Ejemplo n.º 1
0
    def get_residuals(i):
        """Closure function to calculate residuals of harmonic water estimate
        compared to observed data.
        """
        i = ee.Number(i)
        t_diff = (
            ee.Number(i).multiply(-1).subtract(lag)
        )  # calc how many days to adjust ini date
        new_date = target_date.advance(t_diff, "day")  # calculate new date

        corr_img = (
            ds.collection.select(label)
            .filterDate(new_date, new_date.advance(1, "day"))
            .median()
        )

        time_img = timeseries.get_dummy_img(new_date)

        harmon_pred = (
            timeseries.add_harmonic_coefs(time_img)
            .multiply(harmonic_coefs)
            .reduce("sum")
        )

        harmon_diff = harmon_pred.subtract(corr_img).rename("residual")

        return harmon_diff.set("system:time_start", new_date.millis())
Ejemplo n.º 2
0
    def get_weights(i):
        i = ee.Number(i)
        t_diff = (
            ee.Number(i).multiply(-1).subtract(lag)
        )  # calc how many days to adjust ini date
        new_date = target_date.advance(t_diff, "day")  # calculate new date

        corr_img = (
            ds.collection.select(label)
            .filterDate(new_date, new_date.advance(1, "day"))
            .qualityMosaic(label)
        )

        time_img = timeseries.get_dummy_img(new_date)

        harmon_pred = (
            timeseries.add_harmonic_coefs(time_img)
            .multiply(harmonic_coefs)
            .reduce("sum")
        )

        harmon_diff = harmon_pred.subtract(corr_img).rename("residual")

        return harmon_diff.set("system:time_start", new_date.millis())
Ejemplo n.º 3
0
def export_daily_surface_water(
    region,
    target_date,
    harmonic_coefs=None,
    harmonic_collection=None,
    feature_names=None,
    label=None,
    look_back=30,
    lag=4,
    output_confidence=False,
    output_flood = False,
    fusion_samples=None,
    fusion_model_asset=None,
    output_asset_path=None,
    output_bucket_path=None,
    initial_threshold=0.1,
    tile=False,
    tile_buffer=100000
):
    def get_weights(i):
        i = ee.Number(i)
        t_diff = (
            ee.Number(i).multiply(-1).subtract(lag)
        )  # calc how many days to adjust ini date
        new_date = target_date.advance(t_diff, "day")  # calculate new date

        corr_img = (
            ds.collection.select(label)
            .filterDate(new_date, new_date.advance(1, "day"))
            .qualityMosaic(label)
        )

        time_img = timeseries.get_dummy_img(new_date)

        harmon_pred = (
            timeseries.add_harmonic_coefs(time_img)
            .multiply(harmonic_coefs)
            .reduce("sum")
        )

        harmon_diff = harmon_pred.subtract(corr_img).rename("residual")

        return harmon_diff.set("system:time_start", new_date.millis())

    def calc_confidence(i):
        i = ee.Number(i)
        # uniform sampling of std dev at 95% confidence interval
        long_term_seed = i.add(500)
        short_term_seed = i.add(1000)
        long_term_random = (
            ee.Image.random(long_term_seed).multiply(3.92).subtract(1.96)
        )
        short_term_random = (
            ee.Image.random(short_term_seed).multiply(3.92).subtract(1.96)
        )

        lin_sim = lin_pred.add(short_term_random.multiply(linCi))
        har_sim = har_pred.add(long_term_random.multiply(harCi))

        sim_pred = har_sim.subtract(lin_sim)
        # random_water = thresholding.bmax_otsu(random_combination,invert=True)
        # naive estimate of water (>0)
        return sim_pred.gt(ci_threshold).uint8()

    if tile:
        if tile:
            land_area = (
                ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017")
                .filterBounds(region)
                .geometry(100)
                .buffer(2500, maxError=100)
            )
            grid = geeutils.tile_region(region, intersect_geom=land_area, grid_size=1.0)

            n = grid.size().getInfo()
            grid_list = grid.toList(n)

            for i in range(n):
                if output_asset_path is not None:
                    output_asset_tile = output_asset_path + f"daily_tile{i:05d}"
                else:
                    output_asset_tile = None
                if output_bucket_path is not None:
                    output_bucket_tile = output_bucket_path + f"_tile{i:05d}"
                else:
                    output_bucket_tile = None

