Ejemplo n.º 1
0
def export_to_fits(cli):
	
	#
	# Read in the model:
	#
	file = filename(cli, "plot")
	file += ".rtout"
	model = ModelOutput(file)
	
	
	#
	# Write fits file:
	#
	if(cli.mode == "images"):
		
		los = [0 for i in range(3)]
		los[0] = 'x'
		los[1] = 'y'
		los[2] = 'z'

		for k in range(0, 3):
			image = model.get_image(distance=1*pc, units='MJy/sr', inclination=0, component='total', group=k)
			Nwavelength=image.val.shape[2]
			for i in range(0, Nwavelength):
				file = filename(cli, "fits")
				file += "_wavelength=" + str(image.wav[i]) + "micron_los=" + los[k] + ".fits"
				fits.writeto(file, image.val[:, :, i], clobber=True)
				if(cli.verbose):
					print("  The fits file was written to", file)

	else:
		print("ERROR: The specified mode", mode, "is not available. Use 'images' only.")
def get_image(filename, dist):
    try:
        m = ModelOutput(filename)
        return m.get_image(inclination='all',
                           distance=luminosity_distance,
                           units='Jy')
    except (OSError, ValueError) as e:
        print("OS Error in reading in: " + filename)
        pass
Ejemplo n.º 3
0
    def test_docs_example(self):
        import numpy as np

        from hyperion.model import ModelOutput
        from hyperion.util.constants import pc

        from fluxcompensator.cube import *
        from fluxcompensator.psf import *
        from fluxcompensator.utils.resolution import *

        # read in from HYPERION
        m = ModelOutput(
            os.path.join(os.path.dirname(__file__), 'hyperion_output.rtout'))
        array = m.get_image(group=0,
                            inclination=0,
                            distance=300 * pc,
                            units='ergs/cm^2/s')

        # initial FluxCompensator array
        c = SyntheticCube(input_array=array,
                          unit_out='ergs/cm^2/s',
                          name='test_cube')

        # dered with provided extinction law
        ext = c.extinction(A_v=20.)

        # change resolution to 10-times of the initial
        zoom = ext.change_resolution(new_resolution=10 *
                                     ext.resolution['arcsec'],
                                     grid_plot=True)

        import fluxcompensator.database.missions as PSFs

        # call object from the psf database
        psf_object = getattr(PSFs, 'PACS1_PSF')

        # convolve with PSF
        psf = zoom.convolve_psf(psf_object)

        import fluxcompensator.database.missions as filters

        # call object from the filter database
        filter_input = getattr(filters, 'PACS1_FILTER')

        # convolve with filter
        filtered = psf.convolve_filter(filter_input,
                                       plot_rebin=None,
                                       plot_rebin_dpi=None)

        # add noise
        noise = filtered.add_noise(mu_noise=0,
                                   sigma_noise=5e-15,
                                   diagnostics=None)
def extract(model):

    # Extract model name
    model_name = os.path.basename(model).replace('.rtout', '').replace('external_', '')

    m = ModelOutput(model)

    wav, flux = m.get_image(group=0, units='MJy/sr', distance=1000. * kpc)  # distance should not matter as long as it is large
    flux = flux[0, :, :, :]

    # Convolve with filters
    flux_conv = np.zeros((len(filters), flux.shape[0], flux.shape[1]))
    for i, filtname in enumerate(filters):
        transmission = rebin_filter(filtname, c / (wav * 1.e-4))
        flux_conv[i, :, :] = np.sum(transmission[np.newaxis, np.newaxis:] * flux, axis=2)

    pyfits.writeto('models/external/external_%s.fits' % model_name, flux, clobber=True)
    pyfits.writeto('models/external/external_%s_conv.fits' % model_name, flux_conv, clobber=True)
Ejemplo n.º 5
0
    def setup_method(self, method):

        import numpy as np

        from hyperion.model import ModelOutput
        from hyperion.util.constants import kpc
        from fluxcompensator.cube import *

        # read in from HYPERION
        m = ModelOutput(
            os.path.join(os.path.dirname(__file__), 'hyperion_output.rtout'))
        array = m.get_image(group=0,
                            inclination=0,
                            distance=10 * kpc,
                            units='ergs/cm^2/s')

        # initial FluxCompensator array
        self.FC_object = SyntheticCube(input_array=array,
                                       unit_out='ergs/cm^2/s',
                                       name='test_cube')
Ejemplo n.º 6
0
import numpy as np
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.integrate import integrate_loglog

# Use LaTeX for plots
plt.rc('text', usetex=True)

# Open the output file
m = ModelOutput('example_isrf.rtout')

# Get an all-sky flux map
image = m.get_image(units='ergs/cm^2/s/Hz', inclination=0)

# Compute the frequency-integrated flux
fint = np.zeros(image.val.shape[:-1])
for (j, i) in np.ndindex(fint.shape):
    fint[j, i] = integrate_loglog(image.nu, image.val[j, i, :])

# Find the area of each pixel
l = np.radians(np.linspace(180., -180., fint.shape[1] + 1))
b = np.radians(np.linspace(-90., 90., fint.shape[0] + 1))
dl = l[1:] - l[:-1]
db = np.sin(b[1:]) - np.sin(b[:-1])
DL, DB = np.meshgrid(dl, db)
area = np.abs(DL * DB)

# Compute the intensity
intensity = fint / area
Ejemplo n.º 7
0
def hyperion_image(rtout, wave, plotdir, printname, dstar=178., group=0, marker=0,
                    size='full', convolve=False, unit=None):
    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    import astropy.constants as const
    from hyperion.model import ModelOutput
    # Package for matching the colorbar
    from mpl_toolkits.axes_grid1 import make_axes_locatable

    pc = const.pc.cgs.value

    if unit == None:
        unit = r'$\rm{log(I_{\nu})\,[erg\,s^{-1}\,cm^{-2}\,Hz^{-1}\,sr^{-1}]}$'

    m = ModelOutput(rtout)

    # Extract the image.
    image = m.get_image(group=group, inclination=0, distance=dstar * pc, units='mJy')

    print np.shape(image.val)
    # Open figure and create axes
    fig = plt.figure(figsize=(8,8))
    ax = fig.add_subplot(111)

    # Find the closest wavelength
    iwav = np.argmin(np.abs(wave - image.wav))

    # Calculate the image width in arcseconds given the distance used above
    # get the max radius
    rmax = max(m.get_quantities().r_wall)
    w = np.degrees(rmax / image.distance) * 3600.

    # Image in the unit of MJy/sr
    # Change it into erg/s/cm2/Hz/sr
    # factor = 1e-23*1e6
    factor = 1
    # avoid zero in log
    # flip the image, because the setup of inclination is upside down
    val = image.val[::-1, :, iwav] * factor + 1e-30

    if convolve:
        from astropy.convolution import convolve, Gaussian2DKernel
        img_res = 2*w/len(val[:,0])
        kernel = Gaussian2DKernel(0.27/2.354/img_res)
        val = convolve(val, kernel)

    if size != 'full':
        pix_e2c = (w-size/2.)/w * len(val[:,0])/2
        val = val[pix_e2c:-pix_e2c, pix_e2c:-pix_e2c]
        w = size/2.

    # This is the command to show the image. The parameters vmin and vmax are
    # the min and max levels for the colorscale (remove for default values).
    # cmap = sns.cubehelix_palette(start=0.1, rot=-0.7, gamma=0.2, as_cmap=True)
    cmap = plt.cm.CMRmap
    # im = ax.imshow(np.log10(val), vmin= -20, vmax= -15,
    #           cmap=cmap, origin='lower', extent=[-w, w, -w, w], aspect=1)
    im = ax.imshow(val,
              cmap=cmap, origin='lower', extent=[-w, w, -w, w], aspect=1)
    print val.max()

    # plot the marker for center position by default or user input offset
    ax.plot([0],[-marker], '+', color='ForestGreen', markersize=10, mew=2)
    ax.set_xlim([-w,w])
    ax.set_ylim([-w,w])
    # ax.plot([0],[-10], '+', color='m', markersize=10, mew=2)


    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=14)
    for label in ax.get_xticklabels():
        label.set_fontproperties(ticks_font)
    for label in ax.get_yticklabels():
        label.set_fontproperties(ticks_font)

    # Colorbar setting
    # create an axes on the right side of ax. The width of cax will be 5%
    # of ax and the padding between cax and ax will be fixed at 0.05 inch.
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.05)
    cb = fig.colorbar(im, cax=cax)
    cb.solids.set_edgecolor("face")
    cb.ax.minorticks_on()
    cb.ax.set_ylabel(unit,fontsize=18)
    cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
    plt.setp(cb_obj,fontsize=14)
    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=14)
    for label in cb.ax.get_yticklabels():
        label.set_fontproperties(ticks_font)

    ax.set_xlabel(r'$\rm{RA\,Offset\,(arcsec)}$', fontsize=18)
    ax.set_ylabel(r'$\rm{Dec\,Offset\,(arcsec)}$', fontsize=18)

    ax.tick_params(axis='both', which='major', labelsize=18)
    ax.text(0.7,0.88,str(wave) + r'$\rm{\,\mu m}$',fontsize=20,color='white', transform=ax.transAxes)

    fig.savefig(plotdir+printname+'_image_'+str(wave)+'.pdf', format='pdf', dpi=300, bbox_inches='tight')
    fig.clf()
Ejemplo n.º 8
0
def azimuthal_avg_radial_intensity(wave,
                                   imgpath,
                                   source_center,
                                   rtout,
                                   plotname,
                                   annulus_width=10,
                                   group=8,
                                   dstar=200.):

    import numpy as np
    import matplotlib as mpl
    # to avoid X server error
    mpl.use('Agg')
    from astropy.io import ascii, fits
    import matplotlib.pyplot as plt
    from photutils import aperture_photometry as ap
    from photutils import CircularAperture, CircularAnnulus
    from astropy import units as u
    from astropy.coordinates import SkyCoord
    from astropy import wcs
    from hyperion.model import ModelOutput
    import astropy.constants as const
    import os

    pc = const.pc.cgs.value
    AU = const.au.cgs.value

    # source_center = '12 01 36.3 -65 08 53.0'

    # Read in data and set up coversions
    im_hdu = fits.open(imgpath)
    im = im_hdu[1].data
    # error
    if (wave < 200.0) & (wave > 70.0):
        im_err = im_hdu[5].data
    elif (wave > 200.0) & (wave < 670.0):
        im_err = im_hdu[5].data
    else:
        im_err_exten = raw_input(
            'The extension that includes the image error: ')
        im_err = im_hdu[int(im_err_exten)].data

    w = wcs.WCS(im_hdu[1].header)

    coord = SkyCoord(source_center, unit=(u.hourangle, u.deg))
    pixcoord = w.wcs_world2pix(coord.ra.degree, coord.dec.degree, 1)
    pix2arcsec = abs(im_hdu[1].header['CDELT1']) * 3600.
    # convert intensity unit from MJy/sr to Jy/pixel
    factor = 1e6 / 4.25e10 * abs(
        im_hdu[1].header['CDELT1'] * im_hdu[1].header['CDELT2']) * 3600**2

    # radial grid in arcsec
    # annulus_width = 10
    r = np.arange(10, 200, annulus_width, dtype=float)
    I = np.empty_like(r[:-1])
    I_err = np.empty_like(r[:-1])

    # iteration
    for ir in range(len(r) - 1):
        aperture = CircularAnnulus((pixcoord[0], pixcoord[1]),
                                   r_in=r[ir] / pix2arcsec,
                                   r_out=r[ir + 1] / pix2arcsec)
        #     print aperture.r_in
        phot = ap(im, aperture, error=im_err)
        I[ir] = phot['aperture_sum'].data * factor / aperture.area()
        I_err[ir] = phot['aperture_sum_err'].data * factor / aperture.area()
        # print r[ir], I[ir]

    # read in from RTout
    rtout = ModelOutput(rtout)
    # setting up parameters
    # dstar = 200.
    # group = 8
    # wave = 500.0

    im = rtout.get_image(group=group,
                         inclination=0,
                         distance=dstar * pc,
                         units='Jy',
                         uncertainties=True)

    # Find the closest wavelength
    iwav = np.argmin(np.abs(wave - im.wav))
    # avoid zero when log, and flip the image
    val = im.val[::-1, :, iwav]
    unc = im.unc[::-1, :, iwav]

    w = np.degrees(max(rtout.get_quantities().r_wall) / im.distance) * 3600
    npix = len(val[:, 0])
    pix2arcsec = 2 * w / npix

    # radial grid in arcsec
    # annulus_width = 10
    r = np.arange(10, 200, annulus_width, dtype=float)
    I_sim = np.empty_like(r[:-1])
    I_sim_err = np.empty_like(r[:-1])

    # iteration
    for ir in range(len(r) - 1):
        aperture = CircularAnnulus((npix / 2. + 0.5, npix / 2. + 0.5),
                                   r_in=r[ir] / pix2arcsec,
                                   r_out=r[ir + 1] / pix2arcsec)
        #     print aperture.r_in
        phot = ap(val, aperture, error=unc)
        I_sim[ir] = phot['aperture_sum'].data / aperture.area()
        I_sim_err[ir] = phot['aperture_sum_err'].data / aperture.area()
        # print r[ir], I_sim[ir]

    # write the numbers into file
    foo = open(plotname + '_radial_profile_' + str(wave) + 'um.txt', 'w')
    # print some header info
    foo.write('# wavelength ' + str(wave) + ' um \n')
    foo.write('# image file ' + os.path.basename(imgpath) + ' \n')
    foo.write('# annulus width ' + str(annulus_width) + ' arcsec \n')
    # write profiles
    foo.write('r_in[arcsec] \t I \t I_err \t I_sim \t I_sim_err \n')
    for i in range(len(I)):
        foo.write('%f \t %e \t %e \t %e \t %e \n' %
                  (r[i], I[i], I_err[i], I_sim[i], I_sim_err[i]))
    foo.close()

    # plot
    fig = plt.figure(figsize=(8, 6))
    ax = fig.add_subplot(111)

    I_sim_hi = np.log10(
        (I_sim + I_sim_err) / I_sim.max()) - np.log10(I_sim / I_sim.max())
    I_sim_low = np.log10(I_sim / I_sim.max()) - np.log10(
        (I_sim - I_sim_err) / I_sim.max())

    I_hi = np.log10((I + I_err) / I.max()) - np.log10(I / I.max())
    I_low = np.log10(I / I.max()) - np.log10((I - I_err) / I.max())

    i_sim = ax.errorbar(np.log10(r[:-1] * dstar),
                        np.log10(I_sim / I_sim.max()),
                        yerr=(I_sim_low, I_sim_hi),
                        marker='o',
                        linestyle='-',
                        mec='None',
                        markersize=10)
    i = ax.errorbar(np.log10(r[:-1] * dstar),
                    np.log10(I / I.max()),
                    yerr=(I_low, I_hi),
                    marker='o',
                    linestyle='-',
                    mec='None',
                    markersize=10)

    ax.legend([i, i_sim], [r'$\rm{observation}$', r'$\rm{simulation}$'],
              fontsize=16,
              numpoints=1,
              loc='upper right')
    [
        ax.spines[axis].set_linewidth(1.5)
        for axis in ['top', 'bottom', 'left', 'right']
    ]
    ax.minorticks_on()
    ax.tick_params('both',
                   labelsize=18,
                   width=1.5,
                   which='major',
                   pad=10,
                   length=5)
    ax.tick_params('both',
                   labelsize=18,
                   width=1.5,
                   which='minor',
                   pad=10,
                   length=2.5)
    ax.set_xlabel(r'$\rm{log(Radius)\,[AU]}$', fontsize=18)
    ax.set_ylabel(r'$\rm{log(I\,/\,I_{max})}$', fontsize=18)

    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral', size=18)
    for label in ax.get_xticklabels():
        label.set_fontproperties(ticks_font)
    for label in ax.get_yticklabels():
        label.set_fontproperties(ticks_font)

    fig.savefig(plotname + '_radial_profile_' + str(wave) + 'um.pdf',
                format='pdf',
                dpi=300,
                bbox_inches='tight')
    fig.clf()
Ejemplo n.º 9
0
class YSOModelSim(object):
	
	def __init__(self,name,folder,T=9000,M_sun=5.6,L_sun=250,disk_mass=0.01,disk_rmax=100, 
		env=True,env_type='power',rc=400,mdot=1e-8,env_mass=0.1,env_rmin=30,env_rmax=5000,cav=True,cav_r0=500,cav_rho_0=8e-24,cav_theta=25,env_power=-1.5,
		Npix=149,angles=[20.,45.,60.,80],angles2=[60.,60.,60.,60.], amb_dens=8e-24, disk="Flared",disk_rmin=1., amb_rmin=1., amb_rmax=1000., innerdustfile='OH5.hdf5',
		outerdustfile='d03_5.5_3.0_A.hdf5',beta=1.1):
		self.name=name
		self.folder=folder
		self.T=T
		self.M_sun=M_sun*msun
		self.L_sun=L_sun*lsun
		self.disk_mass=disk_mass*msun
		self.disk_rmax=disk_rmax*au
		self.disk_rmin=disk_rmin*au
		self.disk_h_0 = OptThinRadius(1600)
		self.env=env
		self.disk=disk
		self.env_type=env_type
		self.env_mass=env_mass*msun
		self.env_rmin=env_rmin*au
		self.env_rmax=env_rmax*au
		self.mdot=mdot #*msun/yr*self.M_sun # disk accretion rate
		self.rc=rc*au
		self.cav=cav
		self.cav_rho_0=cav_rho_0
		self.cav_r0=cav_r0*au
		self.cav_theta=cav_theta
		self.Npix=Npix
		self.angles=angles
		self.angles2=angles2
		self.amb_dens=amb_dens
		self.amb_rmin=amb_rmin
		self.amb_rmax=amb_rmax*au
		self.env_power=env_power
		self.dustfile=innerdustfile
		self.dustfile_out=outerdustfile
		self.limval = max(self.env_rmax,1000*au)
		self.beta = beta

	def modelDump(self):
		sp.call('rm %s.mod ' % (self.folder+self.name),shell=True)
		pickle.dump(self,open(self.folder+self.name+'.mod','wb'))
		time.sleep(2)

	def modelPrint(self):
		#string= self.folder+ self.name+'\n'
		string="T="+str(self.T)+"K"+'\n'
		string+= "M="+str(self.M_sun/msun)+'Msun'+'\n'
		string+= "L="+str(self.L_sun/lsun)+'Lsun'+'\n'
		string+= "Disk="+str(self.disk)+'\n'
		string+= "Disk_mass="+str(self.disk_mass/msun)+'Msun'+'\n'
		string+= "Disk_rmax="+str(self.disk_rmax/au)+'AU'+'\n'
		string+= "Disk_rmin="+str(self.disk_rmin/au)+'AU'+'\n'
		string+= "env="+str(self.env)+'\n'
		string+= "env_type="+self.env_type+'\n'
		string+= "env_mass="+str(self.env_mass/msun)+'Msun'+'\n'
		string+= "env_rmax="+str(self.env_rmax/au)+'AU'+'\n'
		string+= "env_rmin="+str(self.env_rmin/au)+'AU'+'\n'
		if self.env_type == 'ulrich' and self.env==True:
			string+= "mass_ulrich="+str((8.*np.pi*self.env_rho_0*self.rc**3*pow(self.env_rmax/self.rc,1.5)/(3.*np.sqrt(2)))/msun)+'Msun'+'\n'
		string+= "mdot="+str(self.mdot)+'Msun/yr'+'\n' # (only if env_type="Ulrich")
		string+= "rc="+str(self.rc/au)+'AU'+'\n' # (only if env_type="Ulrich")
		string+= "cav="+str(self.cav)+'\n'
		string+= "cav_theta="+str(self.cav_theta)+'\n'
		string+= "cav_r0="+str(self.cav_r0/au)+'\n'
		string+= "env_power="+str(self.env_power)+'\n'
		string+= "disk_h_0="+str(self.disk_h_0)+'\n'
		string+= "dustfile="+self.dustfile+'\n'
		string+= "dustfile_out="+self.dustfile_out+'\n'
		string+= "amb_dens="+str(self.amb_dens)+'\n'
		string+= "amb_rmin="+str(self.amb_rmin)+'\n'
		string+= "amb_rmax="+str(self.amb_rmax/au)+'\n'
		string+= "angles="+str(self.angles)+'\n'
		print string
		return string

	def dust_gen(self,dustfile,dustfile_out='d03_5.5_3.0_A.hdf5'):
		### first, we need to load Tracy's dust files and manipulate them to feed to Hyperion
		### wavelength (microns),Cext,Csca,Kappa,g,pmax,theta (ignored)
		### albedo = Csca/Cext
		### opacity kappa is in cm^2/gm, dust_gas extinction opactity (absorption+scattering) - assumes gas-to=dust raio of 100
		### see Whitney et al. 2003a
		
