Ejemplo n.º 1
0
def train_plda(iv_file, train_list, val_list, preproc_file,
               epochs, ml_md, md_epochs,
               output_path, **kwargs):
    
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    vcr_args = VCR.filter_args(**kwargs)
    vcr_train = VCR(iv_file, train_list, preproc, **vcr_args)
    x, class_ids = vcr_train.read()

    x_val = None
    class_ids_val = None
    if val_list is not None:
        vcr_val = VCR(iv_file, val_list, preproc, **vcr_args)
        x_val, class_ids_val = vcr_val.read()
        
    t1 = time.time()

    plda_args = F.filter_train_args(**kwargs)
    model = F.create_plda(**plda_args)
    elbos = model.fit(x, class_ids, x_val=x_val, class_ids_val=class_ids_val,
                      epochs=epochs, ml_md=ml_md, md_epochs=md_epochs)

    logging.info('Elapsed time: %.2f s.' % (time.time()-t1))
    
    model.save(output_path)

    elbo = np.vstack(elbos)
    num = np.arange(epochs)
    elbo = np.vstack((num, elbo)).T
    elbo_path=os.path.splitext(output_path)[0] + '.csv'
    np.savetxt(elbo_path, elbo, delimiter=',')
def eval_plda(iv_file, ndx_file, enroll_file, test_subseg2orig_file,
              preproc_file,
              model_file, score_file, plda_type,
              **kwargs):
    
    logging.info('loading data')
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    tdr = TDR(iv_file, ndx_file, enroll_file, None, test_subseg2orig_file, preproc)
    x_e, x_t, enroll, ndx, orig_seg = tdr.read()

    logging.info('loading plda model: %s' % (model_file))
    model = F.load_plda(plda_type, model_file)
    
    t1 = time.time()
    
    logging.info('computing llr')
    scores = model.llr_1vs1(x_e, x_t)
    
    dt = time.time() - t1
    num_trials = len(enroll) * x_t.shape[0]
    logging.info('scoring elapsed time: %.2f s. elapsed time per trial: %.2f ms.'
          % (dt, dt/num_trials*1000))

    logging.info('combine cluster scores') 
    scores = combine_diar_scores(ndx, orig_seg, scores)

    logging.info('saving scores to %s' % (score_file))
    s = TrialScores(enroll, ndx.seg_set, scores)
    s = s.align_with_ndx(ndx)
    s.save_txt(score_file)
Ejemplo n.º 3
0
def eval_plda(iv_file, ndx_file, enroll_file, test_file,
              preproc_file,
              model_file, score_file, plda_type, **kwargs):
    
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    tdr_args = TDR.filter_args(**kwargs)
    tdr = TDR(iv_file, ndx_file, enroll_file, test_file, preproc, **tdr_args)
    x_e, x_t, enroll, ndx = tdr.read()

    model = F.load_plda(plda_type, model_file)
    
    t1 = time.time()
    scores = model.llr_1vs1(x_e, x_t)
    
    dt = time.time() - t1
    num_trials = x_e.shape[0] * x_t.shape[0]
    logging.info('Elapsed time: %.2f s. Elapsed time per trial: %.2f ms.'
          % (dt, dt/num_trials*1000))

    s = TrialScores(enroll, ndx.seg_set, scores)
    s.save(score_file)
Ejemplo n.º 4
0
def eval_plda(iv_file, ndx_file, enroll_file, test_file, preproc_file,
              model_file, score_file, pool_method, **kwargs):

    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    tdr_args = TDR.filter_args(**kwargs)
    tdr = TDR(iv_file, ndx_file, enroll_file, test_file, preproc, **tdr_args)
    x_e, x_t, enroll, ndx = tdr.read()
    enroll, ids_e = np.unique(enroll, return_inverse=True)

    model = F.load_plda(plda_type, model_file)

    t1 = time.time()

    scores = model.llr_Nvs1(x_e, x_t, method=pool_method, ids1=ids_e)

    dt = time.time() - t1
    num_trials = len(enroll) * x_t.shape[0]
    logging.info('Elapsed time: %.2f s. Elapsed time per trial: %.2f ms.' %
                 (dt, dt / num_trials * 1000))