                grid_tile = ee.Feature(grid_list.get(i)).geometry()
                export_daily_surface_water(
                    grid_tile,
                    target_date,
                    harmonic_coefs,
                    harmonic_collection,
                    feature_names,
                    label,
                    look_back,
                    lag,
                    output_confidence,
                    output_flood,
                    fusion_samples,
                    fusion_model_asset,
                    output_asset_tile,
                    output_bucket_tile,
                    initial_threshold,
                    tile=False,
                    tile_buffer=tile_buffer
                )

    else:

        end_time = ee.Date(target_date).advance(-(lag - 1), "day")
        start_time = end_time.advance(-look_back, "day")

        if fusion_samples is not None:
            fusion_model, scaling_dict = ml.random_forest_ee(
                25, fusion_samples, feature_names, label, mode="regression"
            )
        elif fusion_model_asset is not None:
            raise NotImplementedError()
        else:
            raise ValueError(
                "Either 'fusion_samples' or 'fusion_model_path' needs to be defined to run fusion process"
            )

        if not isinstance(target_date, ee.Date):
            target_date = ee.Date(target_date)

        now = datetime.datetime.now()
        time_id = now.strftime("%Y%m%d%H%M%s")
        time_str = now.strftime("%Y-%m-%d %H:%M:%s")

        if harmonic_coefs is not None:
            harmonic_coefs = ee.Image(harmonic_coefs)
            harmonic_coefs = harmonic_coefs.multiply(
                ee.Image(ee.Number(harmonic_coefs.get("scale_factor")))
            )
        elif harmonic_collection is not None:
            harmonic_collection = ee.ImageCollection(harmonic_collection)
            first = ee.Image(harmonic_collection.first())
            harmonic_coefs = harmonic_collection.mosaic().multiply(
                ee.Image(ee.Number(first.get("scale_factor")))
            )
        else:
            raise ValueError(
                "Either 'harmonic_coefs' or 'harmonic_collection' needs to be defined to run fusion process"
            )

        if output_confidence:
            harmonic_err = harmonic_coefs.select(".*(x|y|n)$")
            harmonic_coefs = harmonic_coefs.select("^(c|t|s).*")
        else:
            harmonic_coefs = harmonic_coefs.select("^(c|t|s).*")

        prod_region = region.buffer(tile_buffer,100)

        ds, label = _fuse_dataset(
            prod_region,
            start_time,
            end_time,
            fusion_model,
            scaling_dict,
            target_band=label,
            use_viirs=True,
            use_modis=False,
        )

        dummy_target = timeseries.get_dummy_img(target_date)

        weights = ee.ImageCollection.fromImages(
            ee.List.sequence(0, look_back - 1).map(get_weights)
        ).sort("system:time_start")

        weights_lr = timeseries.fit_linear_trend(
            weights, dependent="residual", output_err=output_confidence
        )

        weights_coefs = weights_lr.select("^(c|t).*")

        lin_pred = (
            dummy_target.multiply(weights_coefs).reduce("sum").rename("residual_est")
        )

        har_pred = (
            timeseries.add_harmonic_coefs(dummy_target)
            .multiply(harmonic_coefs)
            .reduce("sum")
        )

        fused_pred = (
            (har_pred.subtract(lin_pred))
            .convolve(ee.Kernel.gaussian(2.5))
            .rename("fused_product")
        )

        # water,threshold = thresholding.bmax_otsu(
        #     fused_pred,
        #     initial_threshold=0,
        #     grid_size=0.2,
        #     region=region,
        #     invert=True,
        #     reduction_scale=100,
        #     return_threshold=True
        # )
        ci_threshold = thresholding.edge_otsu(
            fused_pred,
            initial_threshold=initial_threshold,
            edge_buffer=300,
            region=prod_region,
            invert=True,
            reduction_scale=200,
            return_threshold=True,
        )