#		tracy_dust = np.loadtxt('Tracy_models/OH5.par')

#		### format for dust: d = HenyeyGreensteinDust(nu, albedo, chi, g, p_lin_max)
#		nu = const.c.value/ (tracy_dust[:,0]*1e-6)
#		albedo = tracy_dust[:,2]/tracy_dust[:,1]
#		chi = tracy_dust[:,3]
#		g = tracy_dust[:,4]
#		p_lin_max = tracy_dust[:,5]

#		### flip the table to have an increasing frequency
#		nu = nu[::-1]
#		albedo = albedo[::-1]
#		chi=chi[::-1]
#		g=g[::-1]
#		p_lin_max=p_lin_max[::-1]

#		### create the dust model
#		d = HenyeyGreensteinDust(nu, albedo, chi, g, p_lin_max)
#		d.optical_properties.extrapolate_wav(0.001,1.e7)
#		d.plot('OH5.png')
#		d.write('OH5.hdf5')
		
		self.d = SphericalDust()
		self.d.read(dustfile)
		self.d.plot(str(dustfile.split(',')[:-1])+'.png')
		self.d_out = SphericalDust()
		self.d_out.read(dustfile_out)
		#self.d_out.read(dustfile)
		self.d_out.plot(str(dustfile_out.split(',')[:-1])+'.png')

	def initModel(self):
		### Use Tracy parameter file to set up the model 
		self.dust_gen(self.dustfile,self.dustfile_out)
		mi = AnalyticalYSOModel()

		mi.star.temperature = self.T
		mi.star.mass = self.M_sun
		mi.star.luminosity = self.L_sun
		mi.star.radius=np.sqrt(mi.star.luminosity/(4.0*np.pi*sigma*mi.star.temperature**4))
		#m.star.luminosity = 4.0*np.pi*m.star.radius**2*sigma*m.star.temperature**4
		print mi.star.luminosity/lsun
		self.luminosity=mi.star.luminosity/lsun

		if self.disk=="Flared":
			print "Adding flared disk"
			disk = mi.add_flared_disk()
			disk.dust=self.d
			if self.dustfile == 'd03_5.5_3.0_A.hdf5':
				disk.mass=self.disk_mass/100.
			else: disk.mass=self.disk_mass
			disk.rmin=OptThinRadius(1600) #self.disk_rmin
			print "disk.rmin = ",disk.rmin,disk.rmin/au
			disk.rmax=self.disk_rmax
			disk.r_0 = self.disk_rmin
			disk.h_0 = disk.r_0/10. #self.disk_h_0*au
			disk.beta=self.beta
			disk.p = -1.
		elif self.disk=="Alpha":
			print "Adding alpha disk"
			disk = mi.add_alpha_disk()
			disk.dust=self.d
			if self.dustfile == 'd03_5.5_3.0_A.hdf5':
				disk.mass=self.disk_mass/100.
			else: disk.mass=self.disk_mass
			disk.rmin=OptThinRadius(1600)
			disk.rmax=self.disk_rmax
			disk.r_0 = self.disk_rmin
			disk.h_0 = disk.r_0/10. #self.disk_h_0*au
			disk.beta=1.1
			disk.p = -1
			disk.mdot=self.mdot
			disk.star = mi.star
			
		#print 'Disk density:',disk.rho_0

		
		if self.env==True and self.env_type=='power':
			envelope=mi.add_power_law_envelope()
			envelope.dust=self.d_out
			envelope.r_0=self.env_rmin
			#envelope.r_0 = OptThinRadius(1600)
			if self.dustfile_out == 'd03_5.5_3.0_A.hdf5':
				envelope.mass=self.env_mass/100.
			else: envelope.mass=self.env_mass
			envelope.rmin=self.env_rmin
			envelope.rmax=self.env_rmax
			envelope.power=self.env_power
			#print 'Envelope rho:',envelope.rho_0
		elif self.env==True and self.env_type=='ulrich':
			envelope=mi.add_ulrich_envelope()
			envelope.dust=self.d_out
			envelope.mdot=1e-6*msun/yr # has little impact on the fluxes, so fixed
			envelope.rc=self.rc
			envelope.rmin=self.env_rmin
			envelope.rmax=self.env_rmax
		if self.env==True:
			self.env_rho_0 = envelope.rho_0
			print 'Envelope rho:',envelope.rho_0

		#print "Rho_0 = ",envelope.rho_0
		if self.cav==True:
			cavity=envelope.add_bipolar_cavity()
			cavity.dust=self.d_out
			cavity.power=1.5
			cavity.cap_to_envelope_density=True ### prevents the cavity density to go above the envelope's density
			cavity.r_0=self.cav_r0
			cavity.theta_0=self.cav_theta
			cavity.rho_0=self.cav_rho_0 #in g/cm^3
			cavity.rho_exp=0.0
			
		
#		if self.env==True:
#			ambient=mi.add_ambient_medium(subtract=[envelope,disk])
#		if self.dustfile_out == 'd03_5.5_3.0_A.hdf5':
#			ambient.rho=self.amb_dens/100.
#		else: ambient.rho=self.amb_dens
#		ambient.rmin=OptThinRadius(1600.)
#		ambient.rmax=self.env_rmax
#		ambient.dust=self.d_out
		

		'''*** Grid parameters ***'''
		mi.set_spherical_polar_grid_auto(199,49,1)

		# Specify that the specific energy and density are needed
		mi.conf.output.output_specific_energy = 'last'
		mi.conf.output.output_density = 'last'


		'''**** Output Data ****'''
		image = mi.add_peeled_images(sed=True,image=False)
		image.set_wavelength_range(150,1,3000)
		#image.set_image_size(self.Npix,self.Npix)
		#image.set_image_limits(-self.limval,self.limval,-self.limval,self.limval)
		image.set_aperture_range(1,100000.*au,100000.*au)
		image.set_viewing_angles(self.angles,self.angles2)
		#image.set_track_origin('detailed')
		image.set_uncertainties(True)

		''' Use the modified random walk
		*** Advanced ***'
		YES = DIFFUSION  = Whether to use the diffusion
		'''
		if self.env==True:
			#mi.set_pda(True)
			mi.set_mrw(True)
		else:
			mi.set_pda(False)
			mi.set_mrw(False)

		# Use raytracing to improve s/n of thermal/source emission
		mi.set_raytracing(True)


		'''**** Preliminaries ****'''
		mi.set_n_initial_iterations(5)
		mi.set_n_photons(initial=1e6,imaging=1e6,raytracing_sources=1e5,raytracing_dust=1e6)
		mi.set_convergence(True, percentile=99.0, absolute=2.0, relative=1.1)
		self.m = mi

	def runModel(self):
		self.initModel()
		self.m.write(self.folder+self.name+'.rtin')
		self.m.run(self.folder+self.name+'.rtout', mpi=True,n_processes=6)

	def plotData(self,ax,sourcename):
		if sourcename != 'None':
			folder_export="/n/a2/mrizzo/Dropbox/SOFIA/Processed_Data/"
			sourcetable = pickle.load(open(folder_export+"totsourcetable_fits.data","r"))

			markers = ['v','p','D','^','h','o','*','x','d','<']
			TwoMASS = ['j','h','ks']
			uTwoMASS = ["e_"+col for col in TwoMASS]
			wlTwoMASS = [1.3,1.6,2.2]
			colTwoMASS = colors[0]
			markerTwoMASS = markers[0]
			labelTwoMASS = '2MASS'
			Spitzer = ['i1','i2','i3','i4','m1','m2']
			uSpitzer = ["e_"+col for col in Spitzer]
			wlSpitzer = [3.6,4.5,5.8,8.,24,70]
			colSpitzer = colors[1]
			markerSpitzer = markers[1]
			labelSpitzer = 'Spitzer'
			WISE = ['w1','w2','w3','w4']
			uWISE = ["e_"+col for col in WISE]
			wlWISE = [3.4,4.6,12,22]
			colWISE = colors[2]
			labelWISE = 'WISE'
			markerWISE = markers[2]
			SOFIA = ['F11','F19','F31','F37']
			uSOFIA = ["e_"+col for col in SOFIA]
			wlSOFIA = [11.1,19.7,31.5,37.1]
			colSOFIA = colors[3]
			markerSOFIA = markers[3]
			labelSOFIA = 'SOFIA'
			IRAS = ['Fnu_12','Fnu_25','Fnu_60','Fnu_100']
			uIRAS = ["e_"+col for col in IRAS]
			wlIRAS = [12,25,60,100]
			colIRAS = colors[4]
			markerIRAS = markers[4]
			labelIRAS = 'IRAS'
			AKARI = ['S65','S90','S140','S160']
			uAKARI = ["e_"+col for col in AKARI]
			wlAKARI = [65,90,140,160]
			colAKARI = colors[5]
			markerAKARI = markers[5]
			labelAKARI = 'AKARI'
			ENOCH = ['Fp']
			uENOCH = ["e_"+col for col in ENOCH]
			wlENOCH = [1300]
			colENOCH = colors[6]
			markerENOCH = markers[6]
			labelENOCH = 'ENOCH'
			HERSCHEL = ['H70','H160','H250','H350','H500']
			uHERSCHEL = ["e_"+col for col in HERSCHEL]
			wlHERSCHEL = [70,160,250,350,500]
			colHERSCHEL = colors[7]
			markerHERSCHEL = markers[7]
			labelHERSCHEL = 'HERSCHEL'
			SCUBA = ['S450','S850','S1300']
			uSCUBA = ["e_"+col for col in SCUBA]
			wlSCUBA = [450,850,1300]
			colSCUBA = colors[8]
			markerSCUBA = markers[8]
			labelSCUBA = 'SCUBA'
			alpha=1
			sources = sourcetable.group_by('SOFIA_name')
			for key,sourcetable in zip(sources.groups.keys,sources.groups):
				if sourcename == sourcetable['SOFIA_name'][0]:	
					#print sourcetable['SOFIA_name'][0]
					p.plotData(ax,sourcetable,markerTwoMASS,TwoMASS,uTwoMASS,wlTwoMASS,colTwoMASS,labelTwoMASS,alpha)
					p.plotData(ax,sourcetable,markerSpitzer,Spitzer,uSpitzer,wlSpitzer,colSpitzer,labelSpitzer,alpha)
					p.plotData(ax,sourcetable,markerWISE,WISE,uWISE,wlWISE,colWISE,labelWISE,alpha)
					p.plotData(ax,sourcetable,markerSOFIA,SOFIA,uSOFIA,wlSOFIA,colSOFIA,labelSOFIA,alpha)
					p.plotData(ax,sourcetable,markerIRAS,IRAS,uIRAS,wlIRAS,colIRAS,labelIRAS,alpha)
					p.plotData(ax,sourcetable,markerAKARI,AKARI,uAKARI,wlAKARI,colAKARI,labelAKARI,alpha)
					p.plotData(ax,sourcetable,markerENOCH,ENOCH,uENOCH,wlENOCH,colENOCH,labelENOCH,alpha)
					p.plotData(ax,sourcetable,markerHERSCHEL,HERSCHEL,uHERSCHEL,wlHERSCHEL,colHERSCHEL,labelHERSCHEL,alpha)
					p.plotData(ax,sourcetable,markerSCUBA,SCUBA,uSCUBA,wlSCUBA,colSCUBA,labelSCUBA,alpha)

	def calcChi2(self,dist_pc=140,extinction=0, sourcename='Oph.1'):
		self.dist=dist_pc*pc
		self.extinction=extinction
		chi = np.loadtxt('kmh94_3.1_full.chi')
		wav = np.loadtxt('kmh94_3.1_full.wav')
		Chi = interp1d(wav,chi,kind='linear')
		modelname = self.folder+self.name
		self.mo = ModelOutput(modelname+'.rtout')
		
		# get the sed of all inclination
		sed = self.mo.get_sed(aperture=-1, inclination='all', distance=self.dist,units='Jy')
				
		# calculate the optical depth at all wavelengths
		tau = self.extinction*Chi(sed.wav)/Chi(0.550)/1.086
		
		# calculate extinction values
		ext = np.array([np.exp(-tau) for i in range(sed.val.shape[0])])
		
		# apply extinction to model
		extinct_values = np.log10(sed.val.transpose()*ext.T)
		
		# data points and errors
		folder_export="/n/a2/mrizzo/Dropbox/SOFIA/Processed_Data/"
		sourcetable = pickle.load(open(folder_export+"totsourcetable_fits.data","r"))
		TwoMASS = ['j','h','ks']
		uTwoMASS = ["e_"+col for col in TwoMASS]
		wlTwoMASS = [1.3,1.6,2.2]
		labelTwoMASS = '2MASS'
		Spitzer = ['i1','i2','i3','i4']
		uSpitzer = ["e_"+col for col in Spitzer]
		wlSpitzer = [3.6,4.5,5.8,8.]
		labelSpitzer = 'Spitzer'
		SOFIA = ['F11','F19','F31','F37']
		uSOFIA = ["e_"+col for col in SOFIA]
		wlSOFIA = [11.1,19.7,31.5,37.1]
		labelSOFIA = 'SOFIA'
		sources = sourcetable.group_by('SOFIA_name')
		for key,source in zip(sources.groups.keys,sources.groups):
			if sourcename == source['SOFIA_name'][0]:	
				datapoints = source[TwoMASS+Spitzer+SOFIA]
				dataerrors = source[uTwoMASS+uSpitzer+uSOFIA]
				print p.nptable(datapoints),p.nptable(dataerrors)
				
				# calculate log10 of quantities required for chi squared
				logFnu = np.log10(p.nptable(datapoints))-0.5*(1./np.log(10.))*p.nptable(dataerrors)**2/p.nptable(datapoints)**2
				varlogFnu = (1./np.log(10)/p.nptable(datapoints))**2*p.nptable(dataerrors)**2
				print extinct_values,extinct_values.shape
				
				# for each inclination, calculate chi squared; need to interpolate to get model at required wavelengths
				Ninc = extinct_values.shape[1]
				chi2 = np.zeros(Ninc)
				wl=wlTwoMASS+wlSpitzer+wlSOFIA
				N = len(wl)
				for j in range(Ninc):
					interp_func = interp1d(sed.wav,extinct_values[:,j],kind='linear')
					interp_vals = interp_func(wl)
					chi2[j] = 1./N * np.sum((logFnu - interp_vals)**2/varlogFnu)
					
				print chi2

	def plotModel(self,dist_pc=140,inc=3,extinction=0,show=False,sourcename='Oph.1'):
		self.dist=dist_pc*pc
		self.inc=inc
		self.extinction=extinction
		modelname = self.folder+self.name
		self.mo = ModelOutput(modelname+'.rtout')

		#tracy_dust = np.loadtxt('Tracy_models/OH5.par')
		chi = np.loadtxt('kmh94_3.1_full.chi')
		wav = np.loadtxt('kmh94_3.1_full.wav')
		Chi = interp1d(wav,chi,kind='linear')



		fig = plt.figure(figsize=(20,14))
		ax=fig.add_subplot(2,3,1)
		sed = self.mo.get_sed(aperture=-1, inclination='all', distance=self.dist)
		#print tracy_dust[11,1],Cext(sed.wav[-1]),Cext(sed.wav[-1])/tracy_dust[11,1]
		tau = self.extinction*Chi(sed.wav)/Chi(0.550)/1.086
		#print Cext(sed.wav)/tracy_dust[11,1]
		ext = np.array([np.exp(-tau) for i in range(sed.val.shape[0])])
		#print tau,np.exp(-tau)
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='black')
		ax.set_title(modelname+'_seds, Av='+str(self.extinction))
		ax.set_xlim(sed.wav.min(), 1300)
		ax.set_ylim(1e-13, 1e-7)
		ax.set_xlabel(r'$\lambda$ [$\mu$m]')
		ax.set_ylabel(r'$\lambda F_\lambda$ [ergs/cm$^2/s$]')
		self.plotData(ax,sourcename)
		ax.set_xscale('log')
		ax.set_yscale('log')

		#ax.set_ylabel(r'$F_{Jy}$ [Jy]')
		#plt.legend(loc=4)

		ax=fig.add_subplot(2,3,2)
		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist)
		ext=np.exp(-tau)
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, lw=3,color='black',label='source_total')
		ax.set_xlim(sed.wav.min(), 1300)
		ax.set_ylim(1e-13, 1e-7)  ### for lamFlam
		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='source_emit')
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='blue',label='source_emit')
		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='source_scat')
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='teal',label='source_scat')
		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='dust_emit')
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='red',label='dust_emit')
		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='dust_scat')
		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='orange',label='dust_scat')
		self.plotData(ax,sourcename)
		ax.set_xscale('log')
		ax.set_yscale('log')
		ax.set_title('seds_inc=inc')
		ax.set_xlabel(r'$\lambda$ [$\mu$m]')
		ax.set_ylabel(r'$\lambda F_\lambda$ [ergs/cm$^2/s$]')
		#ax.set_ylabel(r'$F_{Jy}$ [Jy]')
		leg = ax.legend(loc=4,fontsize='small')
		#leg = plt.gca().get_legend()
		#plt.setp(leg.get_text(),fontsize='small')
		# Extract the quantities
		g = self.mo.get_quantities()
		
		# Get the wall positions for r and theta
		rw, tw = g.r_wall / au, g.t_wall

		# Make a 2-d grid of the wall positions (used by pcolormesh)
		R, T = np.meshgrid(rw, tw)

		# Calculate the position of the cell walls in cartesian coordinates
		X, Z = R * np.sin(T), R * np.cos(T)

		# Make a plot in (x, z) space for different zooms
		from matplotlib.colors import LogNorm,PowerNorm
		# Make a plot in (r, theta) space
		ax = fig.add_subplot(2, 3, 3)
		if g.shape[-1]==2:
			c = ax.pcolormesh(X, Z, g['temperature'][0].array[0, :, :]+g['temperature'][1].array[0, :, :],norm=PowerNorm(gamma=0.5,vmin=1,vmax=500))
		else :
			c = ax.pcolormesh(X, Z, g['temperature'][0].array[0, :, :],norm=PowerNorm(gamma=0.5,vmin=1,vmax=500))
		#ax.set_xscale('log')
		#ax.set_yscale('log')
		ax.set_xlim(X.min(), X.max()/5.)
		ax.set_ylim(Z.min()/10., Z.max()/10.)
		ax.set_xlabel('x (au)')
		ax.set_ylabel('z (au)')
		#ax.set_yticks([np.pi, np.pi * 0.75, np.pi * 0.5, np.pi * 0.25, 0.])
		#ax.set_yticklabels([r'$\pi$', r'$3\pi/4$', r'$\pi/2$', r'$\pi/4$', r'$0$'])
		cb = fig.colorbar(c)
		ax.set_title('Temperature structure')
		cb.set_label('Temperature (K)')
		#fig.savefig(modelname+'_temperature_spherical_rt.png', bbox_inches='tight')


		ax = fig.add_subplot(2, 3, 4)
		if g.shape[-1]==2:
			c = ax.pcolormesh(X, Z, g['density'][0].array[0, :, :]+g['density'][1].array[0, :, :],norm=LogNorm(vmin=1e-22,vmax=g['density'][0].array[0, :, :].max()))
		else :
			c = ax.pcolormesh(X, Z, g['density'][0].array[0, :, :],norm=LogNorm(vmin=1e-22,vmax=g['density'][0].array[0, :, :].max()))
		#ax.set_xscale('log')
		#ax.set_yscale('log')
		ax.set_xlim(X.min(), X.max()/5.)
		ax.set_ylim(Z.min()/10., Z.max()/10.)
		ax.set_xlabel('x (au)')
		ax.set_ylabel('z (au)')
		ax.set_title('Density structure')
		cb = fig.colorbar(c)
		cb.set_label('Density (g/cm2)')

		### plot the convolved image with the 37 micron filter (manually set to slice 18 of the cube - this would change with wavelength coverage)
		ax = fig.add_subplot(2, 3, 5)
		self.image = self.mo.get_image(inclination=inc,distance=self.dist,units='Jy')
		fits.writeto(modelname+'_inc_'+str(inc)+'.fits',self.image.val.swapaxes(0,2).swapaxes(1,2),clobber=True)