    s = TrialScores(enroll, ndx.seg_set, scores)
    s.save(score_file)
Ejemplo n.º 5
0
def eval_plda(iv_file, ndx_file, enroll_file, test_subseg2orig_file,
              preproc_file, coh_iv_file, coh_list, coh_nbest,
              coh_nbest_discard, model_file, score_file, plda_type, **kwargs):

    logging.info('loading data')
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    tdr = TDR(iv_file, ndx_file, enroll_file, None, test_subseg2orig_file,
              preproc)
    x_e, x_t, enroll, ndx, orig_seg = tdr.read()

    logging.info('loading plda model: %s' % (model_file))
    model = F.load_plda(plda_type, model_file)

    t1 = time.time()
    logging.info('computing llr')
    scores = model.llr_1vs1(x_e, x_t)

    dt = time.time() - t1
    num_trials = len(enroll) * x_t.shape[0]
    logging.info(
        'scoring elapsed time: %.2f s. elapsed time per trial: %.2f ms.' %
        (dt, dt / num_trials * 1000))

    logging.info('loading cohort data')
    vr = VR(coh_iv_file, coh_list, preproc)
    x_coh = vr.read()

    t2 = time.time()
    logging.info('score cohort vs test')
    scores_coh_test = model.llr_1vs1(x_coh, x_t)
    logging.info('score enroll vs cohort')
    scores_enr_coh = model.llr_1vs1(x_e, x_coh)

    dt = time.time() - t2
    logging.info('cohort-scoring elapsed time: %.2f s.' % (dt))

    t2 = time.time()
    logging.info('apply s-norm')
    snorm = SNorm(nbest=coh_nbest, nbest_discard=coh_nbest_discard)
    scores = snorm.predict(scores, scores_coh_test, scores_enr_coh)
    dt = time.time() - t2
    logging.info('s-norm elapsed time: %.2f s.' % (dt))

    dt = time.time() - t1
    logging.info(
        ('total-scoring elapsed time: %.2f s. '
         'elapsed time per trial: %.2f ms.') % (dt, dt / num_trials * 1000))

    logging.info('combine cluster scores')
    scores = combine_diar_scores(ndx, orig_seg, scores)

    logging.info('saving scores to %s' % (score_file))
    s = TrialScores(enroll, ndx.seg_set, scores)
    s = s.align_with_ndx(ndx)
    s.save_txt(score_file)
def tracking_plda(iv_file, ndx_file, enroll_file, segments_file, preproc_file,
                  model_file, rttm_file, plda_type, **kwargs):

    logging.info('loading data')
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    tdr = TDR(iv_file, ndx_file, enroll_file, segments_file, preproc)
    x_e, x_t, enroll, ndx_seg, ext_segments = tdr.read()

    logging.info('loading plda model: %s' % (model_file))
    model = F.load_plda(plda_type, model_file)

    t1 = time.time()

    logging.info('computing llr')
    scores = model.llr_1vs1(x_e, x_t)

    dt = time.time() - t1
    num_trials = len(enroll) * x_t.shape[0]
    logging.info(
        'scoring elapsed time: %.2f s. elapsed time per trial: %.2f ms.' %
        (dt, dt / num_trials * 1000))

    scores = TrialScores(enroll, ndx_seg.seg_set, scores)
    new_ext_segment_ids, ext_segment_ids, model_ids, scores = flatten_segment_scores(
        ndx_seg, scores)
    new_ext_segments = prepare_output_ext_segments(ext_segments,
                                                   new_ext_segment_ids,
                                                   ext_segment_ids, model_ids,
                                                   scores)
    new_ext_segments.save(rttm_file + '_es')
    rttm = RTTM.create_spkdiar_from_ext_segments(new_ext_segments)
    rttm.save(rttm_file)
    parser=argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,                
        fromfile_prefix_chars='@',
        description='Eval PLDA with diarization in test')

    parser.add_argument('--iv-file', dest='iv_file', required=True)
    parser.add_argument('--ndx-file', dest='ndx_file', required=True)
    #parser.add_argument('--diar-ndx-file', dest='diar_ndx_file', required=True)
    parser.add_argument('--enroll-file', dest='enroll_file', required=True)
    #parser.add_argument('--diar2orig', dest='diar2orig', required=True)
    parser.add_argument('--test-subseg2orig-file', dest='test_subseg2orig_file',
                        required=True)
    parser.add_argument('--preproc-file', dest='preproc_file', default=None)