        # ci_threshold = ee.Number(ee.Algorithms.If(ci_threshold.lt(-0.1),-0.1,ci_threshold))

        permanent_water = (
            ee.ImageCollection("JRC/GSW1_2/YearlyHistory")
            .limit(5,"system:time_start",False)
            .map(lambda x: x.select('waterClass').eq(3))
            .sum().unmask(0).gt(0)
        )
        
        water = fused_pred.gt(ci_threshold).Or(permanent_water).rename("water").uint8()

        if output_flood:
            flood = water.select("water").And(permanent_water.Not()).rename("flood")
            water = water.addBands(flood)

        if output_confidence:
            weights_err = weights_lr.select(".*(x|y|n)$")

            linCi = weights_err.expression(
                "mse * ((1/n) + ((t-xmean)**2/xr))**(1/2)",
                {
                    "mse": weights_err.select("residual_y"),
                    "n": weights_err.select("n"),
                    "xmean": weights_err.select("mean_x"),
                    "xr": weights_err.select("residual_x"),
                    "t": dummy_target.select("time"),
                },
            )

            harCi = harmonic_err.expression(
                "mse * ((1/n) + ((t-xmean)**2/xr))**(1/2)",
                {
                    "mse": harmonic_err.select("residual_y"),
                    "n": harmonic_err.select("n"),
                    "xmean": harmonic_err.select("mean_x"),
                    "xr": harmonic_err.select("residual_x"),
                    "t": dummy_target.select("time"),
                },
            )

            # ci_threshold = ee.Number(fused_pred.updateMask(water).reduceRegion(
            #     reducer=ee.Reducer.min(),
            #     geometry=region,
            #     scale=100,
            #     bestEffort=True,
            #     maxPixels=1e6
            # ).get('fused_product'))

            confidence = (
                ee.ImageCollection.fromImages(
                    ee.List.sequence(0, 99).map(calc_confidence)
                )
                .reduce(ee.Reducer.mean(), 16)
                .multiply(100)
                .uint8()
                .rename("confidence")
            )

            out_water = ee.Image.cat([confidence, water,])
        else:
            out_water = water
        # water.uint8().rename("water"),

        fused_pred = fused_pred.multiply(10000).int16()

        if output_asset_path is not None:
            # create metadata dict
            metadata = ee.Dictionary(
                {
                    "hf_version": hf.__version__,
                    "system:time_start": target_date.millis(),
                    "system:time_end": target_date.advance(86399, "seconds").millis(),
                    "execution_time": time_str,
                    "lag": lag,
                    "look_back": look_back,
                }
            )
            geeutils.export_image(
                out_water.set(metadata.combine({"product": "water"})),
                region,
                output_asset_path + "_water",
                description=f"hydrafloods_water_ee_export_{time_id}",
                scale=10,
                crs="EPSG:4326",
            )
            geeutils.export_image(
                fused_pred.set(metadata.combine({"product": "fusion"})),
                region,
                output_asset_path + "_fusion",
                description=f"hydrafloods_fusion_ee_export_{time_id}",
                scale=10,
                crs="EPSG:4326",
            )

        elif output_bucket_path is not None:
            export_region = region.bounds(maxError=100).getInfo()["coordinates"]
            bucket_path, ext = os.path.splitext(output_bucket_path)
            fcomponents = bucket_path.split("/")
            bucket = fcomponents[2]
            fpath = fcomponents[3:-1]

            f_water = "/".join(fpath + [fcomponents[-1] + "_water" + ext])
            f_fusion = "/".join(fpath + [fcomponents[-1] + "_fusion" + ext])

            water_task = ee.batch.Export.image.toCloudStorage(
                image=out_water,
                description=f"hydrafloods_water_gcp_export_{time_id}",
                bucket=bucket,
                fileNamePrefix=f_water,
                region=export_region,
                scale=10,
                crs="EPSG:4326",
                maxPixels=1e13,
                fileFormat="GeoTIFF",
                formatOptions={"cloudOptimized": True},
            )
            water_task.start()

            fusion_task = ee.batch.Export.image.toCloudStorage(
                image=fused_pred,
                description=f"hydrafloods_fusion_gcp_export_{time_id}",
                bucket=bucket,
                fileNamePrefix=f_fusion,
                region=export_region,
                scale=10,
                crs="EPSG:4326",
                maxPixels=1e13,
                fileFormat="GeoTIFF",
                formatOptions={"cloudOptimized": True},
            )
            fusion_task.start()

        else:
            raise ValueError(
                "Either 'output_asset_path' or 'output_bucket_path' needs to be defined to run fusion export process"
            )