		### need to convolve the image with a Gaussian PSF
		pix = 2.*self.limval/au/self.Npix # in AU/pix
		pix_asec = pix/(self.dist/pc) # in asec/pix
		airy_asec = 3.5 #asec
		airy_pix = airy_asec/pix_asec # in pix
		gauss_pix = airy_pix/2.35 # in Gaussian std 
		print "Gaussian std: ",gauss_pix

		from scipy.ndimage.filters import gaussian_filter as gauss
		#print [(i,sed.wav[i]) for i in range(len(sed.wav))]

		img37 = self.image.val[:,:,18]
		convol = gauss(img37,gauss_pix,mode='constant',cval=0.0)
		Nc = self.Npix/2
		hw = min(int(20./pix_asec),Nc) #(max is Nc)
		#ax.imshow(img37,norm=LogNorm(vmin=1e-20,vmax=img37.max()))
		#ax.imshow(img37,interpolation='nearest')
		#ax.imshow(convol,norm=LogNorm(vmin=1e-20,vmax=img37.max()))
		#ax.imshow(convol,interpolation='nearest',norm=LogNorm(vmin=1e-20,vmax=img37.max()))
		ax.imshow(convol[Nc-hw:Nc+hw,Nc-hw:Nc+hw],interpolation='nearest',origin='lower',cmap=plt.get_cmap('gray'))
		airy_disk = plt.Circle((airy_pix*1.3,airy_pix*1.3),airy_pix,color=colors[3])		
		ax.add_artist(airy_disk)
		ax.text(airy_pix*3,airy_pix*1.3/2.0,'SOFIA 37um Airy disk',color=colors[3])
		ax.set_title('Convolved image')
		fits.writeto(modelname+'_inc_'+str(inc)+'_convol37.fits',convol,clobber=True)

		### draw a cross-section of the image to show the spatial extension in linear scale, to compare with what we observe in the model.
		ax = fig.add_subplot(2, 3, 6)
		ax.plot(range(Nc-hw,Nc+hw),convol[Nc-hw:Nc+hw,Nc-1],label='cross-section 1')
		ax.plot(range(Nc-hw,Nc+hw),convol[Nc-1,Nc-hw:Nc+hw],label='cross-section 2')
		maxconvol = convol[Nc-hw:Nc+hw,Nc-1].max()
		gauss = np.exp( -(np.array(range(-hw,hw))**2 / (2. * gauss_pix**2)))
		gauss/= gauss.max()
		gauss*=maxconvol
		ax.plot(range(Nc-hw,Nc+hw),gauss,label='SOFIA beam')
		leg = ax.legend(loc=2,fontsize='small')
		#leg = plt.gca().get_legend()
		#plt.setp(leg.get_text(),fontsize='small')
		ax.set_title('Cross section at the center')

		string=self.modelPrint()
		fig.text(0.0,0.14,string+'Av='+str(self.extinction)+'\n'+'dist='+str(self.dist/pc)+'\n',color='r')
		fig.savefig(modelname+'.png', bbox_inches='tight',dpi=300)

		if show:
			plt.show()
			
	def plotSim(self,dist_pc=140,inc=3,extinction=0,show=False):
		self.dist=dist_pc*pc
		self.inc=inc
		self.extinction=extinction
		modelname = self.folder+self.name
		self.mo = ModelOutput(modelname+'.rtout')

		#tracy_dust = np.loadtxt('Tracy_models/OH5.par')
		#chi = np.loadtxt('kmh94_3.1_full.chi')
		#wav = np.loadtxt('kmh94_3.1_full.wav')
		#Chi = interp1d(wav,chi,kind='linear')



		fig = plt.figure(figsize=(20,14))
		ax=fig.add_subplot(1,3,1)
		sed = self.mo.get_sed(aperture=-1, inclination='all', distance=self.dist)
		#print tracy_dust[11,1],Cext(sed.wav[-1]),Cext(sed.wav[-1])/tracy_dust[11,1]
		#tau = self.extinction*Chi(sed.wav)/Chi(0.550)/1.086
		#print Cext(sed.wav)/tracy_dust[11,1]
		#ext = np.array([np.exp(-tau) for i in range(sed.val.shape[0])])
		#print tau,np.exp(-tau)
		ax.loglog(sed.wav, sed.val.transpose(), color='black')
		ax.set_title(modelname+'_seds, Av='+str(self.extinction))
		ax.set_xlim(sed.wav.min(), 1300)
		ax.set_ylim(1e-13, 1e-7)
		ax.set_xlabel(r'$\lambda$ [$\mu$m]')
		ax.set_ylabel(r'$\lambda F_\lambda$ [ergs/cm$^2/s$]')
		#self.plotData(ax,sourcename)
		ax.set_xscale('log')
		ax.set_yscale('log')

		#ax.set_ylabel(r'$F_{Jy}$ [Jy]')
		#plt.legend(loc=4)

#		ax=fig.add_subplot(2,3,2)
#		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist)
#		ext=np.exp(-tau)
#		ax.loglog(sed.wav, sed.val.transpose()*ext.T, lw=3,color='black',label='source_total')
#		ax.set_xlim(sed.wav.min(), 1300)
#		ax.set_ylim(1e-13, 1e-7)  ### for lamFlam
#		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='source_emit')
#		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='blue',label='source_emit')
#		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='source_scat')
#		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='teal',label='source_scat')
#		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='dust_emit')
#		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='red',label='dust_emit')
#		sed = self.mo.get_sed(aperture=-1, inclination=self.inc, distance=self.dist,component='dust_scat')
#		ax.loglog(sed.wav, sed.val.transpose()*ext.T, color='orange',label='dust_scat')
#		#self.plotData(ax,sourcename)
#		ax.set_xscale('log')
#		ax.set_yscale('log')
#		ax.set_title('seds_inc=inc')
#		ax.set_xlabel(r'$\lambda$ [$\mu$m]')
#		ax.set_ylabel(r'$\lambda F_\lambda$ [ergs/cm$^2/s$]')
#		#ax.set_ylabel(r'$F_{Jy}$ [Jy]')
#		leg = ax.legend(loc=4,fontsize='small')
		#leg = plt.gca().get_legend()
		#plt.setp(leg.get_text(),fontsize='small')
		# Extract the quantities
		g = self.mo.get_quantities()
		
		# Get the wall positions for r and theta
		rw, tw = g.r_wall / au, g.t_wall

		# Make a 2-d grid of the wall positions (used by pcolormesh)
		R, T = np.meshgrid(rw, tw)

		# Calculate the position of the cell walls in cartesian coordinates
		X, Z = R * np.sin(T), R * np.cos(T)

		# Make a plot in (x, z) space for different zooms
		from matplotlib.colors import LogNorm,PowerNorm
		# Make a plot in (r, theta) space
		ax = fig.add_subplot(1, 3, 2)
		if g.shape[-1]==2:
			c = ax.pcolormesh(X, Z, g['temperature'][0].array[0, :, :]+g['temperature'][1].array[0, :, :],norm=PowerNorm(gamma=0.5,vmin=1,vmax=500))
		else :
			c = ax.pcolormesh(X, Z, g['temperature'][0].array[0, :, :],norm=PowerNorm(gamma=0.5,vmin=1,vmax=500))
		#ax.set_xscale('log')
		#ax.set_yscale('log')
		ax.set_xlim(X.min(), X.max())
		ax.set_ylim(Z.min(), Z.max())
		ax.set_xlabel('x (au)')
		ax.set_ylabel('z (au)')
		#ax.set_yticks([np.pi, np.pi * 0.75, np.pi * 0.5, np.pi * 0.25, 0.])
		#ax.set_yticklabels([r'$\pi$', r'$3\pi/4$', r'$\pi/2$', r'$\pi/4$', r'$0$'])
		cb = fig.colorbar(c)
		ax.set_title('Temperature structure')
		cb.set_label('Temperature (K)')
		#fig.savefig(modelname+'_temperature_spherical_rt.png', bbox_inches='tight')


		ax = fig.add_subplot(1, 3, 3)
		if g.shape[-1]==2:
			c = ax.pcolormesh(X, Z, g['density'][0].array[0, :, :]+g['density'][1].array[0, :, :],norm=LogNorm(vmin=1e-22,vmax=g['density'][0].array[0, :, :].max()))
		else :
			c = ax.pcolormesh(X, Z, g['density'][0].array[0, :, :],norm=LogNorm(vmin=1e-22,vmax=g['density'][0].array[0, :, :].max()))
		#ax.set_xscale('log')
		#ax.set_yscale('log')
		ax.set_xlim(X.min(), X.max())
		ax.set_ylim(Z.min(), Z.max())
		ax.set_xlabel('x (au)')
		ax.set_ylabel('z (au)')
		ax.set_title('Density structure')
		cb = fig.colorbar(c)
		cb.set_label('Density (g/cm2)')

#		### plot the convolved image with the 37 micron filter (manually set to slice 18 of the cube - this would change with wavelength coverage)
#		ax = fig.add_subplot(2, 3, 5)
#		self.image = self.mo.get_image(inclination=inc,distance=self.dist,units='Jy')
#		fits.writeto(modelname+'_inc_'+str(inc)+'.fits',self.image.val.swapaxes(0,2).swapaxes(1,2),clobber=True)

#		### need to convolve the image with a Gaussian PSF
#		pix = 2.*self.limval/au/self.Npix # in AU/pix
#		pix_asec = pix/(self.dist/pc) # in asec/pix
#		airy_asec = 3.5 #asec
#		airy_pix = airy_asec/pix_asec # in pix
#		gauss_pix = airy_pix/2.35 # in Gaussian std 
#		print "Gaussian std: ",gauss_pix

#		from scipy.ndimage.filters import gaussian_filter as gauss
#		#print [(i,sed.wav[i]) for i in range(len(sed.wav))]

#		img37 = self.image.val[:,:,18]
#		convol = gauss(img37,gauss_pix,mode='constant',cval=0.0)
#		Nc = self.Npix/2
#		hw = min(int(20./pix_asec),Nc) #(max is Nc)
#		#ax.imshow(img37,norm=LogNorm(vmin=1e-20,vmax=img37.max()))
#		#ax.imshow(img37,interpolation='nearest')
#		#ax.imshow(convol,norm=LogNorm(vmin=1e-20,vmax=img37.max()))
#		#ax.imshow(convol,interpolation='nearest',norm=LogNorm(vmin=1e-20,vmax=img37.max()))
#		ax.imshow(convol[Nc-hw:Nc+hw,Nc-hw:Nc+hw],interpolation='nearest',origin='lower',cmap=plt.get_cmap('gray'))
#		airy_disk = plt.Circle((airy_pix*1.3,airy_pix*1.3),airy_pix,color=colors[3])		
#		ax.add_artist(airy_disk)
#		ax.text(airy_pix*3,airy_pix*1.3/2.0,'SOFIA 37um Airy disk',color=colors[3])
#		ax.set_title('Convolved image')
#		fits.writeto(modelname+'_inc_'+str(inc)+'_convol37.fits',convol,clobber=True)

#		### draw a cross-section of the image to show the spatial extension in linear scale, to compare with what we observe in the model.
#		ax = fig.add_subplot(2, 3, 6)
#		ax.plot(range(Nc-hw,Nc+hw),convol[Nc-hw:Nc+hw,Nc-1],label='cross-section 1')
#		ax.plot(range(Nc-hw,Nc+hw),convol[Nc-1,Nc-hw:Nc+hw],label='cross-section 2')
#		maxconvol = convol[Nc-hw:Nc+hw,Nc-1].max()
#		gauss = np.exp( -(np.array(range(-hw,hw))**2 / (2. * gauss_pix**2)))
#		gauss/= gauss.max()
#		gauss*=maxconvol
#		ax.plot(range(Nc-hw,Nc+hw),gauss,label='SOFIA beam')
#		leg = ax.legend(loc=2,fontsize='small')
#		#leg = plt.gca().get_legend()
#		#plt.setp(leg.get_text(),fontsize='small')
#		ax.set_title('Cross section at the center')

		string=self.modelPrint()
		fig.text(0.0,0.14,string+'Av='+str(self.extinction)+'\n'+'dist='+str(self.dist/pc)+'\n',color='r')
		fig.savefig(modelname+'.png', bbox_inches='tight',dpi=300)

		if show:
			plt.show()
Ejemplo n.º 10
0
                    type=float,
                    help='Minimum of colorbar scale, in units of ergs/s.')
parser.add_argument('--vmax',
                    type=float,
                    help='Maximum of colorbar scale, in units of ergs/s.')

args = parser.parse_args()

m = ModelOutput(pathch(args.infile))

if args.outfile is None:
    args.outfile = os.path.dirname(args.infile)

# Extract the image for the first inclination, and scale to 300pc. We
# have to specify group=1 as there is no image in group 0.
image = m.get_image(units='ergs/s')

# Open figure and create axes
fig = plt.figure()
ax = fig.add_subplot(111)

# Calculate the image width in kpc
w = image.x_max * u.cm
w = w.to(u.kpc)

# Find the closest wavelength
iwav = np.argmin(np.abs(args.wav - image.wav))
print('Input wavelength: {}'.format(args.wav))
print('Closest: {}'.format(image.wav[iwav]))
image_data = image.val[0, :, :, iwav]
default_image_suffix = '{:.4f}um'.format(image.wav[iwav])
Ejemplo n.º 11
0
def convolve(image_file, filterfilenames, filter_data):

    # Load the model output object
    m = ModelOutput(image_file)

    # Get the image
    image = m.get_image(units='ergs/s')

    # Get image bounds for correct scaling
    w = image.x_max * u.cm
    w = w.to(u.kpc)

    # This is where the convolved images will go
    image_data = []

    # List the filters that shouldn't be used in convolution
    skip_conv = ['arbitrary.filter', 'pdfilters.dat']

    # Loop through the filters and match wavelengths to those in the image
    for i in range(len(filterfilenames)):

        # Skip "arbitrary.filter" if it is selected
        if filterfilenames[i] in skip_conv:
            print(" Skipping convolution of default filter")
            continue

        print("\n Convolving filter {}...".format(filterfilenames[i]))
        wavs = filter_data[i][:, 0]

        # Figure out which indices of the image wavelengths correspond to
        # this filter
        indices = []
        for wav in wavs:
            diffs = np.abs(image.wav - wav)

            # Make sure the closest wavelength is *really* close --- there
            # could be rounding errors, but we don't want to accidentally grab
            # the wrong wavelength
            if min(diffs) <= 1e-10:
                indices.append(diffs.argmin())

        if len(indices) != len(wavs):
            raise ValueError(
                "Filter wavelength mismatch with available image wavelengths")

        # Get the monochromatic images at each wavelength in the filter
        images = [image.val[0, :, :, j] for j in indices]
        print(' Found {} monochromatic images'.format(len(images)))

        # Show wavelengths and weights from filter file
        wavelengths = [image.wav[j] for j in indices]
        weights = filter_data[i][:, 1]

        print('\n Wavelength              Weight')
        print(' ----------              ------')
        for k in range(len(wavelengths)):
            print('  {:.2E}              {:.2E}'.format(
                wavelengths[k], weights[k]))

        # Apply appropriate transmissivities from filter file
        image_data.append(np.average(images, axis=0, weights=weights))

    # Save the image data and filter information as an .hdf5 file
    f = h5py.File(
        cfg.model.PD_output_dir + "convolved." + cfg.model.snapnum_str +
        ".hdf5", "w")
    f.create_dataset("image_data", data=image_data)
    f['image_data'].attrs['width'] = w.value
    f['image_data'].attrs['width_unit'] = np.bytes_('kpc')

    # Don't add the names of filters that were skipped
    trimmed_names = list(set(filterfilenames) - set(skip_conv))
    f.create_dataset("filter_names", data=trimmed_names)

    for i in range(len(filterfilenames)):
        f.create_dataset(filterfilenames[i], data=filter_data[i])
    f.close()
Ejemplo n.º 12
0
import numpy as np
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.integrate import integrate_loglog

# Use LaTeX for plots
plt.rc('text', usetex=True)

# Open the output file
m = ModelOutput('example_isrf.rtout')

# Get an all-sky flux map
image = m.get_image(units='ergs/cm^2/s/Hz', inclination=0)

# Compute the frequency-integrated flux
fint = np.zeros(image.val.shape[:-1])
for (j, i) in np.ndindex(fint.shape):
    fint[j, i] = integrate_loglog(image.nu, image.val[j, i, :])

# Find the area of each pixel
l = np.radians(np.linspace(180., -180., fint.shape[1] + 1))
b = np.radians(np.linspace(-90., 90., fint.shape[0] + 1))
dl = l[1:] - l[:-1]
db = np.sin(b[1:]) - np.sin(b[:-1])
DL, DB = np.meshgrid(dl, db)
area = np.abs(DL * DB)

# Compute the intensity
intensity = fint / area
Ejemplo n.º 13
0
outdir = '/Users/yaolun/test/'
dist = 178.
wave = 500.

from hyperion.model import ModelOutput
import astropy.constants as const
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import font_manager
from mpl_toolkits.axes_grid1 import make_axes_locatable

# constant setup
pc = const.pc.cgs.value

m = ModelOutput(filename)
image = m.get_image(group=22, inclination=0, distance=dist * pc, units='MJy/sr')
# Find the closest wavelength
iwav = np.argmin(np.abs(wave - image.wav))

# Calculate the image width in arcseconds given the distance used above
# get the max radius
rmax = max(m.get_quantities().r_wall)
w = np.degrees(rmax / image.distance) * 3600.

# Image in the unit of MJy/sr
# Change it into erg/s/cm2/Hz/sr
factor = 1e-23*1e6
# avoid zero in log
# flip the image, because the setup of inclination is upside down
val = image.val[::-1, :, iwav] * factor + 1e-30
Ejemplo n.º 14
0
import matplotlib.pyplot as plt
from hyperion.model import ModelOutput
from hyperion.util.constants import pc

mo = ModelOutput('pure_scattering.rtout')

image_fnu = mo.get_image(inclination=0, units='MJy/sr', distance=300. * pc)
image_pol = mo.get_image(inclination=0, stokes='linpol')

fig = plt.figure(figsize=(8, 8))

# Make total intensity sub-plot

ax = fig.add_axes([0.1, 0.3, 0.4, 0.4])
ax.imshow(image_fnu.val[:, :, 0], extent=[-13, 13, -13, 13],
          interpolation='none', cmap=plt.cm.gist_heat,
          origin='lower', vmin=0., vmax=4e9)
ax.set_xlim(-13., 13.)
ax.set_ylim(-13., 13.)
ax.set_xlabel("x (solar radii)")
ax.set_ylabel("y (solar radii)")
ax.set_title("Surface brightness")

# Make linear polarization sub-plot

ax = fig.add_axes([0.51, 0.3, 0.4, 0.4])
im = ax.imshow(image_pol.val[:, :, 0] * 100., extent=[-13, 13, -13, 13],
               interpolation='none', cmap=plt.cm.gist_heat,
               origin='lower', vmin=0., vmax=100.)
ax.set_xlim(-13., 13.)
ax.set_ylim(-13., 13.)
Ejemplo n.º 15
0
def plot_results(cli):
    
    file = filename(cli, "plot")
    file += ".rtout"
    
    #
    # Read in the model:
    #
    model = ModelOutput(file)
    
    los = [0 for k in range(3)]
    los[0] = '30degree'
    los[1] = '80degree'
    los[2] = '88degree'
    
    
    if(cli.mode == "images"):
        
        #
        # Extract the quantities
        #
        g = model.get_quantities()
        
        #
        # Get the wall positions:
        #
        ww = g.w_wall / pc
        zw = g.z_wall / pc
        pw = g.p_wall
        
        grid_Nw = len(ww) - 1
        grid_Nz = len(zw) - 1
        grid_Np = len(pw) - 1
        
        #
        # Graphics:
        #
        fig = plt.figure()
        
        Imaxp = [0 for i in range(5)]
        Imaxp[0] = 1e-15 # in W/cm^2
        Imaxp[1] = 1e-14 # in W/cm^2
        Imaxp[2] = 1e-15 # in W/cm^2
        Imaxp[3] = 1e-15 # in W/cm^2
        Imaxp[4] = 1e-18 # in W/cm^2
        
        for k in range(0, 3):
            if(cli.verbose):
                print("Group: ", k)
            
            image = model.get_image(distance=1e+7*pc, units='ergs/cm^2/s', inclination=0, component='total', group=k)
            #source_emit = model.get_image(distance=1e+7*pc, units='MJy/sr', inclination=0, component='source_emit', group=k)
            #dust_emit   = model.get_image(distance=1e+7*pc, units='MJy/sr', inclination=0, component='dust_emit'  , group=k)
            #source_scat = model.get_image(distance=1e+7*pc, units='MJy/sr', inclination=0, component='source_scat', group=k)
            #dust_scat   = model.get_image(distance=1e+7*pc, units='MJy/sr', inclination=0, component='dust_scat'  , group=k)
            
            if(cli.verbose):
                print(" Data cube: ", image.val.shape)
                print(" Wavelengths =", image.wav)
                print(" Uncertainties =", image.unc)
            
            image_Nx=image.val.shape[0]
            image_Ny=image.val.shape[1]
            Nwavelength=image.val.shape[2]
            
            if(cli.verbose):
                print(" Image Nx =", image_Nx)
                print(" Image Ny =", image_Ny)
                print(" Nwavelength =", Nwavelength)
            
            for i in range(0, Nwavelength):
                
                if(cli.verbose):
                    print(" Image #", i,":")
                    print("  Wavelength =", image.wav[i])
                
                image.val[:, :, i] *= 1e-4 # in W/m^2
                
                #Imin = np.min(image.val[:, :, i])
                #Imax = np.max(image.val[:, :, i])
                #Imax = Imaxp[i]
                #Imin = Imax/1e+20
                Imax = np.max(image.val[:, :, i])/5
                Imin = 0.0
                
                if(cli.verbose):
                    print("  Intensity min data values =", np.min(image.val[:, :, i]))
                    print("  Intensity max data values =", np.max(image.val[:, :, i]))
                    print("  Intensity min color-table =", Imin)
                    print("  Intensity max color-table =", Imax)
                
