Ejemplo n.º 1
0
def funcM():
    figM = plt.figure(figsize=[12, 3])
    gsM = gridspec.GridSpec(1, 5)
    axM = list()
    axM.append(figM.add_subplot(gsM[0, 0]))
    axM.append(figM.add_subplot(gsM[0, 1:3]))
    axM.append(figM.add_subplot(gsM[0, 3:5]))
    axM = np.array(axM)
    x = corrMat[indS, codeLst.index(codeM[0]), 1]
    y = corrMat[indS, codeLst.index(codeM[1]), 1]
    sc = axplot.scatter121(axM[0], x, y, cMat)
    figM.colorbar(sc, ax=axM[0])
    axM[0].set_label('scatter')
    axplot.mapPoint(axM[1], lat, lon, x, s=24)
    axM[1].set_label('map1')
    axplot.mapPoint(axM[2], lat, lon, y, s=24)
    axM[2].set_label('map2')
    labelLst = ['scatter', 'map1', 'map2']
    xMat = np.stack([x, lon, lon], axis=1)
    yMat = np.stack([y, lat, lat], axis=1)

    figP = plt.figure(figsize=[12, 3])
    gsP = gridspec.GridSpec(2, 4)
    axP = list()
    axP.append(figP.add_subplot(gsP[0, :-1]))
    axP.append(figP.add_subplot(gsP[0, -1]))
    axP.append(figP.add_subplot(gsP[1, :-1]))
    axP.append(figP.add_subplot(gsP[1, -1]))
    axP = np.array(axP)

    return figM, axM, figP, axP, xMat, yMat, labelLst
Ejemplo n.º 2
0
def funcM():
    figM = plt.figure(figsize=[12, 3])
    gsM = gridspec.GridSpec(1, 3)
    axM = list()
    axM.append(figM.add_subplot(gsM[0, 0]))
    axM.append(figM.add_subplot(gsM[0, 1:]))
    axM = np.array(axM)
    sc = axplot.scatter121(axM[0], corrMat[indS, ic, 1],
                           corrMat[indS, ic, 2], cMat)
    figM.colorbar(sc, ax=axM[0])
    axplot.mapPoint(axM[1], lat, lon, corrMat[indS, ic, 1], s=24)
    axM[0].set_label('scatter')
    axM[1].set_label('map')
    figM.show()
    figP, axP = plt.subplots(2, 1)
    labelLst = ['scatter', 'map']
    xMat = np.stack([corrMat[indS, ic, 1], lon], axis=1)
    yMat = np.stack([corrMat[indS, ic, 2], lat], axis=1)
    return figM, axM, figP, axP, xMat, yMat, labelLst
Ejemplo n.º 3
0
for code in dictPlot.keys():
    siteNoCode = dictSite[code]
    siteNoP = dictPlot[code]
    indS = [siteNoLst.index(siteNo) for siteNo in siteNoCode]
    ic = codeLst.index(code)
    dfCrd = gageII.readData(varLst=['LAT_GAGE', 'LNG_GAGE'],
                            siteNoLst=siteNoCode)
    lat = dfCrd['LAT_GAGE'].values
    lon = dfCrd['LNG_GAGE'].values
    shortName = usgs.codePdf.loc[code]['shortName']

    fig = plt.figure(figsize=[12, 9])
    gsM = gridspec.GridSpec(4, 5)

    ax = fig.add_subplot(gsM[0, 0])
    sc = axplot.scatter121(ax, corrMat[indS, ic, 1], corrMat[indS, ic, 2],
                           pMat[indS, ic])
    fig.colorbar(sc, ax=ax)
    ax.set_xlabel('LSTM correlation')
    ax.set_ylabel('WRTDS correlation')
    ax.set_title('power of seasonal signal')
    for siteNo in siteNoP:
        iS = siteNoLst.index(siteNo)
        circle = plt.Circle([corrMat[iS, ic, 1], corrMat[iS, ic, 2]],
                            0.05,
                            color='red',
                            fill=False)
        ax.add_patch(circle)

    ax = fig.add_subplot(gsM[0, 1:3])
    axplot.mapPoint(ax, lat, lon, corrMat[indS, ic, 1], s=24, cmap='viridis')
    ax.set_title('map of LSTM correlation')
Ejemplo n.º 4
0
ticks = [-0.5, 0, 0.5, 1]
axM = list()
for k, code in enumerate(codeLst2):
    j, i = utils.index2d(k, 5, 4)
    axM.append(
        figM.add_subplot(gsM[(j) * 10:(j + 1) * 10, i * 10:(i + 1) * 10]))