    return
Ejemplo n.º 4
0
def export_daily_surface_water(
    region,
    target_date,
    harmonic_image=None,
    harmonic_collection=None,
    feature_names=None,
    label=None,
    look_back=30,
    lag=4,
    n_cycles=2,
    include_confidence=False,
    include_flood=False,
    export_fusion=False,
    fusion_samples=None,
    output_asset_path=None,
    output_bucket_path=None,
    initial_threshold=0.1,
    tile=False,
    tile_size=1.0,
    tile_buffer=100000,
    output_scale=30,
):
    """Last and repeated step of the daily surface water fusion process.
    This procedure uses the results from `export_fusion_samples` and 
    `export_surface_water_harmonics` to build a random forest model to predict 
    a water index from SAR imagery and predict water using the harmonic model.
    This process will correct the harmonic estimate using observed data and export
    the resulting imagery.

    args:
        region (ee.Geometry): geographic region to look for coincident data and sample from
        target_date (str | datetime.datetime): date to estimate surface water extent for
        harmonic_image (str, optional): Earth Engine Image asset id of the harmonic model weights
            exported by `export_surface_water_harmonics`. If left as None then `harmonic_collection` 
            must be defined. default = None
        harmonic_collection (str, optional): Earth Engine ImageCollection asset id of the harmonic 
            model weights from tile `export_surface_water_harmonics`. If left as None then 
            `harmonic_image` must be defined. default = None
        feature_names (list[str],):  names of feature columns used to calculate `label` from
        label (str): name of feature column to predict using `feature_names`
        look_back (int,optional): number of days used to estimate short-term trend in water. default = 30
        lag (int, optional): number of days after `target_date` to begin `look_back`. default=4
        n_cycles (int, optional): number of interannual cycles to model. default = 2
        include_confidence (bool, optional): boolean keyword to specify if a confidence band will
            be exported with surface water image. If True then confidence will be calculated. default = False
        include_flood (bool, optional): boolean keyword to specify if a flood band will
            be exported with surface water image. If True then flood will be calculated based on JRC
             permanent water data. default = False
        export_fusion (bool, optional): boolean keyword to specify if the fusion image used to calculate
            water should be exported as a seperated task. If True then run fusion export task. default = False
        fusion_samples (str): Earth Engine FeatureCollection asset id of samples to get a data
            fusion model from. Should be the asset output from `export_fusion_samples`
        output_asset_path (str): Earth Engine asset id to save estimate water and fusion results to as image.
            If tile==True, then output_asset_path much be a precreated ImageCollection asset. If left
            as None then `output_bucket_path` must be specified. default = None
        output_bucket_path (str): GCP cloud bucket path to save estimate water and fusion results to 
            cloud optimized geotiffs. If tile==True, then multiple file will be created. If left
            as None then `output_asset_path` must be specified. default = None
        initial_threshold (float, optional): initial threshold value used in `edge_otsu` thresholding
            algorithm to segment water from fusion image. default = 0.1
        tile (bool, optional): boolean keyword to tile exports. If false will try to calculate 
            harmonic weights as image. If true, it will tile area and recusively call to export
            smaller areas. If true then expects that `output_asset_path` is an ImageCollection. 
            default = False
        tile_size (float, optional): resolution in decimal degrees to create tiles over region 
            for smaller exports. Only used if tile==True. default = 1.0
        tile_buffer (float,optional): buffer size in meters to buffer tiles to calculate threshold. This
            is used to ensure running tiled exports produces consistent results at tile seams. default = 100000
        output_scale (float, optional): output resolution of harmonic weight image. default = 30

    raises:
        ValueError: if `fusion_samples` is None
        ValueError: if both`harmonic_image` and `harmonic_collection` is None
        ValueError: if both 'output_asset_path' and 'output_bucket_path' is None
    """
    def get_residuals(i):
        """Closure function to calculate residuals of harmonic water estimate
        compared to observed data.
        """
        i = ee.Number(i)
        t_diff = (ee.Number(i).multiply(-1).subtract(lag)
                  )  # calc how many days to adjust ini date
        new_date = target_date.advance(t_diff, "day")  # calculate new date