                #ax = fig.add_subplot(2, 1, 2)
                ax = fig.add_subplot(1, 1, 1)
                # 'hot', see http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps
                ax.imshow(image.val[:, :, i], vmin=Imin, vmax=Imax, cmap=plt.cm.hot, origin='lower')
                ax.set_xticks([0,100,200,300,400,500], minor=False)
                ax.set_yticks([0,100,200,300,400,500], minor=False)
                ax.set_xlabel('x (pixel)')
                ax.set_ylabel('y (pixel)')
                ax.set_title(str(image.wav[i]) + ' microns' + '\n' + los[k], y=0.88, x=0.5, color='white')
                
                #ax = fig.add_subplot(2, 1, 1)
                #ax.imshow([np.logspace(np.log10(Imin+1e-10),np.log10(Imax/10),100),np.logspace(np.log10(Imin+1e-10),np.log10(Imax/10),100)], vmin=Imin, vmax=Imax/10, cmap=plt.cm.gist_heat)
                #ax.set_xticks(np.logspace(np.log10(Imin+1e-10),np.log10(Imax/10),1), minor=False)
                ##ax.set_xticks(np.linspace(np.log10(Imin+1e-10),np.log10(Imax/10),10), minor=False)
                #ax.set_yticks([], minor=False)
                #ax.set_xlabel('flux (MJy/sr)')
                
                #x = plt.colorbar()
                #print(x)
                
                file = filename(cli, "plot")
                file += "_wavelength=" + str(image.wav[i]) + "micron_los=" + los[k] + ".png"
                
                fig.savefig(file, bbox_inches='tight')
                if(cli.verbose):
                    print("  The image graphics was written to", file)
                plt.clf()
    
    elif(cli.mode == "seds"):
        
        #
        # Graphics:
        #
        fig = plt.figure()
        
        for k in range(0, 3):
            if(cli.verbose):
                print("Group: ", k)
            
            sed = model.get_sed(distance=1e+7*pc, inclination=0, aperture=-1, group=k)
            #units='ergs/cm^2/s' # = default, if distance is specified
            ax = fig.add_subplot(1, 1, 1)
            ax.loglog(sed.wav, sed.val)
            ax.set_xlabel(r'$\lambda$ [$\mu$m]')
            ax.set_ylabel(r'$\lambda F_\lambda$ [ergs/s/cm$^2$]')
            ax.set_xlim(0.09, 1000.0)
            ax.set_ylim(1.e-13, 1.e-7)
            
            file = filename(cli, "plot")
            file += "_los=" + los[k] + ".png"
            fig.savefig(file)
            if(cli.verbose):
                print(" The sed graphics was written to", file)
            plt.clf()
        
        #
        # Data files:
        #
        for k in range(0, 3):
            sed = model.get_sed(distance=1e+7*pc, inclination=0, aperture=-1, group=k)
            file = filename(cli, "plot")
            file += "_los=" + los[k] + ".dat"
            sedtable = open(file, 'w')
            sedtable.write("# wavelength [micron] - flux [erg cm^-2 s^-1]\n")
            for lp in range(0, len(sed.wav)):
                l = len(sed.wav)-lp-1
                line = str("%.4e" % sed.wav[l]) + " " + str("%.4e" % sed.val[l]) + "\n"
                sedtable.write(line)
            sedtable.close()

    else:
        print("ERROR: The specified mode", mode, "is not available. Use 'images' or 'seds' only.")
Ejemplo n.º 16
0
f2 = np.loadtxt(image_dat_file_2)

diff = f1 - f2

OUTPUT_DIR = '/home/cmcclellan1010/pdwork/output/'

np.savetxt(OUTPUT_DIR+'difference.dat', diff)

# Image data
path = '/home/cmcclellan1010/pdwork/output/manualconv/'
filename = 'example.134.rtout.image'
m = ModelOutput(path+filename)
redshift = 3.1
image_width = 200 #kpc
distance = Planck13.luminosity_distance(redshift).cgs.value
image = m.get_image(distance=distance, units='mJy')
w = image.x_max * u.cm
w = w.to(u.kpc)

# Plot the figure
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.imshow(diff, cmap=plt.cm.viridis, origin='lower',
                extent=[-w.value, w.value, -w.value, w.value])
plt.xlim([-image_width,image_width])
plt.ylim([-image_width,image_width])

ax.tick_params(axis='both', which='major', labelsize=10)
ax.set_xlabel('x kpc')
ax.set_xlabel('y kpc')
def extract(model):

    # Check that file is valid
    if not os.path.basename(model).startswith('basic_') or not os.path.basename(model).endswith('.rtout'):
        raise Exception("Only basic_*.rtout files should be specified")

    # Extract model name
    model_name = os.path.basename(model).replace('.rtout', '').replace('basic_', '')

    m = ModelOutput('models/basic/basic_%s.rtout' % model_name)

    for image_set in range(3):

        if image_set == 0:

            n_x = 1
            n_y = 1
            image_set_name = 'total'

        elif image_set == 1:

            n_x = 130
            n_y = 1
            image_set_name = 'lon'

        elif image_set == 2:

            n_x = 1
            n_y = 40
            image_set_name = 'lat'

        flux = np.zeros((n_y, n_x, n_groups, n_wav))

        print "Direct source emission"

        try:
            wav, nufnu_all = m.get_image(group=image_set, component='source_emit', units='MJy/sr', source_id='all')
        except IOError:
            return

        for source_id in range(n_sources):

            nufnu = nufnu_all[source_id, 0, :, :, :]
            spec_type = t_default['Type'][source_id].strip().upper()
            group_id = group(spec_type)
            flux[:, :, group_id, :] += nufnu

        print "Direct dust emission"

        wav, nufnu_all = m.get_image(group=image_set, component='dust_emit', units='MJy/sr', dust_id='all')

        for dust_id in range(n_dust):

            nufnu = nufnu_all[dust_id, 0, :, :, :]
            flux[:, :, 5 + dust_id, :] += nufnu

        print "Scattered source emission"

        wav, nufnu = m.get_image(group=image_set, component='source_scat', units='MJy/sr')
        nufnu = nufnu[0, :, :, :]
        flux[:, :, 8, :] += nufnu

        print "Scattered dust emission"

        wav, nufnu = m.get_image(group=image_set, component='dust_scat', units='MJy/sr')
        nufnu = nufnu[0, :, :, :]
        flux[:, :, 8, :] += nufnu

        # Convolve with filters
        flux_conv = np.zeros((len(filters), n_y, n_x, n_groups))
        for i, filtname in enumerate(filters):
            transmission = rebin_filter(filtname, c / (wav * 1.e-4))
            flux_conv[i, :, :, :] = np.sum(transmission[np.newaxis, np.newaxis, np.newaxis, :] * flux, axis=3)

        pyfits.writeto('models/basic/images_%s_%s.fits' % (image_set_name, model_name), flux, clobber=True)
        pyfits.writeto('models/basic/images_%s_%s_conv.fits' % (image_set_name, model_name), flux_conv, clobber=True)
Ejemplo n.º 18
0
def azimuthal_simulation(rtout, beam_size, wave, dist=200., group=22):
	"""
	rtout: the filepath to the output file of Hyperion
	beam_size: the beam size used for the width of annulus
	dist: the physical distance to the source
	group: the group which contains image
	"""
	import numpy as np
	import matplotlib.pyplot as plt
	import astropy.constants as const
	from hyperion.model import ModelOutput

	# constant setup
	pc = const.pc.cgs.value
	au = const.au.cgs.value

	output = {'wave': wave, 'annuli': [], 'flux_annuli': []}

	# Read in the Hyperion output file
	m = ModelOutput(rtout)
	# get image
	image = m.get_image(group=5, inclination=0, distance=dist*pc, units='Jy')

	# Calculate the image width in arcsec given the distance to the source
	rmax = max(m.get_quantities().r_wall)
	w = np.degrees(rmax / image.distance) * 3600
	# grid of radii of annulus
	annuli = np.linspace(beam_size/2., np.floor((w-beam_size/2.)/beam_size)*beam_size, np.floor((w-beam_size/2.)/beam_size))	# plot

	fig = plt.figure(figsize=(8,6))
	ax = fig.add_subplot(111)

	# iternate through wavelength
	if type(wave) == int or type(wave) == float:
		wave = [wave]
	color_list = plt.cm.viridis(np.linspace(0, 1, len(wave)+1))
	for i in range(len(wave)):
		wav = wave[i]
		# Find the closest wavelength
		iwav = np.argmin(np.abs(wav - image.wav))
		# avoid zero when log, and flip the image
		val = image.val[::-1, :, iwav]
		# determine the center of the image
		npix = len(val[:,0])
		center = np.array([npix/2. + 0.5, npix/2. + 0.5])
		scale = 2*rmax/npix
		# create index array of the image
		x = np.empty_like(val)
		for j in range(len(val[0,:])):
			x[:,j] = j

		flux_annuli = np.empty_like(annuli)
		for k in range(len(annuli)):
			flux_annuli[k] = np.sum(val[(((x-center[0])**2+(x.T-center[1])**2)**0.5*2*w/npix >= annuli[k]-beam_size/2.) & \
										(((x-center[0])**2+(x.T-center[1])**2)**0.5*2*w/npix < annuli[k]+beam_size/2.)])
		output['annuli'].append(np.array(annuli))
		output['flux_annuli'].append(flux_annuli)
		flux_annuli = flux_annuli/np.nanmax(flux_annuli)

		ax.plot(np.log10(annuli*dist), np.log10(flux_annuli), 'o-', color=color_list[i], \
				markersize=3, mec='None', label=r'$\rm{'+str(wav)+'\,\mu m}$')
	ax.axvline(np.log10((w-beam_size/2.)*dist), linestyle='--', color='k')
	ax.axvline(np.log10(w*dist), linestyle='-', color='k')

	ax.legend(loc='best', fontsize=12, numpoints=1, ncol=2)
	ax.set_xlabel(r'$\rm{log(Radius)\,[AU]}$', fontsize=18)
	ax.set_ylabel(r'${\rm log(}F/F_{\rm max})$', fontsize=18)
	fig.gca().set_ylim(top=0.1)
	[ax.spines[axis].set_linewidth(1.5) for axis in ['top','bottom','left','right']]
	ax.minorticks_on()
	ax.tick_params('both',labelsize=18,width=1.5,which='major',pad=15,length=5)
	ax.tick_params('both',labelsize=18,width=1.5,which='minor',pad=15,length=2.5)

	fig.savefig('/Users/yaolun/test/annuli_profile.pdf', format='pdf', dpi=300, bbox_inches='tight')
	fig.clf()

	return output
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

mo = ModelOutput('class1_example.rtout')
sed = mo.get_sed(aperture=-1, distance=140. * pc)
image = mo.get_image(inclination=0,distance=300*pc,units='Jy')

fig = plt.figure(figsize=(5, 4))
ax = fig.add_subplot(1, 1, 1)
ax.loglog(sed.wav, sed.val.transpose(), color='black')
ax.set_xlim(0.03, 2000.)
ax.set_ylim(2.e-15, 1e-8)
ax.set_xlabel(r'$\lambda$ [$\mu$m]')
ax.set_ylabel(r'$\lambda F_\lambda$ [ergs/cm$^2/s$]')
#ax2 = fig_add_subplot(1,1,2)
#ax.imshow(image,origin='lower')
fig.savefig('class1_example_sed.png', bbox_inches='tight')

Ejemplo n.º 20
0
def extract_hyperion(filename,
                     indir=None,
                     outdir=None,
                     dstar=200.0,
                     aperture=None,
                     save=True,
                     filter_func=False,
                     plot_all=False,
                     clean=False,
                     exclude_wl=[],
                     log=True,
                     image=True,
                     obj='BHR71',
                     print_data_w_aper=False,
                     mag=1.5):
    """
    filename: The path to Hyperion output file
    indir: The path to the directory which contains observations data
    outdir: The path to the directory for storing extracted plots and ASCII files
    """
    def l_bol(wl, fv, dstar):
        import numpy as np
        import astropy.constants as const
        # wavelength unit: um
        # Flux density unit: Jy
        # constants setup
        #
        c = const.c.cgs.value
        pc = const.pc.cgs.value
        PI = np.pi
        SL = const.L_sun.cgs.value
        # Convert the unit from Jy to erg s-1 cm-2 Hz-1
        fv = np.array(fv) * 1e-23
        freq = c / (1e-4 * np.array(wl))

        diff_dum = freq[1:] - freq[0:-1]
        freq_interpol = np.hstack(
            (freq[0:-1] + diff_dum / 2.0, freq[0:-1] + diff_dum / 2.0, freq[0],
             freq[-1]))
        freq_interpol = freq_interpol[np.argsort(freq_interpol)[::-1]]
        fv_interpol = np.empty(len(freq_interpol))
        # calculate the histogram style of spectrum
        #
        for i in range(0, len(fv)):
            if i == 0:
                fv_interpol[i] = fv[i]
            else:
                fv_interpol[2 * i - 1] = fv[i - 1]
                fv_interpol[2 * i] = fv[i]
        fv_interpol[-1] = fv[-1]

        dv = freq_interpol[0:-1] - freq_interpol[1:]
        dv = np.delete(dv, np.where(dv == 0))

        fv = fv[np.argsort(freq)]
        freq = freq[np.argsort(freq)]

        return (np.trapz(fv, freq) * 4. * PI * (dstar * pc)**2) / SL

    # function for properly calculating uncertainty of spectrophotometry value
    def unc_spectrophoto(wl, unc, trans):
        # adopting smiliar procedure as Trapezoidal rule
        # (b-a) * [ f(a) + f(b) ] / 2
        #
        return (np.sum(trans[:-1]**2 * unc[:-1]**2 * (wl[1:] - wl[:-1])**2) /
                np.trapz(trans, x=wl)**2)**0.5

    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    #
    import matplotlib.pyplot as plt
    import numpy as np
    import os
    from hyperion.model import ModelOutput, Model
    from scipy.interpolate import interp1d
    from hyperion.util.constants import pc, c, lsun, au
    from astropy.io import ascii
    import sys
    from phot_filter import phot_filter
    from get_obs import get_obs

    # Open the model
    m = ModelOutput(filename)

    # Read in the observation data and calculate the noise & variance
    if indir == None:
        indir = raw_input('Path to the observation data: ')
    if outdir == None:
        outdir = raw_input('Path for the output: ')

    # assign the file name from the input file
    print_name = os.path.splitext(os.path.basename(filename))[0]

    # use a canned function to extract observational data
    obs_data = get_obs(indir, obj=obj)  # unit in um, Jy
    wl_tot, flux_tot, unc_tot = obs_data['spec']
    flux_tot = flux_tot * 1e-23  # convert unit from Jy to erg s-1 cm-2 Hz-1
    unc_tot = unc_tot * 1e-23
    l_bol_obs = l_bol(wl_tot, flux_tot * 1e23, dstar)

    wl_phot, flux_phot, flux_sig_phot = obs_data['phot']
    flux_phot = flux_phot * 1e-23  # convert unit from Jy to erg s-1 cm-2 Hz-1
    flux_sig_phot = flux_sig_phot * 1e-23

    if aperture == None:
        aperture = {'wave': [3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 30, 70, 100, 160, 250, 350, 500, 850],\
                    'aperture': [7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 20.4, 20.4, 20.4, 20.4, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5]}
    # assign wl_aper and aper from dictionary of aperture
    wl_aper = aperture['wave']
    aper = aperture['aperture']
    # create the non-repetitive aperture list and index array
    aper_reduced = sorted(list(set(aper)))
    index_reduced = np.arange(
        1,
        len(aper_reduced) +
        1)  # '+1': the zeroth slice corresponds to infinite aperture

    # Create the plot
    fig = plt.figure(figsize=(8 * mag, 6 * mag))
    ax_sed = fig.add_subplot(1, 1, 1)

    # Plot the observed SED
    if not clean:
        color_seq = ['Green', 'Red', 'Black']
    else:
        color_seq = ['DimGray', 'DimGray', 'DimGray']
    # plot the observations
    # plot in log scale
    if log:
        pacs, = ax_sed.plot(
            np.log10(wl_tot[(wl_tot > 40) & (wl_tot < 190.31)]),
            np.log10(c / (wl_tot[(wl_tot > 40) & (wl_tot < 190.31)] * 1e-4) *
                     flux_tot[(wl_tot > 40) & (wl_tot < 190.31)]),
            '-',
            color=color_seq[0],
            linewidth=1.5 * mag,
            alpha=0.7)
        spire, = ax_sed.plot(np.log10(wl_tot[wl_tot > 194]),
                             np.log10(c / (wl_tot[wl_tot > 194] * 1e-4) *
                                      flux_tot[wl_tot > 194]),
                             '-',
                             color=color_seq[1],
                             linewidth=1.5 * mag,
                             alpha=0.7)
        irs, = ax_sed.plot(np.log10(wl_tot[wl_tot < 40]),
                           np.log10(c / (wl_tot[wl_tot < 40] * 1e-4) *
                                    flux_tot[wl_tot < 40]),
                           '-',
                           color=color_seq[2],
                           linewidth=1.5 * mag,
                           alpha=0.7)
        photometry, = ax_sed.plot(np.log10(wl_phot),
                                  np.log10(c / (wl_phot * 1e-4) * flux_phot),
                                  's',
                                  mfc='DimGray',
                                  mec='k',
                                  markersize=8)
        # plot the observed photometry data
        ax_sed.errorbar(
            np.log10(wl_phot),
            np.log10(c / (wl_phot * 1e-4) * flux_phot),
            yerr=[
                np.log10(c / (wl_phot * 1e-4) * flux_phot) -
                np.log10(c / (wl_phot * 1e-4) * (flux_phot - flux_sig_phot)),
                np.log10(c / (wl_phot * 1e-4) * (flux_phot + flux_sig_phot)) -
                np.log10(c / (wl_phot * 1e-4) * flux_phot)
            ],
            fmt='s',
            mfc='DimGray',
            mec='k',
            markersize=8)
    # plot in normal scale
    else:
        pacs, = ax_sed.plot(
            np.log10(wl_tot[(wl_tot > 40) & (wl_tot < 190.31)]),
            c / (wl_tot[(wl_tot > 40) & (wl_tot < 190.31)] * 1e-4) *
            flux_tot[(wl_tot > 40) & (wl_tot < 190.31)],
            '-',
            color=color_seq[0],
            linewidth=1.5 * mag,
            alpha=0.7)
        spire, = ax_sed.plot(np.log10(wl_tot[wl_tot > 194]),
                             c / (wl_tot[wl_tot > 194] * 1e-4) *
                             flux_tot[wl_tot > 194],
                             '-',
                             color=color_seq[1],
                             linewidth=1.5 * mag,
                             alpha=0.7)
        irs, = ax_sed.plot(np.log10(wl_tot[wl_tot < 40]),
                           c / (wl_tot[wl_tot < 40] * 1e-4) *
                           flux_tot[wl_tot < 40],
                           '-',
                           color=color_seq[2],
                           linewidth=1.5 * mag,
                           alpha=0.7)
        photometry, = ax_sed.plot(wl_phot,
                                  c / (wl_phot * 1e-4) * flux_phot,
                                  's',
                                  mfc='DimGray',
                                  mec='k',
                                  markersize=8)
        # plot the observed photometry data
        ax_sed.errorbar(
            np.log10(wl_phot),
            c / (wl_phot * 1e-4) * flux_phot,
            yerr=[
                c / (wl_phot * 1e-4) * flux_phot - c / (wl_phot * 1e-4) *
                (flux_phot - flux_sig_phot), c / (wl_phot * 1e-4) *
                (flux_phot + flux_sig_phot) - c / (wl_phot * 1e-4) * flux_phot
            ],
            fmt='s',
            mfc='DimGray',
            mec='k',
            markersize=8)