    TDR.add_argparse_args(parser)
    F.add_argparse_eval_args(parser)

    parser.add_argument('--score-file', dest='score_file', required=True)
    parser.add_argument('-v', '--verbose', dest='verbose', default=1,
                        choices=[0, 1, 2, 3], type=int)
    
    args=parser.parse_args()
    config_logger(args.verbose)
    del args.verbose
    logging.debug(args)

    eval_plda(**vars(args))

            
Ejemplo n.º 8
0
def train_be(iv_file, train_list, adapt_iv_file, adapt_list, lda_dim,
             plda_type, y_dim, z_dim, epochs, ml_md, md_epochs, w_mu, w_B, w_W,
             output_path, **kwargs):

    # Read data
    logging.info('loading data')
    vcr_args = VCR.filter_args(**kwargs)
    vcr_train = VCR(iv_file, train_list, None, **vcr_args)
    x, class_ids = vcr_train.read()

    # Train LDA
    logging.info('train LDA')
    t1 = time.time()
    lda = LDA(lda_dim=lda_dim, name='lda')
    lda.fit(x, class_ids)

    x_lda = lda.predict(x)
    logging.info('LDA elapsed time: %.2f s.' % (time.time() - t1))

    # Train centering and whitening
    logging.info('train length norm')
    t1 = time.time()
    lnorm = LNorm(name='lnorm')
    lnorm.fit(x_lda)

    x_ln = lnorm.predict(x_lda)
    logging.info('length norm elapsed time: %.2f s.' % (time.time() - t1))

    # Train PLDA
    logging.info('train PLDA')
    t1 = time.time()
    plda = F.create_plda(plda_type, y_dim=y_dim, z_dim=z_dim, name='plda')
    elbo = plda.fit(x_ln,
                    class_ids,
                    epochs=epochs,
                    ml_md=ml_md,
                    md_epochs=md_epochs)
    logging.info('PLDA elapsed time: %.2f s.' % (time.time() - t1))

    # Save models
    logging.info('saving models')
    preproc = TransformList(lda)
    preproc.append(lnorm)

    if not os.path.exists(output_path):
        os.makedirs(ouput_path)

    preproc.save(output_path + '/lda_lnorm.h5')
    plda.save(output_path + '/plda.h5')

    num = np.arange(epochs)
    elbo = np.vstack((num, elbo)).T
    np.savetxt(output_path + '/elbo.csv', elbo, delimiter=',')

    #adaptation
    vcr = VCR(adapt_iv_file, adapt_list, None)
    x, class_ids = vcr.read()
    x_lda = lda.predict(x)
    lnorm.update_T = False
    lnorm.fit(x_lda)

    preproc = TransformList(lda)
    preproc.append(lnorm)

    preproc.save(output_path + '/lda_lnorm_adapt.h5')

    x_ln = lnorm.predict(x_lda)

    plda_adapt = plda.copy()

    elbo = plda.fit(x_ln, class_ids, epochs=epochs)
    plda_adapt.weighted_avg_model(plda, w_mu, w_B, w_W)
    plda_adapt.save(output_path + '/plda_adapt.h5')

    num = np.arange(epochs)
    elbo = np.vstack((num, elbo)).T
    np.savetxt(output_path + '/elbo_adapt.csv', elbo, delimiter=',')
Ejemplo n.º 9
0

if __name__ == "__main__":

    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        fromfile_prefix_chars='@',
        description='Train Back-end with adaptation')

    parser.add_argument('--iv-file', dest='iv_file', required=True)
    parser.add_argument('--train-list', dest='train_list', required=True)
    parser.add_argument('--adapt-iv-file', dest='adapt_iv_file', required=True)
    parser.add_argument('--adapt-list', dest='adapt_list', required=True)

    VCR.add_argparse_args(parser)
    F.add_argparse_train_args(parser)

    parser.add_argument('--output-path', dest='output_path', required=True)
    parser.add_argument('--lda-dim', dest='lda_dim', type=int, default=None)
    parser.add_argument('--w-mu', dest='w_mu', type=float, default=1)
    parser.add_argument('--w-b', dest='w_B', type=float, default=1)
    parser.add_argument('--w-w', dest='w_W', type=float, default=1)

    parser.add_argument('-v',
                        '--verbose',
                        dest='verbose',
                        default=1,
                        choices=[0, 1, 2, 3],
                        type=int)

    args = parser.parse_args()