20,
      numExternalInputBits=20
    )

    # Set up feature and location SDRs for two locations, A and B, for each
    # cortical column, 0 and 1.
    locA0 = list(xrange(0, 20))
    featA0 = list(xrange(0, 20))
    locA1 = list(xrange(20, 40))
    featA1 = list(xrange(20, 40))

    locB0 = list(xrange(40, 60))
    featB0 = list(xrange(40, 60))
    locB1 = list(xrange(60, 80))
    featB1 = list(xrange(60, 80))

    # Learn each location for each column with several repetitions
    objectsToLearn = {"obj1": [
      {0: (locA0, featA0), 1: (locA1, featA1)},
      {0: (locB0, featB0), 1: (locB1, featB1)},
      {0: (locA0, featA0), 1: (locA1, featA1)},
      {0: (locB0, featB0), 1: (locB1, featB1)},
      {0: (locA0, featA0), 1: (locA1, featA1)},
      {0: (locB0, featB0), 1: (locB1, featB1)},
    ]}
    exp.learnObjects(objectsToLearn, reset=True)

    # Do the inference phase
    sensationsToInfer = [
      {0: (locA0, featA0), 1: (locA1, featA1)},
      {0: (locB0, featB0), 1: ([], [])},
      {0: ([], []), 1: (locA1, featA1)},
      {0: (locA0, featA0), 1: (locA1, featA1)},
    ]
    exp.infer(sensationsToInfer, objectName="obj1", reset=False)

    # Check the results
    stats = exp.getInferenceStats()
    self.assertEqual(len(stats), 1)
    self.assertEqual(stats[0]["numSteps"], 4)
    self.assertEqual(stats[0]["object"], "obj1")

    self.assertSequenceEqual(stats[0]["Overlap L2 with object C0"],
                             [40, 40, 40, 40])
    self.assertSequenceEqual(stats[0]["Overlap L2 with object C1"],
                             [40, 40, 40, 40])

    self.assertEqual(len(exp.getL2Representations()[0]),40)
    self.assertEqual(len(exp.getL2Representations()[1]),40)

    self.assertEqual(len(exp.getL4Representations()[0]),20)
    self.assertEqual(len(exp.getL4Representations()[1]),20)
  def testObjectClassificationUnit(self):
    """
    Unit Test for multi column object classification
    """
    random.seed(36)
    objectL2SDR = {
      "Can": [set(_randomSDR(4096, 40)) for _ in xrange(5)],
      "Mug": [set(_randomSDR(4096, 40)) for _ in xrange(5)],
      "Box": [set(_randomSDR(4096, 40)) for _ in xrange(5)]
    }

    with patch.object(l2_l4_inference.L4L2Experiment, "getL2Representations")\
        as mock_getL2Representations:

      exp = l2_l4_inference.L4L2Experiment(
        "testClassificationUnit",
        numCorticalColumns=5
      )
      # Replace objects L2 representations to mock learning
      exp.objectL2Representations = objectL2SDR

      # test exact match
      mock_getL2Representations.return_value = objectL2SDR["Can"]
      results = exp.getCurrentClassification()
      self.assertDictEqual(results, {"Box": 0, "Mug": 0, "Can": 1})

      # test no match
      mock_getL2Representations.return_value = [
        set(_randomSDR(4096, 40)) for _ in xrange(5)]
      results = exp.getCurrentClassification()
      self.assertDictEqual(results, {"Box": 0, "Mug": 0, "Can": 0})

      # test no touch
      mock_getL2Representations.return_value = [(), (), (), (), ()]
      results = exp.getCurrentClassification()
      self.assertDictEqual(results, {"Box": 0, "Mug": 0, "Can": 0})

      # test partial match (Mug/Can)
      mock_getL2Representations.return_value = [
        objectL2SDR["Can"][0],
        objectL2SDR["Can"][1],
        objectL2SDR["Mug"][2],
        objectL2SDR["Mug"][3],
        ()
      ]
      results = exp.getCurrentClassification()
      self.assertDictEqual(results, {"Box": 0, "Mug": 0.5, "Can": 0.5})
    def testObjectClassification(self):
        """
    Test multi column object classification
    """
        random.seed(36)
        exp = l2_l4_inference.L4L2Experiment(
            "testClassification",
            numCorticalColumns=5,
            inputSize=1024,
            numInputBits=20,
            externalInputSize=1024,
            numLearningPoints=3,
        )

