Ejemplo n.º 1
0
def decompose(gate: Gate,
              qubits: iter[any],
              return_matrices: bool = False,
              atol: float = 1e-8) -> SchmidtGate:
    """
    Decompose `gate` using the Schmidt decomposition.

    Parameters
    ----------
    gate: Gate
        `Gate` to decompose.
    qubits: iter[any]
        Subset of qubits used to decompose `gate`.
    return_matrices: bool, optional
        If `True`, return matrices instead of gates (default: `False`)
    atol: float
        Tollerance.

    Returns
    -------
    d: tuple(list[float], tuple[Gate, ...], tuple[Gate, ...])
        Decomposition of `gate`.

    See Also
    --------
    `hybridq.utils.svd`
    """
    from hybridq.gate import SchmidtGate
    from hybridq.utils import svd

    # Check qubits
    try:
        qubits = tuple(qubits)
    except:
        raise ValueError("'qubits' must be convertible to tuple.")

    # Get number of qubits in subset
    ns = len(qubits)

    # Get qubits not in subset
    alt_qubits = tuple(q for q in gate.qubits if q not in qubits)

    # Check is valid subset
    if set(qubits).difference(gate.qubits):
        raise ValueError("'qubits' must be a valid subset of `gate.qubits`.")

    # Get order
    axes = [gate.qubits.index(x) for x in qubits]
    axes += [x + gate.n_qubits for x in axes]

    # Get matrix and decompose it
    s, uh, vh = svd(np.reshape(gate.matrix(), (2,) * 2 * gate.n_qubits),
                    axes,
                    atol=atol)

    # Reshape
    uh = np.reshape(uh, (len(s), 2**ns, 2**ns))
    vh = np.reshape(vh,
                    (len(s), 2**(gate.n_qubits - ns), 2**(gate.n_qubits - ns)))

    # Return gates
    return (s, uh, vh) if return_matrices else SchmidtGate(
        gates=((Gate('MATRIX', qubits=qubits, U=x) for x in uh),
               (Gate('MATRIX', qubits=alt_qubits, U=x) for x in vh)),
        s=s)
Ejemplo n.º 2
0
def merge(a: Gate, *bs) -> Gate:
    """
    Merge two gates `a` and `b`. The merged `Gate` will be equivalent to apply
    ```
    new_psi = bs.matrix() @ ... @ b.matrix() @ a.matrix() @ psi
    ```
    with `psi` a quantum state.

    Parameters
    ----------
    a, ...: Gate
        `Gate`s to merge.
    qubits_order: iter[any], optional
        If provided, qubits in new `Gate` will be sorted using `qubits_order`.

    Returns
    -------
    Gate('MATRIX')
        The merged `Gate`
    """
    # If no other gates are provided, return
    if len(bs) == 0:
        return a

    # Pop first gate
    b, bs = bs[0], bs[1:]

    # Check
    if any(not x.provides(['matrix', 'qubits']) or x.qubits is None
           for x in [a, b]):
        raise ValueError(
            "Both 'a' and 'b' must provides 'qubits' and 'matrix'.")

    # Get unitaries
    Ua, Ub = a.matrix(), b.matrix()

    # Get shared qubits
    shared_qubits = set(a.qubits).intersection(b.qubits)
    all_qubits = b.qubits + tuple(q for q in a.qubits if q not in b.qubits)

    # Get sizes
    n_a = len(a.qubits)
    n_b = len(b.qubits)
    n_ab = len(shared_qubits)
    n_c = len(all_qubits)

    if shared_qubits:
        from opt_einsum import get_symbol, contract
        # Build map
        _map_b_l = ''.join(get_symbol(x) for x in range(n_b))
        _map_b_r = ''.join(get_symbol(x + n_b) for x in range(n_b))
        _map_a_l = ''.join(_map_b_r[b.qubits.index(q)] if q in
                           shared_qubits else get_symbol(x + 2 * n_b)
                           for x, q in enumerate(a.qubits))
        _map_a_r = ''.join(get_symbol(x + 2 * n_b + n_a) for x in range(n_a))
        _map_c_l = ''.join(_map_b_l[b.qubits.index(q)] if q in
                           b.qubits else _map_a_l[a.qubits.index(q)]
                           for q in all_qubits)
        _map_c_r = ''.join(
            _map_b_r[b.qubits.index(q)] if q in b.qubits and
            q not in shared_qubits else _map_a_r[a.qubits.index(q)]
            for q in all_qubits)
        _map = _map_b_l + _map_b_r + ',' + _map_a_l + _map_a_r + '->' + _map_c_l + _map_c_r

        # Get matrix
        U = np.reshape(
            contract(_map, np.reshape(Ub, (2,) * 2 * n_b),
                     np.reshape(Ua, (2,) * 2 * n_a)), (2**n_c, 2**n_c))
    else:
        # Get matrix
        U = np.kron(Ub, Ua)

    # Get merged gate
    gate = Gate('MATRIX', qubits=all_qubits, U=U)

    # Iteratively call merge
    if len(bs) == 0:
        return gate
    else:
        return merge(gate, *bs)
Ejemplo n.º 3
0
def pad(gate: Gate,
        qubits: iter[any],
        order: iter[any] = None,
        return_matrix_only: bool = False) -> {MatrixGate, np.ndarray}:
    """
    Pad `gate` to act on `qubits`. More precisely, if `gate` is acting on a
    subset of `qubits`, extend `gate` with identities to act on all `qubits`.

    Parameters
    ----------
    gate: Gate
        The gate to pad.
    qubits: iter[any]
        Qubits used to pad `gate`. If `gate.qubits` is not a subset of
        `qubits`, raise an error.
    order: iter[any], optional
        If provided, reorder qubits in the final gate accordingly to `qubits`.
    return_matrix_only: bool, optional
        If `True`, the matrix representing the state is returned instead of
        `MatrixGate` (default: `False`).

    Returns
    -------
    MatrixGate
        The padded gate acting on `qubits`.
    """
    from hybridq.gate import MatrixGate
    from hybridq.utils import sort

    # Convert qubits to tuple
    qubits = tuple(qubits)

    # Convert order to tuple if provided
    order = None if order is None else tuple(order)

    # Check that order is a permutation of qubits
    if order and sort(qubits) != sort(order):
        raise ValueError("'order' must be a permutation of 'qubits'")

    # 'gate' must have qubits and it must be a subset of 'qubits'
    if not gate.provides('qubits') or set(gate.qubits).difference(qubits):
        raise ValueError("'gate' must provide qubits and those "
                         "qubits must be a subset of 'qubits'.")

    # Get matrix
    M = gate.matrix()

    # Pad matrix with identity
    if gate.n_qubits != len(qubits):
        M = np.kron(M, np.eye(2**(len(qubits) - gate.n_qubits)))

    # Get new qubits
    qubits = gate.qubits + tuple(set(qubits).difference(gate.qubits))

    # Reorder if required
    if order and order != qubits:
        # Get new matrix
        M = MatrixGate(M, qubits=qubits).matrix(order=order)

        # Set new qubits
        qubits = order

    # Return gate
    return M if return_matrix_only else MatrixGate(
        M, qubits=qubits, tags=gate.tags if gate.provides('tags') else {})