    # if keyword 'clean' is not set, print L_bol derived from observations at upper right corner.
    if not clean:
        ax_sed.text(0.75,
                    0.9,
                    r'$\rm{L_{bol}= %5.2f L_{\odot}}$' % l_bol_obs,
                    fontsize=mag * 16,
                    transform=ax_sed.transAxes)

    # getting SED with infinite aperture
    sed_inf = m.get_sed(group=0,
                        inclination=0,
                        aperture=-1,
                        distance=dstar * pc,
                        uncertainties=True)

    # plot the simulated SED with infinite aperture
    if clean == False:
        sim, = ax_sed.plot(np.log10(sed_inf.wav),
                           np.log10(sed_inf.val),
                           '-',
                           color='GoldenRod',
                           linewidth=0.5 * mag)
        ax_sed.fill_between(np.log10(sed_inf.wav),
                            np.log10(sed_inf.val - sed_inf.unc),
                            np.log10(sed_inf.val + sed_inf.unc),
                            color='GoldenRod',
                            alpha=0.5)

    #######################################
    # get fluxes with different apertures #
    #######################################
    # this is non-reduced wavelength array because this is for printing out fluxes at all channels specified by users
    flux_aper = np.zeros_like(wl_aper, dtype=float)
    unc_aper = np.zeros_like(wl_aper, dtype=float)
    a = np.zeros_like(wl_aper) + 1
    color_list = plt.cm.jet(np.linspace(0, 1, len(wl_aper) + 1))
    for i in range(0, len(wl_aper)):
        # occasionally users might want not to report some wavelength channels
        if wl_aper[i] in exclude_wl:
            continue
        # getting simulated SED from Hyperion output. (have to match with the reduced index)
        sed_dum = m.get_sed(
            group=index_reduced[np.where(aper_reduced == aper[i])],
            inclination=0,
            aperture=-1,
            distance=dstar * pc,
            uncertainties=True)
        # plot the whole SED from this aperture (optional)
        if plot_all == True:
            ax_sed.plot(np.log10(sed_dum.wav),
                        np.log10(sed_dum.val),
                        '-',
                        color=color_list[i])
            ax_sed.fill_between(np.log10(sed_dum.wav), np.log10(sed_dum.val-sed_dum.unc), np.log10(sed_dum.val+sed_dum.unc),\
                color=color_list[i], alpha=0.5)
        # Extracting spectrophotometry values from simulated SED
        # Not using the photometry filer function to extract spectrophotometry values
        # sort by wavelength first.
        sort_wl = np.argsort(sed_dum.wav)
        val_sort = sed_dum.val[sort_wl]
        unc_sort = sed_dum.unc[sort_wl]
        wav_sort = sed_dum.wav[sort_wl]
        # Before doing that, convert vSv to F_lambda
        flux_dum = val_sort / wav_sort
        unc_dum = unc_sort / wav_sort

        # If no using filter function to extract the spectrophotometry,
        # then use the spectral resolution.
        if filter_func == False:
            # use a rectangle function the average the simulated SED
            # apply the spectral resolution
            if (wl_aper[i] < 50.) & (wl_aper[i] >= 5):
                res = 60.
            elif wl_aper[i] < 5:
                res = 10.
            else:
                res = 1000.
            ind = np.where((wav_sort < wl_aper[i] * (1 + 1. / res))
                           & (wav_sort > wl_aper[i] * (1 - 1. / res)))
            if len(ind[0]) != 0:
                flux_aper[i] = np.mean(flux_dum[ind])
                unc_aper[i] = np.mean(unc_dum[ind])
            else:
                f = interp1d(wav_sort, flux_dum)
                f_unc = interp1d(wav_sort, unc_dum)
                flux_aper[i] = f(wl_aper[i])
                unc_aper[i] = f_unc(wl_aper[i])
        # Using photometry filter function to extract spectrophotometry values
        else:
            # apply the filter function
            # decide the filter name
            if wl_aper[i] == 70:
                fil_name = 'Herschel PACS 70um'
            elif wl_aper[i] == 100:
                fil_name = 'Herschel PACS 100um'
            elif wl_aper[i] == 160:
                fil_name = 'Herschel PACS 160um'
            elif wl_aper[i] == 250:
                fil_name = 'Herschel SPIRE 250um'
            elif wl_aper[i] == 350:
                fil_name = 'Herschel SPIRE 350um'
            elif wl_aper[i] == 500:
                fil_name = 'Herschel SPIRE 500um'
            elif wl_aper[i] == 3.6:
                fil_name = 'IRAC Channel 1'
            elif wl_aper[i] == 4.5:
                fil_name = 'IRAC Channel 2'
            elif wl_aper[i] == 5.8:
                fil_name = 'IRAC Channel 3'
            elif wl_aper[i] == 8.0:
                fil_name = 'IRAC Channel 4'
            elif wl_aper[i] == 24:
                fil_name = 'MIPS 24um'
            elif wl_aper[i] == 850:
                fil_name = 'SCUBA 850WB'
            else:
                fil_name = None

            if fil_name != None:
                filter_func = phot_filter(fil_name, indir)
                # Simulated SED should have enough wavelength coverage for applying photometry filters.
                f = interp1d(wav_sort, flux_dum)
                f_unc = interp1d(wav_sort, unc_dum)
                flux_aper[i] = np.trapz(f(filter_func['wave']/1e4)*\
                                          filter_func['transmission'],x=filter_func['wave']/1e4 )/\
                               np.trapz(filter_func['transmission'], x=filter_func['wave']/1e4)
                # fix a bug
                unc_aper[i] = unc_spectrophoto(
                    filter_func['wave'] / 1e4,
                    f_unc(filter_func['wave'] / 1e4),
                    filter_func['transmission'])
            else:
                # use a rectangle function the average the simulated SED
                # apply the spectral resolution
                if (wl_aper[i] < 50.) & (wl_aper[i] >= 5):
                    res = 60.
                elif wl_aper[i] < 5:
                    res = 10.
                else:
                    res = 1000.
                ind = np.where((wav_sort < wl_aper[i] * (1 + 1. / res))
                               & (wav_sort > wl_aper[i] * (1 - 1. / res)))
                if len(ind[0]) != 0:
                    flux_aper[i] = np.mean(flux_dum[ind])
                    unc_aper[i] = np.mean(unc_dum[ind])
                else:
                    f = interp1d(wav_sort, flux_dum)
                    f_unc = interp1d(wav_sort, unc_dum)
                    flux_aper[i] = f(wl_aper[i])
                    unc_aper[i] = f_unc(wl_aper[i])
    # temperory step: solve issue of uncertainty greater than the value
    for i in range(len(wl_aper)):
        if unc_aper[i] >= flux_aper[i]:
            unc_aper[i] = flux_aper[i] - 1e-20

    ###########################
    # Observations Extraction #
    ###########################
    # perform the same procedure of flux extraction of aperture flux with observed spectra
    # wl_aper = np.array(wl_aper, dtype=float)
    obs_aper_wl = wl_aper[(wl_aper >= min(wl_tot)) & (wl_aper <= max(wl_tot))]
    obs_aper_flux = np.zeros_like(obs_aper_wl)
    obs_aper_unc = np.zeros_like(obs_aper_wl)
    # have change the simulation part to work in F_lambda for fliter convolution
    # flux_tot and unc_tot have units of erg/s/cm2/Hz.  Need to convert it to F_lambda (erg/s/cm2/um)
    fnu2fl = c / (wl_tot * 1e-4) / wl_tot
    #
    # wl_tot and flux_tot are already hstacked and sorted by wavelength
    for i in range(0, len(obs_aper_wl)):
        # sometime users want not report some wavelength channels
        if obs_aper_wl[i] in exclude_wl:
            continue
        if filter_func == False:
            # use a rectangle function the average the simulated SED
            # apply the spectral resolution
            if (obs_aper_wl[i] < 50.) & (obs_aper_wl[i] >= 5):
                res = 60.
            elif obs_aper_wl[i] < 5:
                res = 10.
            else:
                res = 1000.
            ind = np.where((wl_tot < obs_aper_wl[i] * (1 + 1. / res))
                           & (wl_tot > obs_aper_wl[i] * (1 - 1. / res)))
            if len(ind[0]) != 0:
                obs_aper_flux[i] = np.mean(fnu2fl[ind] * flux_tot[ind])
                obs_aper_unc[i] = np.mean(fnu2fl[ind] * unc_tot[ind])
            else:
                f = interp1d(wl_tot, fnu2fl * flux_tot)
                f_unc = interp1d(wl_tot, fnu2fl * unc_tot)
                obs_aper_flux[i] = f(obs_aper_wl[i])
                obs_aper_unc[i] = f_unc(obs_aper_wl[i])
        else:
            # apply the filter function
            # decide the filter name
            if obs_aper_wl[i] == 70:
                fil_name = 'Herschel PACS 70um'
            elif obs_aper_wl[i] == 100:
                fil_name = 'Herschel PACS 100um'
            elif obs_aper_wl[i] == 160:
                fil_name = 'Herschel PACS 160um'
            elif obs_aper_wl[i] == 250:
                fil_name = 'Herschel SPIRE 250um'
            elif obs_aper_wl[i] == 350:
                fil_name = 'Herschel SPIRE 350um'
            elif obs_aper_wl[i] == 500:
                fil_name = 'Herschel SPIRE 500um'
            elif obs_aper_wl[i] == 3.6:
                fil_name = 'IRAC Channel 1'
            elif obs_aper_wl[i] == 4.5:
                fil_name = 'IRAC Channel 2'
            elif obs_aper_wl[i] == 5.8:
                fil_name = 'IRAC Channel 3'
            elif obs_aper_wl[i] == 8.0:
                fil_name = 'IRAC Channel 4'
            elif obs_aper_wl[i] == 24:
                fil_name = 'MIPS 24um'
            elif obs_aper_wl[i] == 850:
                fil_name = 'SCUBA 850WB'
            # do not have SCUBA spectra
            else:
                fil_name = None

            if fil_name != None:
                filter_func = phot_filter(fil_name, indir)
                # Observed SED needs to be trimmed before applying photometry filters
                filter_func = filter_func[(filter_func['wave']/1e4 >= min(wl_tot))*\
                                          ((filter_func['wave']/1e4 >= 54.8)+(filter_func['wave']/1e4 <= 36.0853))*\
                                          ((filter_func['wave']/1e4 <= 95.05)+(filter_func['wave']/1e4 >=103))*\
                                          ((filter_func['wave']/1e4 <= 190.31)+(filter_func['wave']/1e4 >= 195))*\
                                          (filter_func['wave']/1e4 <= max(wl_tot))]
                f = interp1d(wl_tot, fnu2fl * flux_tot)
                f_unc = interp1d(wl_tot, fnu2fl * unc_tot)
                obs_aper_flux[i] = np.trapz(f(filter_func['wave']/1e4)*filter_func['transmission'], x=filter_func['wave']/1e4)/\
                                   np.trapz(filter_func['transmission'], x=filter_func['wave']/1e4)
                obs_aper_unc[i] = unc_spectrophoto(
                    filter_func['wave'] / 1e4,
                    f_unc(filter_func['wave'] / 1e4),
                    filter_func['transmission'])
            else:
                # use a rectangle function the average the simulated SED
                # apply the spectral resolution
                if (obs_aper_wl[i] < 50.) & (obs_aper_wl[i] >= 5):
                    res = 60.
                elif obs_aper_wl[i] < 5:
                    res = 10.
                else:
                    res = 1000.
                ind = np.where((wl_tot < obs_aper_wl[i] * (1 + 1. / res))
                               & (wl_tot > obs_aper_wl[i] * (1 - 1. / res)))
                if len(ind[0]) != 0:
                    obs_aper_flux[i] = np.mean(fnu2fl[ind] * flux_tot[ind])
                    obs_aper_unc[i] = np.mean(fnu2fl[ind] * unc_tot[ind])
                else:
                    f = interp1d(wl_tot, fnu2fl * flux_tot)
                    f_unc = interp1d(wl_tot, fnu2fl * unc_tot)
                    obs_aper_flux[i] = f(obs_aper_wl[i])
                    obs_aper_unc[i] = f_unc(obs_aper_wl[i])

    # plot the aperture-extracted spectrophotometry fluxes from observed spectra and simulations
    # in log-scale
    if log:
        aper_obs = ax_sed.errorbar(np.log10(obs_aper_wl), np.log10(obs_aper_flux * obs_aper_wl ),\
            yerr=[np.log10(obs_aper_flux*obs_aper_wl)-np.log10(obs_aper_flux*obs_aper_wl-obs_aper_unc*obs_aper_wl), np.log10(obs_aper_flux*obs_aper_wl+obs_aper_unc*obs_aper_wl)-np.log10(obs_aper_flux*obs_aper_wl)],\
            fmt='s', mec='None', mfc='r', markersize=10, linewidth=1.5, ecolor='Red', elinewidth=3, capthick=3, barsabove=True)
        aper = ax_sed.errorbar(np.log10(wl_aper),np.log10(flux_aper*wl_aper),\
            yerr=[np.log10(flux_aper*wl_aper)-np.log10(flux_aper*wl_aper-unc_aper*wl_aper), np.log10(flux_aper*wl_aper+unc_aper*wl_aper)-np.log10(flux_aper*wl_aper)],\
            fmt='o', mec='Blue', mfc='None', color='b',markersize=12, markeredgewidth=2.5, linewidth=1.7, ecolor='Blue', elinewidth=3, barsabove=True)
        ax_sed.set_ylim([-14, -7])
        ax_sed.set_xlim([0, 3.2])
    # in normal scale (normal in y-axis)
    else:
        aper_obs = ax_sed.errorbar(np.log10(obs_aper_wl), obs_aper_flux*obs_aper_wl, yerr=obs_aper_unc*obs_aper_wl,\
            fmt='s', mec='None', mfc='r', markersize=10, linewidth=1.5, ecolor='Red', elinewidth=3, capthick=3, barsabove=True)
        aper = ax_sed.errorbar(np.log10(wl_aper),flux_aper*wl_aper, yerr=unc_aper*wl_aper,\
            fmt='o', mec='Blue', mfc='None', color='b',markersize=12, markeredgewidth=2.5, linewidth=1.7, ecolor='Blue', elinewidth=3, barsabove=True)
        ax_sed.set_xlim([0, 3.2])

    # calculate the bolometric luminosity of the aperture
    # print flux_aper
    l_bol_sim = l_bol(
        wl_aper, flux_aper * wl_aper / (c / np.array(wl_aper) * 1e4) * 1e23,
        dstar)
    print 'Bolometric luminosity of simulated spectrum: %5.2f lsun' % l_bol_sim

    # print out the sed into ascii file for reading in later
    if save == True:
        # unapertured SED
        foo = open(outdir + print_name + '_sed_inf.txt', 'w')
        foo.write('%12s \t %12s \t %12s \n' % ('wave', 'vSv', 'sigma_vSv'))
        for i in range(0, len(sed_inf.wav)):
            foo.write('%12g \t %12g \t %12g \n' %
                      (sed_inf.wav[i], sed_inf.val[i], sed_inf.unc[i]))
        foo.close()
        # SED with convolution of aperture sizes
        foo = open(outdir + print_name + '_sed_w_aperture.txt', 'w')
        foo.write('%12s \t %12s \t %12s \n' % ('wave', 'vSv', 'sigma_vSv'))
        for i in range(0, len(wl_aper)):
            foo.write('%12g \t %12g \t %12g \n' %
                      (wl_aper[i], flux_aper[i] * wl_aper[i],
                       unc_aper[i] * wl_aper[i]))
        foo.close()
        # print out the aperture-convolved fluxex from observations
        if print_data_w_aper:
            foo = open(outdir + print_name + '_obs_w_aperture.txt', 'w')
            foo.write('%12s \t %12s \t %12s \n' % ('wave', 'Jy', 'sigma_Jy'))
            for i in range(0, len(obs_aper_wl)):
                foo.write('%12g \t %12g \t %12g \n' %
                          (obs_aper_wl[i], obs_aper_flux[i] * obs_aper_wl[i] /
                           (c / obs_aper_wl[i] * 1e4) * 1e23, obs_aper_unc[i] *
                           obs_aper_wl[i] / (c / obs_aper_wl[i] * 1e4) * 1e23))
            foo.close()

    # read the input central luminosity by reading in the source information from output file
    dum = Model()
    dum.use_sources(filename)
    L_cen = dum.sources[0].luminosity / lsun

    # legend
    lg_data = ax_sed.legend([irs, photometry, aper, aper_obs], [
        r'$\rm{observation}$', r'$\rm{photometry}$', r'$\rm{F_{aper,sim}}$',
        r'$\rm{F_{aper,obs}}$'
    ],
                            loc='upper left',
                            fontsize=14 * mag,
                            numpoints=1,
                            framealpha=0.3)
    if clean == False:
        lg_sim = ax_sed.legend([sim],[r'$\rm{L_{bol,sim}=%5.2f\,L_{\odot},\,L_{center}=%5.2f\,L_{\odot}}$' % (l_bol_sim, L_cen)], \
                               loc='lower right',fontsize=mag*16)
        plt.gca().add_artist(lg_data)

    # plot setting
    ax_sed.set_xlabel(r'$\rm{log\,\lambda\,[{\mu}m]}$', fontsize=mag * 20)
    ax_sed.set_ylabel(r'$\rm{log\,\nu S_{\nu}\,[erg\,s^{-1}\,cm^{-2}]}$',
                      fontsize=mag * 20)
    [
        ax_sed.spines[axis].set_linewidth(1.5 * mag)
        for axis in ['top', 'bottom', 'left', 'right']
    ]
    ax_sed.minorticks_on()
    ax_sed.tick_params('both',
                       labelsize=mag * 18,
                       width=1.5 * mag,
                       which='major',
                       pad=15,
                       length=5 * mag)
    ax_sed.tick_params('both',
                       labelsize=mag * 18,
                       width=1.5 * mag,
                       which='minor',
                       pad=15,
                       length=2.5 * mag)

    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',
                                                 size=mag * 18)
    for label in ax_sed.get_xticklabels():
        label.set_fontproperties(ticks_font)
    for label in ax_sed.get_yticklabels():
        label.set_fontproperties(ticks_font)

    # Write out the plot
    fig.savefig(outdir + print_name + '_sed.pdf',
                format='pdf',
                dpi=300,
                bbox_inches='tight')
    fig.clf()

    # option for suppress image plotting (for speed)
    if image:
        # Package for matching the colorbar
        from mpl_toolkits.axes_grid1 import make_axes_locatable, ImageGrid

        # Users may change the unit: mJy, Jy, MJy/sr, ergs/cm^2/s, ergs/cm^2/s/Hz
        # !!!
        image = m.get_image(group=len(aper_reduced) + 1,
                            inclination=0,
                            distance=dstar * pc,
                            units='MJy/sr')

        # Open figure and create axes
        fig = plt.figure(figsize=(12, 12))
        grid = ImageGrid(fig,
                         111,
                         nrows_ncols=(3, 3),
                         direction='row',
                         add_all=True,
                         label_mode='1',
                         share_all=True,
                         cbar_location='right',
                         cbar_mode='single',
                         cbar_size='3%',
                         cbar_pad=0)

        for i, wav in enumerate([3.6, 8.0, 9.7, 24, 40, 100, 250, 500, 1000]):

            ax = grid[i]

            # Find the closest wavelength
            iwav = np.argmin(np.abs(wav - image.wav))

            # Calculate the image width in arcseconds given the distance used above
            # get the max radius
            rmax = max(m.get_quantities().r_wall)
            w = np.degrees(rmax / image.distance) * 3600.