        corr_img = (ds.collection.select(label).filterDate(
            new_date, new_date.advance(1, "day")).qualityMosaic(label))

        time_img = timeseries.get_dummy_img(new_date)

        harmon_pred = (timeseries.add_harmonic_coefs(time_img).multiply(
            harmonic_coefs).reduce("sum"))

        harmon_diff = harmon_pred.subtract(corr_img).rename("residual")

        return harmon_diff.set("system:time_start", new_date.millis())

    def calc_confidence(i):
        """Closure function to calculate confidence in water estimate using
        monte carlo methods and simulating errors in long- and short-term water
        dynamics
        """
        i = ee.Number(i)
        # uniform sampling of std dev at 95% confidence interval
        long_term_seed = i.add(500)
        short_term_seed = i.add(1000)
        long_term_random = ee.Image.random(long_term_seed).multiply(
            3.92).subtract(1.96)
        short_term_random = (
            ee.Image.random(short_term_seed).multiply(3.92).subtract(1.96))

        lin_sim = lin_pred.add(short_term_random.multiply(linCi))
        har_sim = har_pred.add(long_term_random.multiply(harCi))

        sim_pred = har_sim.subtract(lin_sim)
        # random_water = thresholding.bmax_otsu(random_combination,invert=True)
        # naive estimate of water (>0)
        return sim_pred.gt(ci_threshold).uint8()

    if tile:
        if tile:
            land_area = (ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017").
                         filterBounds(region).geometry(100).buffer(
                             2500, maxError=100))
            grid = geeutils.tile_region(region,
                                        intersect_geom=land_area,
                                        grid_size=tile_size)

            n = grid.size().getInfo()
            grid_list = grid.toList(n)

            for i in range(n):
                if output_asset_path is not None:
                    output_asset_tile = output_asset_path + f"daily_tile{i:05d}"
                else:
                    output_asset_tile = None
                if output_bucket_path is not None:
                    output_bucket_tile = output_bucket_path + f"_tile{i:05d}"
                else:
                    output_bucket_tile = None

                grid_tile = ee.Feature(grid_list.get(i)).geometry()
                export_daily_surface_water(
                    region=grid_tile,
                    target_date=target_date,
                    harmonic_image=harmonic_image,
                    harmonic_collection=harmonic_collection,
                    feature_names=feature_names,
                    label=label,
                    look_back=look_back,
                    lag=lag,
                    n_cycles=n_cycles,
                    include_confidence=include_confidence,
                    include_flood=include_flood,
                    export_fusion=export_fusion,
                    fusion_samples=fusion_samples,
                    output_asset_path=output_asset_tile,
                    output_bucket_path=output_bucket_tile,
                    initial_threshold=initial_threshold,
                    tile=False,
                    tile_buffer=tile_buffer,
                    output_scale=output_scale,
                )

    else:
        if not isinstance(target_date, ee.Date):
            target_date = ee.Date(target_date)

        end_time = target_date.advance(-(lag - 1), "day")
        start_time = end_time.advance(-look_back, "day")

        if fusion_samples is not None:
            fusion_model, scaling_dict = ml.random_forest_ee(
                25,
                fusion_samples.limit(10000),
                feature_names,
                label,
                scaling="standard",
                mode="regression",
            )
        else:
            raise ValueError(
                "'fusion_samples' needs to be defined to run fusion process")

        now = datetime.datetime.now()
        time_id = now.strftime("%Y%m%d%H%M%s")
        time_str = now.strftime("%Y-%m-%d %H:%M:%s")

        if harmonic_image is not None:
            harmonic_coefs = ee.Image(harmonic_image)
            harmonic_coefs = harmonic_coefs.multiply(
                ee.Image(ee.Number(harmonic_coefs.get("scale_factor"))))
        elif harmonic_collection is not None:
            harmonic_collection = ee.ImageCollection(harmonic_collection)
            first = ee.Image(harmonic_collection.first())
            harmonic_coefs = harmonic_collection.mosaic().multiply(
                ee.Image(ee.Number(first.get("scale_factor"))))
        else:
            raise ValueError(
                "Either 'harmonic_image' or 'harmonic_collection' needs to be defined to run fusion process"
            )