        # Location and feature pool
        features = [_randomSDR(1024, 20) for _ in xrange(4)]
        locations = [_randomSDR(1024, 20) for _ in xrange(15)]

        # Learn 3 different objects (Can, Mug, Box)
        objectsToLearn = dict()

        # Soda can (cylinder) grasp from top.
        # Same feature at different locations, not all columns have input
        objectsToLearn["Can"] = [
            {
                0: (locations[0], features[0]),  # NW - round
                1: (locations[1], features[0]),  # N  - round
                2: (locations[2], features[0]),  # NE - round
                3: (locations[3], features[0]),  # SE - round
                4: ([], []),  # Little Finger has no input
            },
            {
                0: (locations[1], features[0]),  # N  - round
                1: (locations[2], features[0]),  # NE - round
                2: (locations[3], features[0]),  # SE - round
                3: (locations[4], features[0]),  # S  - round
                4: ([], []),  # Little Finger has no input
            },
            {
                0: (locations[2], features[0]),  # NE - round
                1: (locations[3], features[0]),  # SE - round
                2: (locations[4], features[0]),  # S  - round
                3: (locations[0], features[0]),  # NW - round
                4: ([], []),  # Little Finger has no input
            },
        ]

        # Coffee mug grasp from top
        # Same as cylinder with extra feature (handle)
        objectsToLearn["Mug"] = [
            {
                0: (locations[0], features[0]),  # NW - round
                1: (locations[1], features[1]),  # N  - handle
                2: (locations[2], features[0]),  # NE - round
                3: (locations[3], features[0]),  # SE - round
                4: (locations[4], features[0]),  # S  - round
            },
            {
                0: (locations[3], features[0]),  # SE - round
                1: (locations[0], features[0]),  # NW - round
                2: (locations[1], features[1]),  # N  - handle
                3: (locations[2], features[0]),  # NE - round
                4: (locations[4], features[0]),  # S  - round
            },
            {
                0: (locations[4], features[0]),  # S  - round
                1: (locations[3], features[0]),  # SE - round
                2: (locations[0], features[0]),  # NW - round
                3: (locations[1], features[1]),  # N  - handle
                4: (locations[2], features[0]),  # NE - round
            },
        ]

        # Box grasp from top
        # Symetrical features at different locations.
        objectsToLearn["Box"] = [
            {
                # Top/Front of the box
                0: (locations[5], features[2]),  # W1 - flat
                1: (locations[6], features[3]),  # N1 - corner
                2: (locations[7], features[3]),  # N2 - corner
                3: (locations[8], features[2]),  # E1 - flat
                4: (locations[9], features[2]),  # E2 - flat
            },
            {
                # Top/Side of the box
                0: (locations[5], features[2]),  # W1 - flat
                1: (locations[8], features[2]),  # E1 - flat
                2: (locations[9], features[2]),  # E2 - flat
                3: (locations[10], features[2]),  # E3 - flat
                4: (locations[11], features[2]),  # E4 - flat
            },
            {
                # Top/Back of the box
                0: (locations[9], features[2]),  # E2 - flat
                1: (locations[12], features[3]),  # S1 - corner
                2: (locations[13], features[3]),  # S2 - corner
                3: (locations[14], features[2]),  # W3 - flat
                4: (locations[5], features[2]),  # W1 - flat
            },
        ]
        exp.learnObjects(objectsToLearn)

        # Try to infer "Mug" using first learned grasp
        sensations = [objectsToLearn["Mug"][0]]
        exp.sendReset()
        exp.infer(sensations, reset=False)
        results = exp.getCurrentClassification()
        self.assertEquals(results["Mug"], 1)
        self.assertEquals(results["Box"], 0)
        self.assertEquals(results["Can"], 0)

        # Try to infer "Cylinder" using first learned grasp
        sensations = [objectsToLearn["Can"][0]]
        exp.sendReset()
        exp.infer(sensations, reset=False)
        results = exp.getCurrentClassification()
        self.assertEquals(results["Mug"], 0)
        self.assertEquals(results["Box"], 0)
        self.assertEquals(results["Can"], 1)

