Ejemplo n.º 1
0
    def fetch_data(self, idx):
        sample = {k: self.ds[k][idx] for k in self.ds.keys()}
        from human_body_prior.train.vposer_smpl import VPoser
        sample['pose_matrot'] = VPoser.aa2matrot(sample['pose'].view(
            [1, 1, -1, 3])).view(1, -1)

        return sample
Ejemplo n.º 2
0
 def fetch_data(self, idx):
     data = {k: self.ds[k][idx] for k in self.ds.keys()}
     pose = data.pop('pose')
     data['pose_aa'] = pose.view(1,52,3)[:,1:22]
     if 'pose_matrot' not in data.keys():
         data['pose_matrot'] = VPoser.aa2matrot(data['pose_aa'][np.newaxis]).view(1,-1,9)
     else:
         data['pose_matrot'] = data['pose_matrot'].view(1,52,9)[:,1:22]
     return data
Ejemplo n.º 3
0
    def test_aa2matrot(self):
        aa = np.random.randn(10, 3)
        cv2_matrot = []
        for id in range(aa.shape[0]):
            cv2_matrot.append(cv2.Rodrigues(aa[id:id + 1])[0])
        cv2_matrot = np.array(cv2_matrot).reshape(-1, 9)

        vposer_matrot = c2c(VPoser.aa2matrot(torch.tensor(aa))).reshape(-1, 9)
        self.assertAlmostEqual(
            np.square((vposer_matrot - cv2_matrot)).sum(), 0.0)
Ejemplo n.º 4
0
    def test_matrot2aa(self):
        np.random.seed(100)
        aa = np.random.randn(10, 3)
        matrot = c2c(VPoser.aa2matrot(torch.tensor(aa))).reshape(-1, 9)

        cv2_aa = []
        for id in range(matrot.shape[0]):
            cv2_aa.append(cv2.Rodrigues(matrot[id].reshape(3, 3))[0])
        cv2_aa = np.array(cv2_aa).reshape(-1, 3)

        vposer_aa = c2c(VPoser.matrot2aa(torch.tensor(matrot))).reshape(-1, 3)
        self.assertAlmostEqual(np.square((vposer_aa - cv2_aa)).sum(), 0.0)
Ejemplo n.º 5
0
    def fetch_data(self, idx):
        '''
        This an exampl of augmenting the data fields. Furthermore, one can add random noise to data fields here as well.
        There should be a match between returning dictionary field names and the one in AMASS_ROW.
        :param idx:
        :return:
        '''
        sample = {k: self.ds[k][idx] for k in self.ds.keys()}

        from human_body_prior.train.vposer_smpl import VPoser
        sample['pose_matrot'] = VPoser.aa2matrot(sample['pose'].view(
            [1, 1, -1, 3])).view(1, -1)

        return sample