        if include_confidence:
            harmonic_err = harmonic_coefs.select(".*(x|y|n)$")
            harmonic_coefs = harmonic_coefs.select("^(c|t|s).*")
        else:
            harmonic_coefs = harmonic_coefs.select("^(c|t|s).*")

        prod_region = region.buffer(tile_buffer, 100)

        ds = _fuse_dataset(region,
                           start_time,
                           end_time,
                           fusion_model,
                           scaling_dict,
                           feature_names,
                           target_band=label,
                           use_viirs=True)

        dummy_target = timeseries.get_dummy_img(target_date)

        weights = ee.ImageCollection.fromImages(
            ee.List.sequence(0, look_back -
                             1).map(get_residuals)).sort("system:time_start")

        weights_lr = timeseries.fit_linear_trend(weights,
                                                 dependent="residual",
                                                 output_err=include_confidence)

        weights_coefs = weights_lr.select("^(c|t).*")

        lin_pred = (dummy_target.multiply(weights_coefs).reduce("sum").rename(
            "residual_est"))

        har_pred = (timeseries.add_harmonic_coefs(
            dummy_target,
            n_cycles=n_cycles).multiply(harmonic_coefs).reduce("sum"))

        fused_pred = hf.filtering.p_median(
            (har_pred.subtract(lin_pred))).rename("fused_product")

        ci_threshold = thresholding.edge_otsu(
            fused_pred,
            initial_threshold=initial_threshold,
            edge_buffer=300,
            region=prod_region,
            invert=True,
            scale=200,
            return_threshold=True,
        )

        permanent_water = (
            ee.ImageCollection("JRC/GSW1_2/YearlyHistory").filterDate(
                "1985-01-01", end_time).limit(5, "system:time_start", False).
            map(lambda x: x.select("waterClass").eq(3)).sum().unmask(0).gt(0))

        water = fused_pred.gt(ci_threshold).Or(permanent_water).rename(
            "water").uint8()

        if include_flood:
            flood = water.select("water").And(
                permanent_water.Not()).rename("flood")
            water = water.addBands(flood)

        if include_confidence:
            weights_err = weights_lr.select(".*(x|y|n)$")

            linCi = weights_err.expression(
                "mse * (1 + (1/n) + ((t-xmean)**2/xr))**(1/2)",
                {
                    "mse": weights_err.select("residual_y"),
                    "n": weights_err.select("n"),
                    "xmean": weights_err.select("mean_x"),
                    "xr": weights_err.select("residual_x"),
                    "t": dummy_target.select("time"),
                },
            )

            harCi = harmonic_err.expression(
                "mse * (1 + (1/n) + ((t-xmean)**2/xr))**(1/2)",
                {
                    "mse": harmonic_err.select("residual_y"),
                    "n": harmonic_err.select("n"),
                    "xmean": harmonic_err.select("mean_x"),
                    "xr": harmonic_err.select("residual_x"),
                    "t": dummy_target.select("time"),
                },
            )

            confidence = (ee.ImageCollection.fromImages(
                ee.List.sequence(0, 99).map(calc_confidence)).reduce(
                    ee.Reducer.mean(),
                    16).multiply(100).uint8().rename("confidence"))

            out_water = ee.Image.cat([
                confidence,
                water,
            ])
        else:
            out_water = water

        fused_pred = fused_pred.multiply(10000).int16()

        if output_asset_path is not None:
            # create metadata dict
            metadata = ee.Dictionary({
                "hf_version":
                hf.__version__,
                "system:time_start":
                target_date.millis(),
                "system:time_end":
                target_date.advance(86399, "seconds").millis(),
                "execution_time":
                time_str,
                "lag":
                lag,
                "look_back":
                look_back,
            })
            geeutils.export_image(
                out_water.set(metadata.combine({"product": "water"})),
                region,
                output_asset_path + "_water",
                description=f"hydrafloods_water_ee_export_{time_id}",
                scale=output_scale,
                crs="EPSG:4326",
            )
            if export_fusion:
                geeutils.export_image(
                    fused_pred.set(metadata.combine({"product": "fusion"})),
                    region,
                    output_asset_path + "_fusion",
                    description=f"hydrafloods_fusion_ee_export_{time_id}",
                    scale=output_scale,
                    crs="EPSG:4326",
                )

        elif output_bucket_path is not None:
            export_region = region.bounds(
                maxError=100).getInfo()["coordinates"]
            bucket_path, ext = os.path.splitext(output_bucket_path)
            fcomponents = bucket_path.split("/")
            bucket = fcomponents[2]
            fpath = fcomponents[3:-1]