        # Try to infer "Box" using first learned grasp
        sensations = [objectsToLearn["Box"][0]]
        exp.sendReset()
        exp.infer(sensations, reset=False)
        results = exp.getCurrentClassification()
        self.assertEquals(results["Mug"], 0)
        self.assertEquals(results["Box"], 1)
        self.assertEquals(results["Can"], 0)

        # Try to infer half "Box" half "Mug" to confuse
        sensations = [{
            0: objectsToLearn["Box"][0][0],
            1: objectsToLearn["Box"][0][1],
            2: objectsToLearn["Mug"][0][0],
            3: objectsToLearn["Mug"][0][1],
            4: ([], []),
        }]
        exp.sendReset()
        exp.infer(sensations, reset=False)
        results = exp.getCurrentClassification()
        self.assertEquals(results["Mug"], 0.5)
        self.assertEquals(results["Box"], 0.5)
        self.assertEquals(results["Can"], 0)
    def testConsistency(self):
        """
    Test that L2 and L4 representations are consistent across different
    instantiations with the same seed.
    """
        random.seed(23)
        # Location and feature pool
        features = [_randomSDR(1024, 20) for _ in xrange(4)]
        locations = [_randomSDR(1024, 20) for _ in xrange(15)]

        # Learn 3 different objects (Can, Mug, Box)
        objectsToLearn = dict()

        # Soda can (cylinder) grasp from top.
        # Same feature at different locations, not all columns have input
        objectsToLearn["Can"] = [
            {
                0: (locations[0], features[0]),  # NW - round
                1: (locations[1], features[0]),  # N  - round
                2: (locations[2], features[0]),  # NE - round
                3: (locations[3], features[0]),  # SE - round
                4: ([], []),  # Little Finger has no input
            },
            {
                0: (locations[1], features[0]),  # N  - round
                1: (locations[2], features[0]),  # NE - round
                2: (locations[3], features[0]),  # SE - round
                3: (locations[4], features[0]),  # S  - round
                4: ([], []),  # Little Finger has no input
            },
            {
                0: (locations[2], features[0]),  # NE - round
                1: (locations[3], features[0]),  # SE - round
                2: (locations[4], features[0]),  # S  - round
                3: (locations[0], features[0]),  # NW - round
                4: ([], []),  # Little Finger has no input
            },
        ]

        # Coffee mug grasp from top
        # Same as cylinder with extra feature (handle)
        objectsToLearn["Mug"] = [
            {
                0: (locations[0], features[0]),  # NW - round
                1: (locations[1], features[1]),  # N  - handle
                2: (locations[2], features[0]),  # NE - round
                3: (locations[3], features[0]),  # SE - round
                4: (locations[4], features[0]),  # S  - round
            },
            {
                0: (locations[3], features[0]),  # SE - round
                1: (locations[0], features[0]),  # NW - round
                2: (locations[1], features[1]),  # N  - handle
                3: (locations[2], features[0]),  # NE - round
                4: (locations[4], features[0]),  # S  - round
            },
            {
                0: (locations[4], features[0]),  # S  - round
                1: (locations[3], features[0]),  # SE - round
                2: (locations[0], features[0]),  # NW - round
                3: (locations[1], features[1]),  # N  - handle
                4: (locations[2], features[0]),  # NE - round
            },
        ]

        # Box grasp from top
        # Symetrical features at different locations.
        objectsToLearn["Box"] = [
            {
                # Top/Front of the box
                0: (locations[5], features[2]),  # W1 - flat
                1: (locations[6], features[3]),  # N1 - corner
                2: (locations[7], features[3]),  # N2 - corner
                3: (locations[8], features[2]),  # E1 - flat
                4: (locations[9], features[2]),  # E2 - flat
            },
            {
                # Top/Side of the box
                0: (locations[5], features[2]),  # W1 - flat
                1: (locations[8], features[2]),  # E1 - flat
                2: (locations[9], features[2]),  # E2 - flat
                3: (locations[10], features[2]),  # E3 - flat
                4: (locations[11], features[2]),  # E4 - flat
            },
            {
                # Top/Back of the box
                0: (locations[9], features[2]),  # E2 - flat
                1: (locations[12], features[3]),  # S1 - corner
                2: (locations[13], features[3]),  # S2 - corner
                3: (locations[14], features[2]),  # W3 - flat
                4: (locations[5], features[2]),  # W1 - flat
            },
        ]