for k, code in enumerate(codeLst2):
    j, i = utils.index2d(k, 5, 4)
    ax = axM[k]
    ic = codeLst.index(code)
    x = corrMat[:, ic, 1]
    y = corrMat[:, ic, 2]
    c = cMat[:, ic]
    # c = np.argsort(countMat2[:, ind])
    sc = axplot.scatter121(ax, x, y, c, vR=cR, size=15)
    rmse, corr = utils.stat.calErr(x, y)
    titleStr = '{} {} {:.2f}'.format(code, usgs.codePdf.loc[code]['shortName'],
                                     corr)
    _ = ax.set_xlim([ticks[0], ticks[-1]])
    _ = ax.set_ylim([ticks[0], ticks[-1]])
    _ = ax.set_yticks(ticks)
    _ = ax.set_xticks(ticks)
    axplot.titleInner(ax, titleStr)
    ax.set_label(code)
    # print(i, j)
    if i != 0:
        _ = ax.set_yticklabels([])
    if j != 4:
        _ = ax.set_xticklabels([])
    # _ = ax.set_aspect('equal')
Ejemplo n.º 5
0
        code, usgs.codePdf.loc[code]['shortName'])
    axplot.titleInner(ax, titleStr)
fig.show()

dfG = gageII.readData(siteNoLst=siteNoLst)
dfG = gageII.updateRegion(dfG)
dfG = gageII.updateCode(dfG)
cMat=
fig, axes = plt.subplots(nfy, nfx)
for k, code in enumerate(codeLst2):
    j, i = utils.index2d(k, nfy, nfx)
    ax = axes[j, i]
    ic = codeLst.index(code)
    x = rMat[:, ic, 1]
    y = rMat[:, ic, 0]
    axplot.scatter121(ax, x, y, cvR=[0, 1])
    titleStr = '{} {} '.format(
        code, usgs.codePdf.loc[code]['shortName'])
    axplot.titleInner(ax, titleStr)
fig.show()

# Cart
dfA = pd.DataFrame(index=range(10), columns=codeLst)
dfV = pd.DataFrame(index=range(10), columns=codeLst)

for code in codeLst:
    ic = codeLst.index(code)
    matAll = rMat[]
    [mat], indS = utils.rmNan([matAll])
    siteNoCode = [siteNoLst[ind] for ind in indS]
    dfGC = dfG.loc[siteNoCode]
Ejemplo n.º 6
0
    x = qMat
    y = rMat[:, ic, 0]
    axplot.plot121(ax, x, y, vR=[0, 1])
    titleStr = '{} {} '.format(code, usgs.codePdf.loc[code]['shortName'])
    axplot.titleInner(ax, titleStr)
fig.show()

cMat = qMat
fig, axes = plt.subplots(nfy, nfx)
for k, code in enumerate(codeLst2):
    j, i = utils.index2d(k, nfy, nfx)
    ax = axes[j, i]
    ic = codeLst.index(code)
    x = rMat[:, ic, 1]
    y = rMat[:, ic, 0]
    axplot.scatter121(ax, x, y, qMat, vR=[0, 0.5])
    titleStr = '{} {} '.format(code, usgs.codePdf.loc[code]['shortName'])
    axplot.titleInner(ax, titleStr)
fig.show()

indC = [codeLst.index(code) for code in codeLst2]
labelLst = [
    '{} {}'.format(code, usgs.codePdf.loc[code]['shortName'])
    for code in codeLst2
]
xMat = rMat[:, indC, 1]
yMat = rMat[:, indC, 0]
nXY = [nfx, nfy]
figM, axM = figplot.scatter121Batch(xMat,
                                    yMat,
                                    qMat,
Ejemplo n.º 7
0
importlib.reload(axplot)
figM, figP = figplot.clickMap(funcMap, funcPoint)