            # TODO: remove extension from string formulation
            f_water = "/".join(fpath + [fcomponents[-1] + "_water" + ext])
            f_fusion = "/".join(fpath + [fcomponents[-1] + "_fusion" + ext])

            water_task = ee.batch.Export.image.toCloudStorage(
                image=out_water,
                description=f"hydrafloods_water_gcp_export_{time_id}",
                bucket=bucket,
                fileNamePrefix=f_water,
                region=export_region,
                scale=output_scale,
                crs="EPSG:4326",
                maxPixels=1e13,
                fileFormat="GeoTIFF",
                formatOptions={"cloudOptimized": True},
            )
            water_task.start()

            if export_fusion:
                fusion_task = ee.batch.Export.image.toCloudStorage(
                    image=fused_pred,
                    description=f"hydrafloods_fusion_gcp_export_{time_id}",
                    bucket=bucket,
                    fileNamePrefix=f_fusion,
                    region=export_region,
                    scale=output_scale,
                    crs="EPSG:4326",
                    maxPixels=1e13,
                    fileFormat="GeoTIFF",
                    formatOptions={"cloudOptimized": True},
                )
                fusion_task.start()

        else:
            raise ValueError(
                "Either 'output_asset_path' or 'output_bucket_path' needs to be defined to run fusion export process"
            )

    return
Ejemplo n.º 5
0
def export_fusion_product(
    region,
    target_date,
    harmonic_image=None,
    harmonic_collection=None,
    feature_names=None,
    label=None,
    look_back=30,
    lag=4,
    n_cycles=2,
    fusion_samples=None,
    output_asset_path=None,
    output_bucket_path=None,
    tile=False,
    tile_size=1.0,
    tile_buffer=100000,
    output_scale=30,
):
    def get_residuals(i):
        """Closure function to calculate residuals of harmonic water estimate
        compared to observed data.
        """
        i = ee.Number(i)
        t_diff = (
            ee.Number(i).multiply(-1).subtract(lag)
        )  # calc how many days to adjust ini date
        new_date = target_date.advance(t_diff, "day")  # calculate new date

        corr_img = (
            ds.collection.select(label)
            .filterDate(new_date, new_date.advance(1, "day"))
            .median()
        )  # .select(f"^{label}.*",label)

        time_img = timeseries.get_dummy_img(new_date)

        harmon_pred = (
            timeseries.add_harmonic_coefs(time_img)
            .multiply(harmonic_coefs)
            .reduce("sum")
        )

        harmon_diff = harmon_pred.subtract(corr_img).rename("residual")

        return harmon_diff.set("system:time_start", new_date.millis())

    if tile:
        if tile:
            land_area = (
                ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017")
                .filterBounds(region)
                .geometry(100)
                .buffer(2500, maxError=100)
            )
            grid = geeutils.tile_region(
                region, intersect_geom=land_area, grid_size=tile_size
            )

            n = grid.size().getInfo()
            grid_list = grid.toList(n)

            for i in range(n):
                if output_asset_path is not None:
                    output_asset_tile = output_asset_path + f"daily_tile{i:05d}"
                else:
                    output_asset_tile = None
                if output_bucket_path is not None:
                    output_bucket_tile = output_bucket_path + f"_tile{i:05d}"
                else:
                    output_bucket_tile = None

                grid_tile = ee.Feature(grid_list.get(i)).geometry()
                export_fusion_product(
                    region=grid_tile,
                    target_date=target_date,
                    harmonic_image=harmonic_image,
                    harmonic_collection=harmonic_collection,
                    feature_names=feature_names,
                    label=label,
                    look_back=look_back,
                    lag=lag,
                    n_cycles=n_cycles,
                    fusion_samples=fusion_samples,
                    output_asset_path=output_asset_path,
                    output_bucket_path=output_bucket_path,
                    tile=tile,
                    tile_size=tile_size,
                    tile_buffer=tile_buffer,
                    output_scale=output_scale,
                )

    else:
        if not isinstance(target_date, ee.Date):
            target_date = ee.Date(target_date)