            # Image in the unit of MJy/sr
            # Change it into erg/s/cm2/Hz/sr
            factor = 1e-23 * 1e6
            # avoid zero in log
            # flip the image, because the setup of inclination is upside down
            val = image.val[::-1, :, iwav] * factor + 1e-30

            # This is the command to show the image. The parameters vmin and vmax are
            # the min and max levels for the colorscale (remove for default values).
            cmap = plt.cm.CMRmap
            im = ax.imshow(np.log10(val),
                           vmin=-22,
                           vmax=-12,
                           cmap=cmap,
                           origin='lower',
                           extent=[-w, w, -w, w],
                           aspect=1)

            ax.set_xlabel(r'$\rm{RA\,Offset\,[arcsec]}$', fontsize=14)
            ax.set_ylabel(r'$\rm{Dec\,Offset\,[arcsec]}$', fontsize=14)

            # fix the tick label font
            ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',
                                                         size=14)
            for label in ax.get_xticklabels():
                label.set_fontproperties(ticks_font)
            for label in ax.get_yticklabels():
                label.set_fontproperties(ticks_font)

            # Colorbar setting
            cb = ax.cax.colorbar(im)
            cb.solids.set_edgecolor('face')
            cb.ax.minorticks_on()
            cb.ax.set_ylabel(
                r'$\rm{log(I_{\nu})\,[erg\,s^{-1}\,cm^{-2}\,Hz^{-1}\,sr^{-1}]}$',
                fontsize=18)
            cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
            plt.setp(cb_obj, fontsize=18)
            ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',
                                                         size=18)
            for label in cb.ax.get_yticklabels():
                label.set_fontproperties(ticks_font)

            ax.tick_params(axis='both', which='major', labelsize=16)
            ax.text(0.7,
                    0.88,
                    str(wav) + r'$\rm{\,\mu m}$',
                    fontsize=16,
                    color='white',
                    transform=ax.transAxes)

        fig.savefig(outdir + print_name + '_image_gridplot.pdf',
                    format='pdf',
                    dpi=300,
                    bbox_inches='tight')
        fig.clf()
Ejemplo n.º 21
0
import pyfits

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

# Open the model - we specify the name without the .rtout extension
m = ModelOutput('tutorial_model.rtout')

# Extract the image for the first inclination, and scale to 300pc. We
# have to specify group=1 as there is no image in group 0
wav, nufnu = m.get_image(group=1, inclination=0, distance=300 * pc)

# The image extracted above is a 3D array. We can write it out to FITS.
# We need to swap some of the directions around so as to be able to use
# the ds9 slider to change the wavelength of the image.
pyfits.writeto('image_cube.fits', nufnu.swapaxes(0, 2).swapaxes(1, 2), \
               clobber=True)

# We can also just output one of the wavelengths
pyfits.writeto('image_slice.fits', nufnu[:, :, 0], clobber=True)
Ejemplo n.º 22
0
from hyperion.model import ModelOutput
from hyperion.util.constants import kpc
from astropy.io import fits

for tau in [0.1, 1.0, 20.]:

    input_file = 'bm1_slab_effgrain_tau_{tau:05.2f}_images.rtout'.format(
        tau=tau)

    m = ModelOutput(input_file)

    for iincl, theta in enumerate([0, 30, 60, 90, 120, 150, 180]):

        image = m.get_image(inclination=iincl,
                            units='MJy/sr',
                            distance=10. * kpc)

        for iwav, wav in enumerate([0.165, 0.570, 21.3, 161.6]):

            output_file = 'images/bm1_slab_effgrain_tau_{tau:06.2f}_theta_{theta:03d}_wave_{wav:07.3f}.fits'.format(
                tau=tau, theta=theta, wav=wav)

            fits.writeto(output_file, image.val[:, :, iwav], clobber=True)
Ejemplo n.º 23
0
import numpy as np
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

# Create output directory if it does not already exist
if not os.path.exists('frames'):
    os.mkdir('frames')

# Open model
m = ModelOutput('flyaround_cube.rtout')

# Read image from model
image = m.get_image(distance=300 * pc, units='MJy/sr')

# image.val is now an array with four dimensions (n_view, n_y, n_x, n_wav)

for iview in range(image.val.shape[0]):

    # Open figure and create axes
    fig = plt.figure(figsize=(3, 3))
    ax = fig.add_subplot(1, 1, 1)

    # This is the command to show the image. The parameters vmin and vmax are
    # the min and max levels for the grayscale (remove for default values).
    # The colormap is set here to be a heat map. Other possible heat maps
    # include plt.cm.gray (grayscale), plt.cm.gist_yarg (inverted grayscale),
    # plt.cm.jet (default, colorful). The np.sqrt() is used to plot the
    # images on a sqrt stretch.
Ejemplo n.º 24
0
def hyperion_image(rtout,
                   wave,
                   plotdir,
                   printname,
                   dstar=178.,
                   group=0,
                   marker=0,
                   size='full',
                   convolve=False,
                   unit=None):
    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    import astropy.constants as const
    from hyperion.model import ModelOutput
    # Package for matching the colorbar
    from mpl_toolkits.axes_grid1 import make_axes_locatable

    pc = const.pc.cgs.value

    if unit == None:
        unit = r'$\rm{log(I_{\nu})\,[erg\,s^{-1}\,cm^{-2}\,Hz^{-1}\,sr^{-1}]}$'

    m = ModelOutput(rtout)

    # Extract the image.
    image = m.get_image(group=group,
                        inclination=0,
                        distance=dstar * pc,
                        units='mJy')

    print np.shape(image.val)
    # Open figure and create axes
    fig = plt.figure(figsize=(8, 8))
    ax = fig.add_subplot(111)

    # Find the closest wavelength
    iwav = np.argmin(np.abs(wave - image.wav))

    # Calculate the image width in arcseconds given the distance used above
    # get the max radius
    rmax = max(m.get_quantities().r_wall)
    w = np.degrees(rmax / image.distance) * 3600.

    # Image in the unit of MJy/sr
    # Change it into erg/s/cm2/Hz/sr
    # factor = 1e-23*1e6
    factor = 1
    # avoid zero in log
    # flip the image, because the setup of inclination is upside down
    val = image.val[::-1, :, iwav] * factor + 1e-30

    if convolve:
        from astropy.convolution import convolve, Gaussian2DKernel
        img_res = 2 * w / len(val[:, 0])
        kernel = Gaussian2DKernel(0.27 / 2.354 / img_res)
        val = convolve(val, kernel)

    if size != 'full':
        pix_e2c = (w - size / 2.) / w * len(val[:, 0]) / 2
        val = val[pix_e2c:-pix_e2c, pix_e2c:-pix_e2c]
        w = size / 2.

    # This is the command to show the image. The parameters vmin and vmax are
    # the min and max levels for the colorscale (remove for default values).
    # cmap = sns.cubehelix_palette(start=0.1, rot=-0.7, gamma=0.2, as_cmap=True)
    cmap = plt.cm.CMRmap
    # im = ax.imshow(np.log10(val), vmin= -20, vmax= -15,
    #           cmap=cmap, origin='lower', extent=[-w, w, -w, w], aspect=1)
    im = ax.imshow(val,
                   cmap=cmap,
                   origin='lower',
                   extent=[-w, w, -w, w],
                   aspect=1)
    print val.max()

    # plot the marker for center position by default or user input offset
    ax.plot([0], [-marker], '+', color='ForestGreen', markersize=10, mew=2)
    ax.set_xlim([-w, w])
    ax.set_ylim([-w, w])
    # ax.plot([0],[-10], '+', color='m', markersize=10, mew=2)

    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral', size=14)
    for label in ax.get_xticklabels():
        label.set_fontproperties(ticks_font)
    for label in ax.get_yticklabels():
        label.set_fontproperties(ticks_font)

    # Colorbar setting
    # create an axes on the right side of ax. The width of cax will be 5%
    # of ax and the padding between cax and ax will be fixed at 0.05 inch.
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.05)
    cb = fig.colorbar(im, cax=cax)
    cb.solids.set_edgecolor("face")
    cb.ax.minorticks_on()
    cb.ax.set_ylabel(unit, fontsize=18)
    cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
    plt.setp(cb_obj, fontsize=14)
    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral', size=14)
    for label in cb.ax.get_yticklabels():
        label.set_fontproperties(ticks_font)

    ax.set_xlabel(r'$\rm{RA\,Offset\,(arcsec)}$', fontsize=18)
    ax.set_ylabel(r'$\rm{Dec\,Offset\,(arcsec)}$', fontsize=18)

    ax.tick_params(axis='both', which='major', labelsize=18)
    ax.text(0.7,
            0.88,
            str(wave) + r'$\rm{\,\mu m}$',
            fontsize=20,
            color='white',
            transform=ax.transAxes)

    fig.savefig(plotdir + printname + '_image_' + str(wave) + '.pdf',
                format='pdf',
                dpi=300,
                bbox_inches='tight')
    fig.clf()
Ejemplo n.º 25
0
dist = 178.
wave = 500.

from hyperion.model import ModelOutput
import astropy.constants as const
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import font_manager
from mpl_toolkits.axes_grid1 import make_axes_locatable

# constant setup
pc = const.pc.cgs.value

m = ModelOutput(filename)
image = m.get_image(group=22,
                    inclination=0,
                    distance=dist * pc,
                    units='MJy/sr')
# Find the closest wavelength
iwav = np.argmin(np.abs(wave - image.wav))

# Calculate the image width in arcseconds given the distance used above
# get the max radius
rmax = max(m.get_quantities().r_wall)
w = np.degrees(rmax / image.distance) * 3600.

# Image in the unit of MJy/sr
# Change it into erg/s/cm2/Hz/sr
factor = 1e-23 * 1e6
# avoid zero in log
# flip the image, because the setup of inclination is upside down
val = image.val[::-1, :, iwav] * factor + 1e-30
Ejemplo n.º 26
0
def extract_hyperion(filename,
                     indir=None,
                     outdir=None,
                     dstar=178.0,
                     wl_aper=None,
                     save=True):
    def l_bol(wl, fv, dist=178.0):
        import numpy as np
        import astropy.constants as const
        # wavelength unit: um
        # Flux density unit: Jy
        #
        # constants setup
        #
        c = const.c.cgs.value
        pc = const.pc.cgs.value
        PI = np.pi
        SL = const.L_sun.cgs.value
        # Convert the unit from Jy to erg s-1 cm-2 Hz-1
        fv = np.array(fv) * 1e-23
        freq = c / (1e-4 * np.array(wl))

        diff_dum = freq[1:] - freq[0:-1]
        freq_interpol = np.hstack(
            (freq[0:-1] + diff_dum / 2.0, freq[0:-1] + diff_dum / 2.0, freq[0],
             freq[-1]))
        freq_interpol = freq_interpol[np.argsort(freq_interpol)[::-1]]
        fv_interpol = np.empty(len(freq_interpol))
        # calculate the histogram style of spectrum
        #
        for i in range(0, len(fv)):
            if i == 0:
                fv_interpol[i] = fv[i]
            else:
                fv_interpol[2 * i - 1] = fv[i - 1]
                fv_interpol[2 * i] = fv[i]
        fv_interpol[-1] = fv[-1]

        dv = freq_interpol[0:-1] - freq_interpol[1:]
        dv = np.delete(dv, np.where(dv == 0))

        fv = fv[np.argsort(freq)]
        freq = freq[np.argsort(freq)]

        return (np.trapz(fv, freq) * 4. * PI * (dist * pc)**2) / SL

    import matplotlib.pyplot as plt
    import numpy as np
    import os
    from hyperion.model import ModelOutput
    from hyperion.model import Model
    from scipy.interpolate import interp1d
    from hyperion.util.constants import pc, c, lsun

    # Read in the observation data and calculate the noise & variance
    if indir == None:
        indir = '/Users/yaolun/bhr71/'
    if outdir == None:
        outdir = '/Users/yaolun/bhr71/hyperion/'

    # assign the file name from the input file
    print_name = os.path.splitext(os.path.basename(filename))[0]
    #
    [wl_pacs,flux_pacs,unc_pacs] = np.genfromtxt(indir+'BHR71_centralSpaxel_PointSourceCorrected_CorrectedYES_trim_continuum.txt',\
                                        dtype='float',skip_header=1).T
    # Convert the unit from Jy to erg cm-2 Hz-1
    flux_pacs = flux_pacs * 1e-23
    [wl_spire,
     flux_spire] = np.genfromtxt(indir + 'BHR71_spire_corrected_continuum.txt',
                                 dtype='float',
                                 skip_header=1).T
    flux_spire = flux_spire * 1e-23
    wl_obs = np.hstack((wl_pacs, wl_spire))
    flux_obs = np.hstack((flux_pacs, flux_spire))

    [wl_pacs_data,flux_pacs_data,unc_pacs_data] = np.genfromtxt(indir+'BHR71_centralSpaxel_PointSourceCorrected_CorrectedYES_trim.txt',\
                                                  dtype='float').T
    [wl_spire_data,flux_spire_data] = np.genfromtxt(indir+'BHR71_spire_corrected.txt',\
                                                    dtype='float').T

    [wl_pacs_flat,flux_pacs_flat,unc_pacs_flat] = np.genfromtxt(indir+'BHR71_centralSpaxel_PointSourceCorrected_CorrectedYES_trim_flat_spectrum.txt',\
                                        dtype='float',skip_header=1).T
    [wl_spire_flat, flux_spire_flat
     ] = np.genfromtxt(indir + 'BHR71_spire_corrected_flat_spectrum.txt',
                       dtype='float',
                       skip_header=1).T

    # Convert the unit from Jy to erg cm-2 Hz-1
    flux_pacs_flat = flux_pacs_flat * 1e-23
    flux_spire_flat = flux_spire_flat * 1e-23
    flux_pacs_data = flux_pacs_data * 1e-23
    flux_spire_data = flux_spire_data * 1e-23

    wl_pacs_noise = wl_pacs_data
    flux_pacs_noise = flux_pacs_data - flux_pacs - flux_pacs_flat
    wl_spire_noise = wl_spire_data
    flux_spire_noise = flux_spire_data - flux_spire - flux_spire_flat

    # Read in the Spitzer IRS spectrum
    [wl_irs, flux_irs] = (np.genfromtxt(indir + 'bhr71_spitzer_irs.txt',
                                        skip_header=2,
                                        dtype='float').T)[0:2]
    # Convert the unit from Jy to erg cm-2 Hz-1
    flux_irs = flux_irs * 1e-23
    # Remove points with zero or negative flux
    ind = flux_irs > 0
    wl_irs = wl_irs[ind]
    flux_irs = flux_irs[ind]
    # Calculate the local variance (for spire), use the instrument uncertainty for pacs
    #
    wl_noise_5 = wl_spire_noise[(wl_spire_noise > 194) *
                                (wl_spire_noise <= 304)]
    flux_noise_5 = flux_spire_noise[(wl_spire_noise > 194) *
                                    (wl_spire_noise <= 304)]
    wl_noise_6 = wl_spire_noise[wl_spire_noise > 304]
    flux_noise_6 = flux_spire_noise[wl_spire_noise > 304]
    wl_noise = [wl_pacs_data[wl_pacs_data <= 190.31], wl_noise_5, wl_noise_6]
    flux_noise = [unc_pacs[wl_pacs_data <= 190.31], flux_noise_5, flux_noise_6]
    sig_num = 20
    sigma_noise = []
    for i in range(0, len(wl_noise)):
        sigma_dum = np.zeros([len(wl_noise[i])])
        for iwl in range(0, len(wl_noise[i])):
            if iwl < sig_num / 2:
                sigma_dum[iwl] = np.std(
                    np.hstack((flux_noise[i][0:sig_num / 2],
                               flux_noise[i][0:sig_num / 2 - iwl])))
            elif len(wl_noise[i]) - iwl < sig_num / 2:
                sigma_dum[iwl] = np.std(
                    np.hstack(
                        (flux_noise[i][iwl:],
                         flux_noise[i][len(wl_noise[i]) - sig_num / 2:])))
            else:
                sigma_dum[iwl] = np.std(flux_noise[i][iwl - sig_num / 2:iwl +
                                                      sig_num / 2])
        sigma_noise = np.hstack((sigma_noise, sigma_dum))
    sigma_noise = np.array(sigma_noise)

    # Read in the photometry data
    phot = np.genfromtxt(indir + 'bhr71.txt',
                         dtype=None,
                         skip_header=1,
                         comments='%')
    wl_phot = []
    flux_phot = []
    flux_sig_phot = []
    note = []
    for i in range(0, len(phot)):
        wl_phot.append(phot[i][0])
        flux_phot.append(phot[i][1])
        flux_sig_phot.append(phot[i][2])
        note.append(phot[i][4])
    wl_phot = np.array(wl_phot)
    # Convert the unit from Jy to erg cm-2 Hz-1
    flux_phot = np.array(flux_phot) * 1e-23
    flux_sig_phot = np.array(flux_sig_phot) * 1e-23

    # Print the observed L_bol
    wl_tot = np.hstack((wl_irs, wl_obs, wl_phot))
    flux_tot = np.hstack((flux_irs, flux_obs, flux_phot))
    flux_tot = flux_tot[np.argsort(wl_tot)]
    wl_tot = wl_tot[np.argsort(wl_tot)]
    l_bol_obs = l_bol(wl_tot, flux_tot * 1e23)

    # Open the model
    m = ModelOutput(filename)

    if wl_aper == None:
        wl_aper = [
            3.6, 4.5, 5.8, 8.0, 10, 16, 20, 24, 35, 70, 100, 160, 250, 350,
            500, 850
        ]

    # Create the plot
    mag = 1.5
    fig = plt.figure(figsize=(8 * mag, 6 * mag))
    ax_sed = fig.add_subplot(1, 1, 1)

    # Plot the observed SED
    # plot the observed spectra
    pacs, = ax_sed.plot(np.log10(wl_pacs),
                        np.log10(c / (wl_pacs * 1e-4) * flux_pacs),
                        '-',
                        color='DimGray',
                        linewidth=1.5 * mag,
                        alpha=0.7)
    spire, = ax_sed.plot(np.log10(wl_spire),
                         np.log10(c / (wl_spire * 1e-4) * flux_spire),
                         '-',
                         color='DimGray',
                         linewidth=1.5 * mag,
                         alpha=0.7)
    irs, = ax_sed.plot(np.log10(wl_irs),
                       np.log10(c / (wl_irs * 1e-4) * flux_irs),
                       '-',
                       color='DimGray',
                       linewidth=1.5 * mag,
                       alpha=0.7)
    # ax_sed.text(0.75,0.9,r'$\rm{L_{bol}= %5.2f L_{\odot}}$' % l_bol_obs,fontsize=mag*16,transform=ax_sed.transAxes)

    # plot the observed photometry data
    photometry, = ax_sed.plot(np.log10(wl_phot),
                              np.log10(c / (wl_phot * 1e-4) * flux_phot),
                              's',
                              mfc='DimGray',
                              mec='k',
                              markersize=8)
    ax_sed.errorbar(np.log10(wl_phot),np.log10(c/(wl_phot*1e-4)*flux_phot),\
        yerr=[np.log10(c/(wl_phot*1e-4)*flux_phot)-np.log10(c/(wl_phot*1e-4)*(flux_phot-flux_sig_phot)),\
              np.log10(c/(wl_phot*1e-4)*(flux_phot+flux_sig_phot))-np.log10(c/(wl_phot*1e-4)*flux_phot)],\
        fmt='s',mfc='DimGray',mec='k',markersize=8)

    # Extract the SED for the smallest inclination and largest aperture, and
    # scale to 300pc. In Python, negative indices can be used for lists and
    # arrays, and indicate the position from the end. So to get the SED in the
    # largest aperture, we set aperture=-1.
    # aperture group is aranged from smallest to infinite
    sed_inf = m.get_sed(group=0,
                        inclination=0,
                        aperture=-1,
                        distance=dstar * pc)

    # l_bol_sim = l_bol(sed_inf.wav, sed_inf.val/(c/sed_inf.wav*1e4)*1e23)
    # print sed.wav, sed.val
    # print 'Bolometric luminosity of simulated spectrum: %5.2f lsun' % l_bol_sim

    # plot the simulated SED
    # sim, = ax_sed.plot(np.log10(sed_inf.wav), np.log10(sed_inf.val), '-', color='k', linewidth=1.5*mag, alpha=0.7)
    # get flux at different apertures
    flux_aper = np.empty_like(wl_aper)
    unc_aper = np.empty_like(wl_aper)
    for i in range(0, len(wl_aper)):
        sed_dum = m.get_sed(group=i + 1,
                            inclination=0,
                            aperture=-1,
                            distance=dstar * pc)
        # use a rectangle function the average the simulated SED
        # apply the spectral resolution
        if (wl_aper[i] < 50.) & (wl_aper[i] >= 5):
            res = 60.
        elif wl_aper[i] < 5:
            res = 10.
        else:
            res = 1000.
        ind = np.where((sed_dum.wav < wl_aper[i] * (1 + 1. / res))
                       & (sed_dum.wav > wl_aper[i] * (1 - 1. / res)))
        if len(ind[0]) != 0:
            flux_aper[i] = np.mean(sed_dum.val[ind])
        else:
            f = interp1d(sed_dum.wav, sed_dum.val)
            flux_aper[i] = f(wl_aper[i])
    # perform the same procedure of flux extraction of aperture flux with observed spectra
    wl_aper = np.array(wl_aper)
    obs_aper_wl = wl_aper[(wl_aper >= min(wl_irs))
                          & (wl_aper <= max(wl_spire))]
    obs_aper_sed = np.empty_like(obs_aper_wl)
    sed_tot = c / (wl_tot * 1e-4) * flux_tot
    # wl_tot and flux_tot are already hstacked and sorted by wavelength
    for i in range(0, len(obs_aper_wl)):
        if (obs_aper_wl[i] < 50.) & (obs_aper_wl[i] >= 5):
            res = 60.
        elif obs_aper_wl[i] < 5:
            res = 10.
        else:
            res = 1000.
        ind = np.where((wl_tot < obs_aper_wl[i] * (1 + 1. / res))
                       & (wl_tot > obs_aper_wl[i] * (1 - 1. / res)))
        if len(ind[0]) != 0:
            obs_aper_sed[i] = np.mean(sed_tot[ind])
        else:
            f = interp1d(wl_tot, sed_tot)
            obs_aper_sed[i] = f(wl_aper[i])
    aper_obs, = ax_sed.plot(np.log10(obs_aper_wl),
                            np.log10(obs_aper_sed),
                            's-',
                            mec='None',
                            mfc='r',
                            color='r',
                            markersize=10,
                            linewidth=1.5)