        # Create 10 experiment instances, train them on all objects and run
        # inference on one object
        numExps = 10
        exps = []
        for i in range(numExps):
            exps.append(
                l2_l4_inference.L4L2Experiment(
                    "testClassification",
                    numCorticalColumns=5,
                    inputSize=1024,
                    numInputBits=20,
                    externalInputSize=1024,
                    numLearningPoints=3,
                    seed=23,
                ))

            exps[i].learnObjects(objectsToLearn)

            # Try to infer "Mug" using first learned grasp
            sensations = [objectsToLearn["Mug"][0]]
            exps[i].sendReset()
            exps[i].infer(sensations * 2, reset=False)

        # Ensure L2 and L4 representations are consistent across all experiment
        # instantiations, across all columns, and across 2 different repeats
        for i in range(2):
            for c in range(5):
                L20 = set(exps[0].getL2Representations()[c])
                for e in range(1, numExps):
                    self.assertSequenceEqual(
                        L20, set(exps[e].getL2Representations()[c]))

                L40 = set(exps[0].getL4Representations()[c])
                for e in range(numExps):
                    self.assertSequenceEqual(
                        L40, set(exps[e].getL4Representations()[c]))
    def testCapacity(self):
        """This test mimmicks the capacity test parameters with smaller numbers.

    See `projects/l2_pooling/capacity_test.py`.
    """
        l2Params = {
            "inputWidth": 50 * 4,
            "cellCount": 100,
            "sdrSize": 10,
            "synPermProximalInc": 0.1,
            "synPermProximalDec": 0.001,
            "initialProximalPermanence": 0.6,
            "minThresholdProximal": 1,
            "sampleSizeProximal": 5,
            "connectedPermanenceProximal": 0.5,
            "synPermDistalInc": 0.1,
            "synPermDistalDec": 0.001,
            "initialDistalPermanence": 0.41,
            "activationThresholdDistal": 3,
            "sampleSizeDistal": 5,
            "connectedPermanenceDistal": 0.5,
            "distalSegmentInhibitionFactor": 1.5,
            "learningMode": True,
        }
        l4Params = {
            "columnCount": 50,
            "cellsPerColumn": 4,
            "formInternalBasalConnections": True,
            "learn": True,
            "learnOnOneCell": False,
            "initialPermanence": 0.51,
            "connectedPermanence": 0.6,
            "permanenceIncrement": 0.1,
            "permanenceDecrement": 0.02,
            "minThreshold": 3,
            "predictedSegmentDecrement": 0.002,
            "activationThreshold": 3,
            "maxNewSynapseCount": 20,
            "implementation": "etm_cpp",
        }
        l4ColumnCount = 50
        numCorticalColumns = 2
        exp = l2_l4_inference.L4L2Experiment(
            "testCapacity",
            numInputBits=100,
            L2Overrides=l2Params,
            L4Overrides=l4Params,
            inputSize=l4ColumnCount,
            externalInputSize=l4ColumnCount,
            numLearningPoints=4,
            numCorticalColumns=numCorticalColumns)

        # Set up feature and location SDRs for two locations, A and B, for each
        # cortical column, 0 and 1.
        locA0 = list(xrange(0, 5))
        featA0 = list(xrange(0, 5))
        locA1 = list(xrange(5, 10))
        featA1 = list(xrange(5, 10))

        locB0 = list(xrange(10, 15))
        featB0 = list(xrange(10, 15))
        locB1 = list(xrange(15, 20))
        featB1 = list(xrange(15, 20))

        # Learn each location for each column with several repetitions
        objectsToLearn = {
            "obj1": [
                {
                    0: (locA0, featA0),
                    1: (locA1, featA1)
                },
                {
                    0: (locB0, featB0),
                    1: (locB1, featB1)
                },
                {
                    0: (locA0, featA0),
                    1: (locA1, featA1)
                },
                {
                    0: (locB0, featB0),
                    1: (locB1, featB1)
                },
                {
                    0: (locA0, featA0),
                    1: (locA1, featA1)
                },
                {
                    0: (locB0, featB0),
                    1: (locB1, featB1)
                },
            ]
        }
        exp.learnObjects(objectsToLearn, reset=True)