# 121 plot

# tempLst = ['09163500', '05465500', '02175000', '09171100']
tempLst = ['10343500', '05465500', '02175000', '09171100']

code = '00915'
fig, ax = plt.subplots(1, 1, figsize=[8, 6])
ic = codeLst.index(code)
x = corrMat[:, ic, 0]
y = corrMat[:, ic, 1]
c = corrMat[:, ic, 2]
out = axplot.scatter121(ax, x, y, c)
# for siteNo in tempLst:
#     indS = siteNoLst.index(siteNo)
#     circle = plt.Circle([x[indS], y[indS]], 0.05,
#                         color='black', fill=False)
#     ax.add_patch(circle)
ax.set_xlabel('LSTM correlation')
ax.set_ylabel('WRTDS correlation')
ax.set_title('Performance on Calcium')
fig.colorbar(out, ax=ax)
fig.show()

figM, axM = plt.subplots(1, 2, figsize=(12, 4))
indS = [siteNoLst.index(siteNo) for siteNo in dictSite[code]]
siteNoLstCode = dictSite[code]
dfCrd = gageII.readData(
Ejemplo n.º 8
0
fileGlim = os.path.join(kPath.dirData, 'USGS', 'GLiM', 'tab_1KM')
tabGlim = pd.read_csv(fileGlim, dtype={'siteNo': str}).set_index('siteNo')
matV = np.argmax(tabGlim.values, axis=1)

labelLst = [
    '{} {}'.format(code, usgs.codePdf.loc[code]['shortName'])
    for code in codeLst2
]
icLst = [codeLst.index(code) for code in codeLst2]
figM, axM = figplot.scatter121Batch(rMat[:, icLst, 1],
                                    rMat[:, icLst, 0],
                                    matV,
                                    labelLst, [nfx, nfy],
                                    optCb=1,
                                    ticks=[0, 0.5, 1])
figM.show()

temp = ['00930', '00940']
ic1 = codeLst.index(temp[0])
ic2 = codeLst.index(temp[1])
nameLst = [usgs.codePdf.loc[code]['shortName'] for code in temp]
fig, axes = plt.subplots(1, 2)
axplot.scatter121(axes[0], rMat[:, ic1, 0], rMat[:, ic2, 0], qMat, vR=[0, .6])
axes[0].set_xlabel('Linearity of {}'.format(nameLst[0]))
axes[0].set_ylabel('Linearity of {}'.format(nameLst[1]))
axplot.scatter121(axes[1], rMat[:, ic1, 1], rMat[:, ic2, 1], qMat, vR=[0, .6])
axes[1].set_xlabel('Seasonality of {}'.format(nameLst[0]))
axes[1].set_ylabel('Seasonality of {}'.format(nameLst[1]))
fig.show()
Ejemplo n.º 9
0
            v3 = dictObs[siteNo][code].iloc[ind2].values
            vv1, vv2, vv3 = utils.rmNan([v1, v2, v3], returnInd=False)
            rmse1, corr1 = utils.stat.calErr(vv1, vv2)
            rmse2, corr2 = utils.stat.calErr(vv1, vv3)
            rmse3, corr3 = utils.stat.calErr(vv2, vv3)
            corrMat[indS, ic, 0] = corr1
            corrMat[indS, ic, 1] = corr2
            corrMat[indS, ic, 2] = corr3

    # load basin attributes
    regionLst = [
        'ECO2_BAS_DOM', 'NUTR_BAS_DOM', 'HLR_BAS_DOM_100M', 'PNV_BAS_DOM'
    ]
    dfG = gageII.readData(siteNoLst=siteNoLst)
    fileT = os.path.join(gageII.dirTab, 'lookupPNV.csv')
    tabT = pd.read_csv(fileT).set_index('PNV_CODE')
    for code in range(1, 63):
        siteNoTemp = dfG[dfG['PNV_BAS_DOM'] == code].index
        dfG.at[siteNoTemp, 'PNV_BAS_DOM2'] = tabT.loc[code]['PNV_CLASS_CODE']
    dfG = gageII.updateCode(dfG)

var = 'PLANTNLCD06'
codePlot = ['00618', '00660']
fig, ax = plt.subplots(1, 1)
c = dfG[var].values
x = corrMat[:, codeLst.index(codePlot[0]), 1]
y = corrMat[:, codeLst.index(codePlot[1]), 1]
sc = axplot.scatter121(ax, x, y, c=c, vR=[0, 1])
fig.colorbar(sc, ax=ax)
fig.show()
Ejemplo n.º 10
0
cVar = 'Estimated Travel time'
cR = [np.nanmin(cMat), np.nanmax(cMat)]
cR = [np.nanpercentile(cMat, 10), np.nanpercentile(cMat, 90)]