    # # interpolate the uncertainty (maybe not the best way to do this)
    # print sed_dum.unc
    # f = interp1d(sed_dum.wav, sed_dum.unc)
    # unc_aper[i] = f(wl_aper[i])
    # if wl_aper[i] == 9.7:
    # ax_sed.plot(np.log10(sed_dum.wav), np.log10(sed_dum.val), '-', linewidth=1.5*mag)
    # print l_bol(sed_dum.wav, sed_dum.val/(c/sed_dum.wav*1e4)*1e23)
    aper, = ax_sed.plot(np.log10(wl_aper),
                        np.log10(flux_aper),
                        'o-',
                        mec='Blue',
                        mfc='None',
                        color='b',
                        markersize=12,
                        markeredgewidth=3,
                        linewidth=1.7)
    # calculate the bolometric luminosity of the aperture
    l_bol_sim = l_bol(wl_aper,
                      flux_aper / (c / np.array(wl_aper) * 1e4) * 1e23)
    print 'Bolometric luminosity of simulated spectrum: %5.2f lsun' % l_bol_sim

    # print out the sed into ascii file for reading in later
    if save == True:
        # unapertured SED
        foo = open(outdir + print_name + '_sed_inf.txt', 'w')
        foo.write('%12s \t %12s \n' % ('wave', 'vSv'))
        for i in range(0, len(sed_inf.wav)):
            foo.write('%12g \t %12g \n' % (sed_inf.wav[i], sed_inf.val[i]))
        foo.close()
        # SED with convolution of aperture sizes
        foo = open(outdir + print_name + '_sed_w_aperture.txt', 'w')
        foo.write('%12s \t %12s \n' % ('wave', 'vSv'))
        for i in range(0, len(wl_aper)):
            foo.write('%12g \t %12g \n' % (wl_aper[i], flux_aper[i]))
        foo.close()

    # Read in and plot the simulated SED produced by RADMC-3D using the same parameters
    # [wl,fit] = np.genfromtxt(indir+'hyperion/radmc_comparison/spectrum.out',dtype='float',skip_header=3).T
    # l_bol_radmc = l_bol(wl,fit*1e23/dstar**2)
    # radmc, = ax_sed.plot(np.log10(wl),np.log10(c/(wl*1e-4)*fit/dstar**2),'-',color='DimGray', linewidth=1.5*mag, alpha=0.5)

    # print the L bol of the simulated SED (both Hyperion and RADMC-3D)
    # lg_sim = ax_sed.legend([sim,radmc],[r'$\rm{L_{bol,sim}=%5.2f~L_{\odot},~L_{center}=9.18~L_{\odot}}$' % l_bol_sim, \
    #   r'$\rm{L_{bol,radmc3d}=%5.2f~L_{\odot},~L_{center}=9.18~L_{\odot}}$' % l_bol_radmc],\
    #   loc='lower right',fontsize=mag*16)

    # read the input central luminosity by reading in the source information from output file
    dum = Model()
    dum.use_sources(filename)
    L_cen = dum.sources[0].luminosity / lsun

    # lg_sim = ax_sed.legend([sim],[r'$\rm{L_{bol,sim}=%5.2f~L_{\odot},~L_{center}=%5.2f~L_{\odot}}$' % (l_bol_sim, L_cen)], \
    # loc='lower right',fontsize=mag*16)
    # lg_sim = ax_sed.legend([sim],[r'$\rm{L_{bol,sim}=%5.2f~L_{\odot},~L_{bol,obs}=%5.2f~L_{\odot}}$' % (l_bol_sim, l_bol_obs)], \
    #     loc='lower right',fontsize=mag*16)
    # text = ax_sed.text(0.2 ,0.05 ,r'$\rm{L_{bol,simulation}=%5.2f~L_{\odot},~L_{bol,observation}=%5.2f~L_{\odot}}$' % (l_bol_sim, l_bol_obs),fontsize=mag*16,transform=ax_sed.transAxes)
    # text.set_bbox(dict( edgecolor='k',facecolor='None',alpha=0.3,pad=10.0))
    # plot setting
    ax_sed.set_xlabel(r'$\rm{log\,\lambda\,({\mu}m)}$', fontsize=mag * 20)
    ax_sed.set_ylabel(r'$\rm{log\,\nu S_{\nu}\,(erg\,cm^{-2}\,s^{-1})}$',
                      fontsize=mag * 20)
    [
        ax_sed.spines[axis].set_linewidth(1.5 * mag)
        for axis in ['top', 'bottom', 'left', 'right']
    ]
    ax_sed.minorticks_on()
    ax_sed.tick_params('both',
                       labelsize=mag * 18,
                       width=1.5 * mag,
                       which='major',
                       pad=15,
                       length=5 * mag)
    ax_sed.tick_params('both',
                       labelsize=mag * 18,
                       width=1.5 * mag,
                       which='minor',
                       pad=15,
                       length=2.5 * mag)

    ax_sed.set_ylim([-13, -7.5])
    ax_sed.set_xlim([0, 3])

    # lg_data = ax_sed.legend([sim, aper], [r'$\rm{w/o~aperture}$', r'$\rm{w/~aperture}$'], \
    #                       loc='upper left', fontsize=14*mag, framealpha=0.3, numpoints=1)

    lg_data = ax_sed.legend([irs, photometry, aper, aper_obs],\
        [r'$\rm{observation}$',\
        r'$\rm{photometry}$',r'$\rm{F_{aper,sim}}$',r'$\rm{F_{aper,obs}}$'],\
        loc='upper left',fontsize=14*mag,numpoints=1,framealpha=0.3)
    # plt.gca().add_artist(lg_sim)

    # Write out the plot
    fig.savefig(outdir + print_name + '_sed.pdf',
                format='pdf',
                dpi=300,
                bbox_inches='tight')
    fig.clf()

    # Package for matching the colorbar
    from mpl_toolkits.axes_grid1 import make_axes_locatable

    # Extract the image for the first inclination, and scale to 300pc. We
    # have to specify group=1 as there is no image in group 0.
    image = m.get_image(group=len(wl_aper) + 1,
                        inclination=0,
                        distance=dstar * pc,
                        units='MJy/sr')
    # image = m.get_image(group=14, inclination=0, distance=dstar * pc, units='MJy/sr')
    # Open figure and create axes
    # fig = plt.figure(figsize=(8, 8))
    fig, axarr = plt.subplots(3,
                              3,
                              sharex='col',
                              sharey='row',
                              figsize=(13.5, 12))

    # Pre-set maximum for colorscales
    VMAX = {}
    # VMAX[3.6] = 10.
    # VMAX[24] = 100.
    # VMAX[160] = 2000.
    # VMAX[500] = 2000.
    VMAX[100] = 10.
    VMAX[250] = 100.
    VMAX[500] = 2000.
    VMAX[1000] = 2000.

    # We will now show four sub-plots, each one for a different wavelength
    # for i, wav in enumerate([3.6, 24, 160, 500]):
    # for i, wav in enumerate([100, 250, 500, 1000]):
    # for i, wav in enumerate([4.5, 9.7, 24, 40, 70, 100, 250, 500, 1000]):
    for i, wav in enumerate([3.6, 8.0, 9.7, 24, 40, 100, 250, 500, 1000]):

        # ax = fig.add_subplot(3, 3, i + 1)
        ax = axarr[i / 3, i % 3]

        # Find the closest wavelength
        iwav = np.argmin(np.abs(wav - image.wav))

        # Calculate the image width in arcseconds given the distance used above
        rmax = max(m.get_quantities().r_wall)
        w = np.degrees(rmax / image.distance) * 3600.

        # w = np.degrees((1.5 * pc) / image.distance) * 60.

        # Image in the unit of MJy/sr
        # Change it into erg/s/cm2/Hz/sr
        factor = 1e-23 * 1e6
        # avoid zero in log
        val = image.val[:, :, iwav] * factor + 1e-30

        # This is the command to show the image. The parameters vmin and vmax are
        # the min and max levels for the colorscale (remove for default values).
        im = ax.imshow(np.log10(val),
                       vmin=-22,
                       vmax=-12,
                       cmap=plt.cm.jet,
                       origin='lower',
                       extent=[-w, w, -w, w],
                       aspect=1)

        # Colorbar setting
        # create an axes on the right side of ax. The width of cax will be 5%
        # of ax and the padding between cax and ax will be fixed at 0.05 inch.
        if (i + 1) % 3 == 0:
            divider = make_axes_locatable(ax)
            cax = divider.append_axes("right", size="5%", pad=0.05)
            cb = fig.colorbar(im, cax=cax)
            cb.solids.set_edgecolor("face")
            cb.ax.minorticks_on()
            cb.ax.set_ylabel(
                r'$\rm{log(I_{\nu})\,[erg\,s^{-2}\,cm^{-2}\,Hz^{-1}\,sr^{-1}]}$',
                fontsize=12)
            cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
            plt.setp(cb_obj, fontsize=12)

        if (i + 1) == 7:
            # Finalize the plot
            ax.set_xlabel('RA Offset (arcsec)', fontsize=14)
            ax.set_ylabel('Dec Offset (arcsec)', fontsize=14)

        ax.tick_params(axis='both', which='major', labelsize=16)
        ax.set_adjustable('box-forced')
        ax.text(0.7,
                0.88,
                str(wav) + r'$\rm{\,\mu m}$',
                fontsize=18,
                color='white',
                weight='bold',
                transform=ax.transAxes)

    fig.subplots_adjust(hspace=0, wspace=-0.2)

    # Adjust the spaces between the subplots
    # plt.tight_layout()
    fig.savefig(outdir + print_name + '_cube_plot.png',
                format='png',
                dpi=300,
                bbox_inches='tight')
    fig.clf()
Ejemplo n.º 27
0
def extract_hyperion(filename,indir=None,outdir=None,dstar=178.0,wl_aper=None,save=True):
    def l_bol(wl,fv,dist=178.0):
        import numpy as np
        import astropy.constants as const
        # wavelength unit: um
        # Flux density unit: Jy
        #
        # constants setup
        #
        c = const.c.cgs.value
        pc = const.pc.cgs.value
        PI = np.pi
        SL = const.L_sun.cgs.value
        # Convert the unit from Jy to erg s-1 cm-2 Hz-1
        fv = np.array(fv)*1e-23
        freq = c/(1e-4*np.array(wl))
        
        diff_dum = freq[1:]-freq[0:-1]
        freq_interpol = np.hstack((freq[0:-1]+diff_dum/2.0,freq[0:-1]+diff_dum/2.0,freq[0],freq[-1]))
        freq_interpol = freq_interpol[np.argsort(freq_interpol)[::-1]]
        fv_interpol = np.empty(len(freq_interpol))
        # calculate the histogram style of spectrum
        #
        for i in range(0,len(fv)):
            if i == 0:
                fv_interpol[i] = fv[i]
            else:
                fv_interpol[2*i-1] = fv[i-1]
                fv_interpol[2*i] = fv[i]
        fv_interpol[-1] = fv[-1]
        
        dv = freq_interpol[0:-1]-freq_interpol[1:]
        dv = np.delete(dv,np.where(dv==0))

        fv = fv[np.argsort(freq)]
        freq = freq[np.argsort(freq)]

        return (np.trapz(fv,freq)*4.*PI*(dist*pc)**2)/SL


    import matplotlib.pyplot as plt
    import numpy as np
    import os
    from hyperion.model import ModelOutput
    from hyperion.model import Model
    from scipy.interpolate import interp1d
    from hyperion.util.constants import pc, c, lsun

    # Read in the observation data and calculate the noise & variance
    if indir == None:
        indir = '/Users/yaolun/bhr71/'
    if outdir == None:
        outdir = '/Users/yaolun/bhr71/hyperion/'

    # assign the file name from the input file
    print_name = os.path.splitext(os.path.basename(filename))[0]
    #
    [wl_pacs,flux_pacs,unc_pacs] = np.genfromtxt(indir+'BHR71_centralSpaxel_PointSourceCorrected_CorrectedYES_trim_continuum.txt',\
                                        dtype='float',skip_header=1).T
    # Convert the unit from Jy to erg cm-2 Hz-1
    flux_pacs = flux_pacs*1e-23
    [wl_spire,flux_spire] = np.genfromtxt(indir+'BHR71_spire_corrected_continuum.txt',dtype='float',skip_header=1).T
    flux_spire = flux_spire*1e-23 
    wl_obs = np.hstack((wl_pacs,wl_spire))
    flux_obs = np.hstack((flux_pacs,flux_spire))

    [wl_pacs_data,flux_pacs_data,unc_pacs_data] = np.genfromtxt(indir+'BHR71_centralSpaxel_PointSourceCorrected_CorrectedYES_trim.txt',\
                                                  dtype='float').T
    [wl_spire_data,flux_spire_data] = np.genfromtxt(indir+'BHR71_spire_corrected.txt',\
                                                    dtype='float').T

    [wl_pacs_flat,flux_pacs_flat,unc_pacs_flat] = np.genfromtxt(indir+'BHR71_centralSpaxel_PointSourceCorrected_CorrectedYES_trim_flat_spectrum.txt',\
                                        dtype='float',skip_header=1).T
    [wl_spire_flat,flux_spire_flat] = np.genfromtxt(indir+'BHR71_spire_corrected_flat_spectrum.txt',dtype='float',skip_header=1).T

    # Convert the unit from Jy to erg cm-2 Hz-1
    flux_pacs_flat = flux_pacs_flat*1e-23 
    flux_spire_flat = flux_spire_flat*1e-23
    flux_pacs_data = flux_pacs_data*1e-23
    flux_spire_data = flux_spire_data*1e-23


    wl_pacs_noise = wl_pacs_data
    flux_pacs_noise = flux_pacs_data-flux_pacs-flux_pacs_flat
    wl_spire_noise = wl_spire_data
    flux_spire_noise = flux_spire_data-flux_spire-flux_spire_flat

    # Read in the Spitzer IRS spectrum
    [wl_irs, flux_irs]= (np.genfromtxt(indir+'bhr71_spitzer_irs.txt',skip_header=2,dtype='float').T)[0:2]
    # Convert the unit from Jy to erg cm-2 Hz-1
    flux_irs = flux_irs*1e-23
    # Remove points with zero or negative flux 
    ind = flux_irs > 0
    wl_irs = wl_irs[ind]
    flux_irs = flux_irs[ind]
    # Calculate the local variance (for spire), use the instrument uncertainty for pacs
    #
    wl_noise_5 = wl_spire_noise[(wl_spire_noise > 194)*(wl_spire_noise <= 304)]
    flux_noise_5 = flux_spire_noise[(wl_spire_noise > 194)*(wl_spire_noise <= 304)]
    wl_noise_6 = wl_spire_noise[wl_spire_noise > 304]
    flux_noise_6 = flux_spire_noise[wl_spire_noise > 304]
    wl_noise = [wl_pacs_data[wl_pacs_data<=190.31],wl_noise_5,wl_noise_6]
    flux_noise = [unc_pacs[wl_pacs_data<=190.31],flux_noise_5,flux_noise_6]
    sig_num = 20
    sigma_noise = []
    for i in range(0,len(wl_noise)):
        sigma_dum = np.zeros([len(wl_noise[i])])
        for iwl in range(0,len(wl_noise[i])):
            if iwl < sig_num/2:
                sigma_dum[iwl] = np.std(np.hstack((flux_noise[i][0:sig_num/2],flux_noise[i][0:sig_num/2-iwl])))
            elif len(wl_noise[i])-iwl < sig_num/2:
                sigma_dum[iwl] = np.std(np.hstack((flux_noise[i][iwl:],flux_noise[i][len(wl_noise[i])-sig_num/2:])))
            else:
                sigma_dum[iwl] = np.std(flux_noise[i][iwl-sig_num/2:iwl+sig_num/2])
        sigma_noise = np.hstack((sigma_noise,sigma_dum))
    sigma_noise = np.array(sigma_noise)

    # Read in the photometry data
    phot = np.genfromtxt(indir+'bhr71.txt',dtype=None,skip_header=1,comments='%')
    wl_phot = []
    flux_phot = []
    flux_sig_phot = []
    note = []
    for i in range(0,len(phot)):
        wl_phot.append(phot[i][0])
        flux_phot.append(phot[i][1])
        flux_sig_phot.append(phot[i][2])
        note.append(phot[i][4])
    wl_phot = np.array(wl_phot)
    # Convert the unit from Jy to erg cm-2 Hz-1
    flux_phot = np.array(flux_phot)*1e-23
    flux_sig_phot = np.array(flux_sig_phot)*1e-23

    # Print the observed L_bol
    wl_tot = np.hstack((wl_irs,wl_obs,wl_phot))
    flux_tot = np.hstack((flux_irs,flux_obs,flux_phot))
    flux_tot = flux_tot[np.argsort(wl_tot)]
    wl_tot = wl_tot[np.argsort(wl_tot)]
    l_bol_obs = l_bol(wl_tot,flux_tot*1e23)             


    # Open the model
    m = ModelOutput(filename)

    if wl_aper == None:
        wl_aper = [3.6, 4.5, 5.8, 8.0, 10, 16, 20, 24, 35, 70, 100, 160, 250, 350, 500, 850]

    # Create the plot
    mag = 1.5
    fig = plt.figure(figsize=(8*mag,6*mag))
    ax_sed = fig.add_subplot(1, 1, 1)

    # Plot the observed SED
    # plot the observed spectra
    pacs, = ax_sed.plot(np.log10(wl_pacs),np.log10(c/(wl_pacs*1e-4)*flux_pacs),'-',color='DimGray',linewidth=1.5*mag, alpha=0.7)
    spire, = ax_sed.plot(np.log10(wl_spire),np.log10(c/(wl_spire*1e-4)*flux_spire),'-',color='DimGray',linewidth=1.5*mag, alpha=0.7)
    irs, = ax_sed.plot(np.log10(wl_irs),np.log10(c/(wl_irs*1e-4)*flux_irs),'-',color='DimGray',linewidth=1.5*mag, alpha=0.7)
    # ax_sed.text(0.75,0.9,r'$\rm{L_{bol}= %5.2f L_{\odot}}$' % l_bol_obs,fontsize=mag*16,transform=ax_sed.transAxes) 

    # plot the observed photometry data
    photometry, = ax_sed.plot(np.log10(wl_phot),np.log10(c/(wl_phot*1e-4)*flux_phot),'s',mfc='DimGray',mec='k',markersize=8)
    ax_sed.errorbar(np.log10(wl_phot),np.log10(c/(wl_phot*1e-4)*flux_phot),\
        yerr=[np.log10(c/(wl_phot*1e-4)*flux_phot)-np.log10(c/(wl_phot*1e-4)*(flux_phot-flux_sig_phot)),\
              np.log10(c/(wl_phot*1e-4)*(flux_phot+flux_sig_phot))-np.log10(c/(wl_phot*1e-4)*flux_phot)],\
        fmt='s',mfc='DimGray',mec='k',markersize=8)

    # Extract the SED for the smallest inclination and largest aperture, and
    # scale to 300pc. In Python, negative indices can be used for lists and
    # arrays, and indicate the position from the end. So to get the SED in the
    # largest aperture, we set aperture=-1.
    # aperture group is aranged from smallest to infinite
    sed_inf = m.get_sed(group=0, inclination=0, aperture=-1, distance=dstar * pc)

    # l_bol_sim = l_bol(sed_inf.wav, sed_inf.val/(c/sed_inf.wav*1e4)*1e23)
    # print sed.wav, sed.val
    # print 'Bolometric luminosity of simulated spectrum: %5.2f lsun' % l_bol_sim