        # Do the inference phase
        sensationsToInfer = [
            {
                0: (locA0, featA0),
                1: (locA1, featA1)
            },
            {
                0: (locB0, featB0),
                1: ([], [])
            },
            {
                0: ([], []),
                1: (locA1, featA1)
            },
            {
                0: (locA0, featA0),
                1: (locA1, featA1)
            },
        ]
        exp.infer(sensationsToInfer, objectName="obj1", reset=False)

        # Check the results
        stats = exp.getInferenceStats()
        self.assertEqual(len(stats), 1)
        self.assertEqual(stats[0]["numSteps"], 4)
        self.assertEqual(stats[0]["object"], "obj1")
        self.assertSequenceEqual(stats[0]["Overlap L2 with object C0"],
                                 [10, 10, 10, 10])
        self.assertSequenceEqual(stats[0]["Overlap L2 with object C1"],
                                 [10, 10, 10, 10])
  def testDelayedLateralandApicalInputs(self):
    """Test whether lateral and apical inputs are synchronized across columns"""
    # Set up experiment
    exp = l2_l4_inference.L4L2Experiment(
      name="sample",
      numCorticalColumns=2,
    )

    objects = createObjectMachine(
      machineType="simple",
      numInputBits=20,
      sensorInputSize=1024,
      externalInputSize=1024,
      numCorticalColumns=2,
    )
    objects.addObject([(1, 1), (2, 2)])
    objects.addObject([(1, 1), (3, 2)])

    exp.learnObjects(objects.provideObjectsToLearn())
    exp._sendReset()

    sensationC0 = [(1, 1), (1, 1), (1, 1)]
    sensationC1 = [(3, 2), (3, 2), (3, 2)]

    lateralInputs = []
    apicalInputs = []
    activeCells = []
    for step in range(3):
      inferConfig = {
        "noiseLevel": None,
        "numSteps": 1,
        "pairs": {0: [sensationC0[step]], 1: [sensationC1[step]]}
      }

      exp.infer(objects.provideObjectToInfer(inferConfig),
                objectName=1, reset=False)

      lateralInputs.append(
        {0: copy.copy(
          exp.network.regions['L2Column_0'].getInputData("lateralInput")),
         1: copy.copy(
           exp.network.regions['L2Column_1'].getInputData("lateralInput"))}
      )
      activeCells.append(
        {0: copy.copy(
          exp.network.regions['L2Column_0'].getOutputData("feedForwardOutput")),
         1: copy.copy(
           exp.network.regions['L2Column_1'].getOutputData("feedForwardOutput"))}
      )
      apicalInputs.append((
        {0: copy.copy(
          exp.network.regions['L4Column_0'].getInputData("apicalInput")),
          1: copy.copy(
            exp.network.regions['L4Column_1'].getInputData("apicalInput"))}
      ))

    # no lateral inputs on first iteration
    self.assertEqual(numpy.sum(numpy.abs(lateralInputs[0][0])), 0)
    self.assertEqual(numpy.sum(numpy.abs(lateralInputs[0][1])), 0)

    # no apical inputs to L4 on first iteration
    self.assertEqual(numpy.sum(numpy.abs(apicalInputs[0][0])), 0)
    self.assertEqual(numpy.sum(numpy.abs(apicalInputs[0][1])), 0)

    # lateral inputs of C0 at time t+1 = active cells of C1 at time t
    for step in range(2):
      self.assertEqual(
        numpy.sum(numpy.abs(lateralInputs[step+1][0]-activeCells[step][1])), 0)
      self.assertEqual(
        numpy.sum(numpy.abs(lateralInputs[step+1][1]-activeCells[step][0])), 0)

    # apical inputs of L4_0 at time t+1 = active cells of L2_0 at time t
    for step in range(2):
      self.assertEqual(
        numpy.sum(numpy.abs(apicalInputs[step + 1][0] - activeCells[step][0])),
        0)
      self.assertEqual(
        numpy.sum(numpy.abs(apicalInputs[step + 1][1] - activeCells[step][1])),
        0)