code = '00660'
cVar = 'DEVOPENNLCD06'
th = 4.755000114
cMat = dfG[cVar].values

# attr vs diff
cMatLog = np.log(cMat + 1)
fig, axes = plt.subplots(1, 2, figsize=(10, 4))
ic = codeLst.index(code)
sc = axplot.scatter121(axes[0],
                       corrMat[:, ic, 1],
                       corrMat[:, ic, 2],
                       cMatLog,
                       size=30)
axes[0].set_xlabel('Corr LSTM')
axes[0].set_ylabel('Corr WRTDS')
fig.colorbar(sc, ax=axes[0])
x = cMat
y = corrMat[:, ic, 1]**2 - corrMat[:, ic, 2]**2
axes[1].plot(x, y, '*')
axes[1].plot([np.nanmin(x), np.nanmax(x)], [0, 0], 'k-')
axes[1].set_ylim([-0.5, 0.5])
axes[1].set_xlabel(cVar)
axes[1].set_ylabel('Rsq LSTM - Rsq WRTDS')
fig.suptitle('affect of {} on {} {}'.format(
    cVar, code, usgs.codePdf.loc[code]['shortName']))
fig.show()
Ejemplo n.º 11
0
    j, i = utils.index2d(k, nfy, nfx)
    axM.append(
        figM.add_subplot(gsM[(j) * 10:(j + 1) * 10, i * 10:(i + 1) * 10]))

for k, code in enumerate(codeLst2):
    j, i = utils.index2d(k, nfy, nfx)
    ax = axM[k]
    ic = codeLst.index(code)
    x = corrMat[:, ic, 1]
    y = corrMat[:, ic, 2]
    if cMat.ndim > 1:
        c = cMat[:, ic]
    else:
        c = cMat
    # c = np.argsort(countMat2[:, ind])
    sc = axplot.scatter121(ax, x, y, c, vR=cR)
    rmse, corr = utils.stat.calErr(x, y)
    titleStr = '{} {} {:.2f}'.format(code, usgs.codePdf.loc[code]['shortName'],
                                     corr)
    _ = ax.set_xlim([ticks[0], ticks[-1]])
    _ = ax.set_ylim([ticks[0], ticks[-1]])
    _ = ax.set_yticks(ticks)
    _ = ax.set_xticks(ticks)
    axplot.titleInner(ax, titleStr)
    ax.set_label(code)
    # print(i, j)
    if i != 0:
        _ = ax.set_yticklabels([])
    if j != 4:
        _ = ax.set_xticklabels([])
    # _ = ax.set_aspect('equal')
Ejemplo n.º 12
0
yMat = rMat[:, indC, 0]
cMat = bMat2[:, indC]
nXY = [nfx, nfy]
figM, axM = figplot.scatter121Batch(
    xMat, yMat, cMat, labelLst, nXY, optCb=1,
    ticks=[0, 0.5, 1], s=20, cmap='jet')
figM.show()

###############

ic1 = codeLst.index('00915')
ic2 = codeLst.index('00955')
fig, axes = plt.subplots(1, 2)
# axplot.plot121(axes[0], rMat[:, ic1, 0], rMat[:, ic2, 0], vR=[0, 1])
# axplot.plot121(axes[1], rMat[:, ic1, 1], rMat[:, ic2, 1], vR=[0, 1])
axplot.scatter121(axes[0], rMat[:, ic1, 0], rMat[:, ic2, 0], qMat,  vR=[0, .5])
axplot.scatter121(axes[1], rMat[:, ic1, 1], rMat[:, ic2, 1], qMat,  vR=[0, .5])
fig.show()

temp = ['00915', '00955']
ic1 = codeLst.index(temp[0])
ic2 = codeLst.index(temp[1])
nameLst = [usgs.codePdf.loc[code]['shortName'] for code in temp]
fig, axes = plt.subplots(1, 2)
sc1 = axplot.scatter121(axes[0], rMat[:, ic1, 1],
                        rMat[:, ic1, 0], qMat, vR=[0, 0.5])
axes[0].set_xlabel('Seasonality of {}'.format(nameLst[0]))
axes[0].set_ylabel('Linearity of {}'.format(nameLst[0]))
sc2 = axplot.scatter121(axes[1], rMat[:, ic2, 1],
                        rMat[:, ic2, 0], qMat, vR=[0, 0.5])
axes[1].set_xlabel('Seasonality of {}'.format(nameLst[1]))