        end_time = target_date.advance(-(lag - 1), "day")
        start_time = end_time.advance(-look_back, "day")

        if fusion_samples is not None:
            fusion_model, scaling_dict = ml.random_forest_ee(
                30,
                fusion_samples,
                feature_names,
                label,
                scaling=None,
                mode="regression",
            )
        else:
            raise ValueError(
                "'fusion_samples' needs to be defined to run fusion process"
            )

        now = datetime.datetime.now()
        time_id = now.strftime("%Y%m%d%H%M%s")
        time_str = now.strftime("%Y-%m-%d %H:%M:%s")

        if harmonic_image is not None:
            harmonic_coefs = ee.Image(harmonic_image)
            harmonic_coefs = harmonic_coefs.multiply(
                ee.Image(ee.Number(harmonic_coefs.get("scale_factor")))
            )
        elif harmonic_collection is not None:
            harmonic_collection = ee.ImageCollection(harmonic_collection)
            first = ee.Image(harmonic_collection.first())
            harmonic_coefs = harmonic_collection.mosaic().multiply(
                ee.Image(ee.Number(first.get("scale_factor")))
            )
        else:
            raise ValueError(
                "Either 'harmonic_image' or 'harmonic_collection' needs to be defined to run fusion process"
            )

        harmonic_coefs = harmonic_coefs.select("^(c|t|s).*")

        prod_region = region.buffer(tile_buffer, 100)

        ds = _fuse_dataset(
            region,
            start_time,
            end_time,
            fusion_model,
            scaling_dict,
            feature_names,
            target_band=label,
            use_viirs=True,
        )

        dummy_target = timeseries.get_dummy_img(target_date)

        weights = ee.ImageCollection.fromImages(
            ee.List.sequence(0, look_back - 1).map(get_residuals)
        ).sort("system:time_start")

        weights_lr = timeseries.fit_linear_trend(
            weights, dependent="residual", output_err=False
        )

        weights_coefs = weights_lr.select("^(c|t).*")

        lin_pred = (
            dummy_target.multiply(weights_coefs).reduce("sum").rename("residual_est")
        )

        har_pred = (
            timeseries.add_harmonic_coefs(dummy_target, n_cycles=n_cycles)
            .multiply(harmonic_coefs)
            .reduce("sum")
        )

        fused_pred = (har_pred.subtract(lin_pred)).rename("fused_product")

        fused_pred = fused_pred.multiply(10000).int16()

    if output_asset_path is not None:
        # create metadata dict
        metadata = ee.Dictionary(
            {
                "hf_version": hf.__version__,
                "system:time_start": target_date.millis(),
                "system:time_end": target_date.advance(86399, "seconds").millis(),
                "execution_time": time_str,
                "lag": lag,
                "look_back": look_back,
                "scale_factor": 0.0001,
            }
        )

        geeutils.export_image(
            fused_pred.set(metadata.combine({"product": "fusion"})),
            region,
            output_asset_path + "_fusion",
            description=f"hydrafloods_fusion_ee_export_{time_id}",
            scale=output_scale,
            crs="EPSG:4326",
        )

    elif output_bucket_path is not None:
        export_region = region.bounds(maxError=100).getInfo()["coordinates"]
        bucket_path, ext = os.path.splitext(output_bucket_path)
        fcomponents = bucket_path.split("/")
        bucket = fcomponents[2]
        fpath = fcomponents[3:-1]

        # TODO: remove extension from string formulation
        f_water = "/".join(fpath + [fcomponents[-1] + "_water" + ext])
        f_fusion = "/".join(fpath + [fcomponents[-1] + "_fusion" + ext])

        fusion_task = ee.batch.Export.image.toCloudStorage(
            image=fused_pred,
            description=f"hydrafloods_fusion_gcp_export_{time_id}",
            bucket=bucket,
            fileNamePrefix=f_fusion,
            region=export_region,
            scale=output_scale,
            crs="EPSG:4326",
            maxPixels=1e13,
            fileFormat="GeoTIFF",
            formatOptions={"cloudOptimized": True},
        )
        fusion_task.start()

    else:
        raise ValueError(
            "Either 'output_asset_path' or 'output_bucket_path' needs to be defined to run fusion export process"
        )

    return