    # plot the simulated SED
    # sim, = ax_sed.plot(np.log10(sed_inf.wav), np.log10(sed_inf.val), '-', color='k', linewidth=1.5*mag, alpha=0.7)
    # get flux at different apertures
    flux_aper = np.empty_like(wl_aper)
    unc_aper = np.empty_like(wl_aper)
    for i in range(0, len(wl_aper)):
        sed_dum = m.get_sed(group=i+1, inclination=0, aperture=-1, distance=dstar * pc)
        # use a rectangle function the average the simulated SED
        # apply the spectral resolution
        if (wl_aper[i] < 50.) & (wl_aper[i] >= 5):
            res = 60.
        elif wl_aper[i] < 5:
            res = 10.
        else:
            res = 1000.
        ind = np.where((sed_dum.wav < wl_aper[i]*(1+1./res)) & (sed_dum.wav > wl_aper[i]*(1-1./res)))
        if len(ind[0]) != 0:
            flux_aper[i] = np.mean(sed_dum.val[ind])
        else:
            f = interp1d(sed_dum.wav, sed_dum.val)
            flux_aper[i] = f(wl_aper[i])
    # perform the same procedure of flux extraction of aperture flux with observed spectra
    wl_aper = np.array(wl_aper)
    obs_aper_wl = wl_aper[(wl_aper >= min(wl_irs)) & (wl_aper <= max(wl_spire))]
    obs_aper_sed = np.empty_like(obs_aper_wl)
    sed_tot = c/(wl_tot*1e-4)*flux_tot
    # wl_tot and flux_tot are already hstacked and sorted by wavelength
    for i in range(0, len(obs_aper_wl)):
        if (obs_aper_wl[i] < 50.) & (obs_aper_wl[i] >= 5):
            res = 60.
        elif obs_aper_wl[i] < 5:
            res = 10.
        else:
            res = 1000.
        ind = np.where((wl_tot < obs_aper_wl[i]*(1+1./res)) & (wl_tot > obs_aper_wl[i]*(1-1./res)))
        if len(ind[0]) != 0:
            obs_aper_sed[i] = np.mean(sed_tot[ind])
        else:
            f = interp1d(wl_tot, sed_tot)
            obs_aper_sed[i] = f(wl_aper[i])
    aper_obs, = ax_sed.plot(np.log10(obs_aper_wl),np.log10(obs_aper_sed), 's-', mec='None', mfc='r', color='r',markersize=10, linewidth=1.5)


        # # interpolate the uncertainty (maybe not the best way to do this)
        # print sed_dum.unc
        # f = interp1d(sed_dum.wav, sed_dum.unc)
        # unc_aper[i] = f(wl_aper[i])
        # if wl_aper[i] == 9.7:
            # ax_sed.plot(np.log10(sed_dum.wav), np.log10(sed_dum.val), '-', linewidth=1.5*mag)
        # print l_bol(sed_dum.wav, sed_dum.val/(c/sed_dum.wav*1e4)*1e23)
    aper, = ax_sed.plot(np.log10(wl_aper),np.log10(flux_aper),'o-', mec='Blue', mfc='None', color='b',markersize=12, markeredgewidth=3, linewidth=1.7)
    # calculate the bolometric luminosity of the aperture 
    l_bol_sim = l_bol(wl_aper, flux_aper/(c/np.array(wl_aper)*1e4)*1e23)
    print 'Bolometric luminosity of simulated spectrum: %5.2f lsun' % l_bol_sim

    # print out the sed into ascii file for reading in later
    if save == True:
        # unapertured SED
        foo = open(outdir+print_name+'_sed_inf.txt','w')
        foo.write('%12s \t %12s \n' % ('wave','vSv'))
        for i in range(0, len(sed_inf.wav)):
            foo.write('%12g \t %12g \n' % (sed_inf.wav[i], sed_inf.val[i]))
        foo.close()
        # SED with convolution of aperture sizes
        foo = open(outdir+print_name+'_sed_w_aperture.txt','w')
        foo.write('%12s \t %12s \n' % ('wave','vSv'))
        for i in range(0, len(wl_aper)):
            foo.write('%12g \t %12g \n' % (wl_aper[i], flux_aper[i]))
        foo.close()

    # Read in and plot the simulated SED produced by RADMC-3D using the same parameters
    # [wl,fit] = np.genfromtxt(indir+'hyperion/radmc_comparison/spectrum.out',dtype='float',skip_header=3).T
    # l_bol_radmc = l_bol(wl,fit*1e23/dstar**2)
    # radmc, = ax_sed.plot(np.log10(wl),np.log10(c/(wl*1e-4)*fit/dstar**2),'-',color='DimGray', linewidth=1.5*mag, alpha=0.5)

    # print the L bol of the simulated SED (both Hyperion and RADMC-3D)
    # lg_sim = ax_sed.legend([sim,radmc],[r'$\rm{L_{bol,sim}=%5.2f~L_{\odot},~L_{center}=9.18~L_{\odot}}$' % l_bol_sim, \
    #   r'$\rm{L_{bol,radmc3d}=%5.2f~L_{\odot},~L_{center}=9.18~L_{\odot}}$' % l_bol_radmc],\
    #   loc='lower right',fontsize=mag*16)

    # read the input central luminosity by reading in the source information from output file
    dum = Model()
    dum.use_sources(filename)
    L_cen = dum.sources[0].luminosity/lsun

    # lg_sim = ax_sed.legend([sim],[r'$\rm{L_{bol,sim}=%5.2f~L_{\odot},~L_{center}=%5.2f~L_{\odot}}$' % (l_bol_sim, L_cen)], \
        # loc='lower right',fontsize=mag*16)
    # lg_sim = ax_sed.legend([sim],[r'$\rm{L_{bol,sim}=%5.2f~L_{\odot},~L_{bol,obs}=%5.2f~L_{\odot}}$' % (l_bol_sim, l_bol_obs)], \
    #     loc='lower right',fontsize=mag*16)
    # text = ax_sed.text(0.2 ,0.05 ,r'$\rm{L_{bol,simulation}=%5.2f~L_{\odot},~L_{bol,observation}=%5.2f~L_{\odot}}$' % (l_bol_sim, l_bol_obs),fontsize=mag*16,transform=ax_sed.transAxes) 
    # text.set_bbox(dict( edgecolor='k',facecolor='None',alpha=0.3,pad=10.0))
    # plot setting
    ax_sed.set_xlabel(r'$\rm{log\,\lambda\,({\mu}m)}$',fontsize=mag*20)
    ax_sed.set_ylabel(r'$\rm{log\,\nu S_{\nu}\,(erg\,cm^{-2}\,s^{-1})}$',fontsize=mag*20)
    [ax_sed.spines[axis].set_linewidth(1.5*mag) for axis in ['top','bottom','left','right']]
    ax_sed.minorticks_on()
    ax_sed.tick_params('both',labelsize=mag*18,width=1.5*mag,which='major',pad=15,length=5*mag)
    ax_sed.tick_params('both',labelsize=mag*18,width=1.5*mag,which='minor',pad=15,length=2.5*mag)

    ax_sed.set_ylim([-13,-7.5])
    ax_sed.set_xlim([0,3])

    # lg_data = ax_sed.legend([sim, aper], [r'$\rm{w/o~aperture}$', r'$\rm{w/~aperture}$'], \
    #                       loc='upper left', fontsize=14*mag, framealpha=0.3, numpoints=1)

    lg_data = ax_sed.legend([irs, photometry, aper, aper_obs],\
        [r'$\rm{observation}$',\
        r'$\rm{photometry}$',r'$\rm{F_{aper,sim}}$',r'$\rm{F_{aper,obs}}$'],\
        loc='upper left',fontsize=14*mag,numpoints=1,framealpha=0.3)
    # plt.gca().add_artist(lg_sim)

    # Write out the plot
    fig.savefig(outdir+print_name+'_sed.pdf',format='pdf',dpi=300,bbox_inches='tight')
    fig.clf()

    # Package for matching the colorbar
    from mpl_toolkits.axes_grid1 import make_axes_locatable

    # Extract the image for the first inclination, and scale to 300pc. We
    # have to specify group=1 as there is no image in group 0.
    image = m.get_image(group=len(wl_aper)+1, inclination=0, distance=dstar * pc, units='MJy/sr')
    # image = m.get_image(group=14, inclination=0, distance=dstar * pc, units='MJy/sr')
    # Open figure and create axes
    # fig = plt.figure(figsize=(8, 8))
    fig, axarr = plt.subplots(3, 3, sharex='col', sharey='row',figsize=(13.5,12))

    # Pre-set maximum for colorscales
    VMAX = {}
    # VMAX[3.6] = 10.
    # VMAX[24] = 100.
    # VMAX[160] = 2000.
    # VMAX[500] = 2000.
    VMAX[100] = 10.
    VMAX[250] = 100.
    VMAX[500] = 2000.
    VMAX[1000] = 2000.

    # We will now show four sub-plots, each one for a different wavelength
    # for i, wav in enumerate([3.6, 24, 160, 500]):
    # for i, wav in enumerate([100, 250, 500, 1000]):
    # for i, wav in enumerate([4.5, 9.7, 24, 40, 70, 100, 250, 500, 1000]):
    for i, wav in enumerate([3.6, 8.0, 9.7, 24, 40, 100, 250, 500, 1000]):


        # ax = fig.add_subplot(3, 3, i + 1)
        ax = axarr[i/3, i%3]

        # Find the closest wavelength
        iwav = np.argmin(np.abs(wav - image.wav))

        # Calculate the image width in arcseconds given the distance used above
        rmax = max(m.get_quantities().r_wall)
        w = np.degrees(rmax / image.distance) * 3600.

        # w = np.degrees((1.5 * pc) / image.distance) * 60.

        # Image in the unit of MJy/sr
        # Change it into erg/s/cm2/Hz/sr
        factor = 1e-23*1e6
        # avoid zero in log
        val = image.val[:, :, iwav] * factor + 1e-30

        # This is the command to show the image. The parameters vmin and vmax are
        # the min and max levels for the colorscale (remove for default values).
        im = ax.imshow(np.log10(val), vmin= -22, vmax= -12,
                  cmap=plt.cm.jet, origin='lower', extent=[-w, w, -w, w], aspect=1)

        # Colorbar setting
        # create an axes on the right side of ax. The width of cax will be 5%
        # of ax and the padding between cax and ax will be fixed at 0.05 inch.
        if (i+1) % 3 == 0:
            divider = make_axes_locatable(ax)
            cax = divider.append_axes("right", size="5%", pad=0.05)
            cb = fig.colorbar(im, cax=cax)
            cb.solids.set_edgecolor("face")
            cb.ax.minorticks_on()
            cb.ax.set_ylabel(r'$\rm{log(I_{\nu})\,[erg\,s^{-2}\,cm^{-2}\,Hz^{-1}\,sr^{-1}]}$',fontsize=12)
            cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
            plt.setp(cb_obj,fontsize=12)

        if (i+1) == 7:
            # Finalize the plot
            ax.set_xlabel('RA Offset (arcsec)', fontsize=14)
            ax.set_ylabel('Dec Offset (arcsec)', fontsize=14)

        ax.tick_params(axis='both', which='major', labelsize=16)
        ax.set_adjustable('box-forced')
        ax.text(0.7,0.88,str(wav) + r'$\rm{\,\mu m}$',fontsize=18,color='white',weight='bold',transform=ax.transAxes)

    fig.subplots_adjust(hspace=0,wspace=-0.2)

    # Adjust the spaces between the subplots 
    # plt.tight_layout()
    fig.savefig(outdir+print_name+'_cube_plot.png', format='png', dpi=300, bbox_inches='tight')
    fig.clf()
Ejemplo n.º 28
0
from hyperion.model import ModelOutput
from hyperion.util.constants import kpc
from astropy.io import fits


for tau in [0.1, 1.0, 20.]:

    input_file = 'bm1_slab_effgrain_tau_{tau:05.2f}_images.rtout'.format(tau=tau)

    m = ModelOutput(input_file)

    for iincl, theta in enumerate([0, 30, 60, 90, 120, 150, 180]):

        image = m.get_image(inclination=iincl, units='MJy/sr', distance=10. * kpc)

        for iwav, wav in enumerate([0.165, 0.570, 21.3, 161.6]):

            output_file = 'images/bm1_slab_effgrain_tau_{tau:06.2f}_theta_{theta:03d}_wave_{wav:07.3f}.fits'.format(tau=tau, theta=theta, wav=wav)

            fits.writeto(output_file, image.val[:, :, iwav], clobber=True)
Ejemplo n.º 29
0
def extract_hyperion(filename,indir=None,outdir=None,dstar=200.0,aperture=None,
                     save=True,filter_func=False,plot_all=False,clean=False,
                     exclude_wl=[],log=True,image=True,obj='BHR71',
                     print_data_w_aper=False,mag=1.5):
    """
    filename: The path to Hyperion output file
    indir: The path to the directory which contains observations data
    outdir: The path to the directory for storing extracted plots and ASCII files
    """
    def l_bol(wl,fv,dstar):
        import numpy as np
        import astropy.constants as const
        # wavelength unit: um
        # Flux density unit: Jy
        # constants setup
        #
        c = const.c.cgs.value
        pc = const.pc.cgs.value
        PI = np.pi
        SL = const.L_sun.cgs.value
        # Convert the unit from Jy to erg s-1 cm-2 Hz-1
        fv = np.array(fv)*1e-23
        freq = c/(1e-4*np.array(wl))

        diff_dum = freq[1:]-freq[0:-1]
        freq_interpol = np.hstack((freq[0:-1]+diff_dum/2.0,freq[0:-1]+diff_dum/2.0,freq[0],freq[-1]))
        freq_interpol = freq_interpol[np.argsort(freq_interpol)[::-1]]
        fv_interpol = np.empty(len(freq_interpol))
        # calculate the histogram style of spectrum
        #
        for i in range(0,len(fv)):
            if i == 0:
                fv_interpol[i] = fv[i]
            else:
                fv_interpol[2*i-1] = fv[i-1]
                fv_interpol[2*i] = fv[i]
        fv_interpol[-1] = fv[-1]

        dv = freq_interpol[0:-1]-freq_interpol[1:]
        dv = np.delete(dv,np.where(dv==0))

        fv = fv[np.argsort(freq)]
        freq = freq[np.argsort(freq)]

        return (np.trapz(fv,freq)*4.*PI*(dstar*pc)**2)/SL

    # function for properly calculating uncertainty of spectrophotometry value
    def unc_spectrophoto(wl, unc, trans):
        # adopting smiliar procedure as Trapezoidal rule
        # (b-a) * [ f(a) + f(b) ] / 2
        #
        return ( np.sum( trans[:-1]**2 * unc[:-1]**2 * (wl[1:]-wl[:-1])**2 ) / np.trapz(trans, x=wl)**2 )**0.5

    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    #
    import matplotlib.pyplot as plt
    import numpy as np
    import os
    from hyperion.model import ModelOutput, Model
    from scipy.interpolate import interp1d
    from hyperion.util.constants import pc, c, lsun, au
    from astropy.io import ascii
    import sys
    from phot_filter import phot_filter
    from get_obs import get_obs

    # Open the model
    m = ModelOutput(filename)

    # Read in the observation data and calculate the noise & variance
    if indir == None:
        indir = raw_input('Path to the observation data: ')
    if outdir == None:
        outdir = raw_input('Path for the output: ')

    # assign the file name from the input file
    print_name = os.path.splitext(os.path.basename(filename))[0]

    # use a canned function to extract observational data
    obs_data = get_obs(indir, obj=obj)        # unit in um, Jy
    wl_tot, flux_tot, unc_tot = obs_data['spec']
    flux_tot = flux_tot*1e-23    # convert unit from Jy to erg s-1 cm-2 Hz-1
    unc_tot = unc_tot*1e-23
    l_bol_obs = l_bol(wl_tot, flux_tot*1e23, dstar)

    wl_phot, flux_phot, flux_sig_phot = obs_data['phot']
    flux_phot = flux_phot*1e-23   # convert unit from Jy to erg s-1 cm-2 Hz-1
    flux_sig_phot = flux_sig_phot*1e-23

    if aperture == None:
        aperture = {'wave': [3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 35, 70, 100, 160, 250, 350, 500, 850],\
                    'aperture': [7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 20.4, 20.4, 20.4, 20.4, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5]}
    # assign wl_aper and aper from dictionary of aperture
    wl_aper = aperture['wave']
    aper    = aperture['aperture']
    # create the non-repetitive aperture list and index array
    aper_reduced = list(set(aper))
    index_reduced = np.arange(1, len(aper_reduced)+1)  # '+1': the zeroth slice corresponds to infinite aperture

    # Create the plot
    fig = plt.figure(figsize=(8*mag,6*mag))
    ax_sed = fig.add_subplot(1, 1, 1)

    # Plot the observed SED
    if not clean:
        color_seq = ['Green','Red','Black']
    else:
        color_seq = ['DimGray','DimGray','DimGray']
    # plot the observations
    # plot in log scale
    if log:
        pacs, = ax_sed.plot(np.log10(wl_tot[(wl_tot>40) & (wl_tot<190.31)]),
                            np.log10(c/(wl_tot[(wl_tot>40) & (wl_tot<190.31)]*1e-4)*flux_tot[(wl_tot>40) & (wl_tot<190.31)]),
                            '-',color=color_seq[0],linewidth=1.5*mag, alpha=0.7)
        spire, = ax_sed.plot(np.log10(wl_tot[wl_tot > 194]),np.log10(c/(wl_tot[wl_tot > 194]*1e-4)*flux_tot[wl_tot > 194]),
                            '-',color=color_seq[1],linewidth=1.5*mag, alpha=0.7)
        irs, = ax_sed.plot(np.log10(wl_tot[wl_tot < 40]),np.log10(c/(wl_tot[wl_tot < 40]*1e-4)*flux_tot[wl_tot < 40]),
                            '-',color=color_seq[2],linewidth=1.5*mag, alpha=0.7)
        photometry, = ax_sed.plot(np.log10(wl_phot),np.log10(c/(wl_phot*1e-4)*flux_phot),'s',mfc='DimGray',mec='k',markersize=8)
        # plot the observed photometry data
        ax_sed.errorbar(np.log10(wl_phot),np.log10(c/(wl_phot*1e-4)*flux_phot),
            yerr=[np.log10(c/(wl_phot*1e-4)*flux_phot)-np.log10(c/(wl_phot*1e-4)*(flux_phot-flux_sig_phot)),
                  np.log10(c/(wl_phot*1e-4)*(flux_phot+flux_sig_phot))-np.log10(c/(wl_phot*1e-4)*flux_phot)],
            fmt='s',mfc='DimGray',mec='k',markersize=8)
    # plot in normal scale
    else:
        pacs, = ax_sed.plot(np.log10(wl_tot[(wl_tot>40) & (wl_tot<190.31)]),
                            c/(wl_tot[(wl_tot>40) & (wl_tot<190.31)]*1e-4)*flux_tot[(wl_tot>40) & (wl_tot<190.31)],
                            '-',color=color_seq[0],linewidth=1.5*mag, alpha=0.7)
        spire, = ax_sed.plot(np.log10(wl_tot[wl_tot > 194]),c/(wl_tot[wl_tot > 194]*1e-4)*flux_tot[wl_tot > 194],
                            '-',color=color_seq[1],linewidth=1.5*mag, alpha=0.7)
        irs, = ax_sed.plot(np.log10(wl_tot[wl_tot < 40]),c/(wl_tot[wl_tot < 40]*1e-4)*flux_tot[wl_tot < 40],
                            '-',color=color_seq[2],linewidth=1.5*mag, alpha=0.7)
        photometry, = ax_sed.plot(wl_phot,c/(wl_phot*1e-4)*flux_phot,'s',mfc='DimGray',mec='k',markersize=8)
        # plot the observed photometry data
        ax_sed.errorbar(np.log10(wl_phot),c/(wl_phot*1e-4)*flux_phot,
            yerr=[c/(wl_phot*1e-4)*flux_phot-c/(wl_phot*1e-4)*(flux_phot-flux_sig_phot),
                  c/(wl_phot*1e-4)*(flux_phot+flux_sig_phot)-c/(wl_phot*1e-4)*flux_phot],
            fmt='s',mfc='DimGray',mec='k',markersize=8)

    # if keyword 'clean' is not set, print L_bol derived from observations at upper right corner.
    if not clean:
        ax_sed.text(0.75,0.9,r'$\rm{L_{bol}= %5.2f L_{\odot}}$' % l_bol_obs,
                    fontsize=mag*16,transform=ax_sed.transAxes)

    # getting SED with infinite aperture
    sed_inf = m.get_sed(group=0, inclination=0, aperture=-1, distance=dstar*pc,
                        uncertainties=True)

    # plot the simulated SED with infinite aperture
    if clean == False:
        sim, = ax_sed.plot(np.log10(sed_inf.wav), np.log10(sed_inf.val),
                           '-', color='GoldenRod', linewidth=0.5*mag)
        ax_sed.fill_between(np.log10(sed_inf.wav), np.log10(sed_inf.val-sed_inf.unc),
                            np.log10(sed_inf.val+sed_inf.unc),color='GoldenRod', alpha=0.5)

    #######################################
    # get fluxes with different apertures #
    #######################################
    # this is non-reduced wavelength array because this is for printing out fluxes at all channels specified by users
    flux_aper = np.zeros_like(wl_aper, dtype=float)
    unc_aper = np.zeros_like(wl_aper, dtype=float)
    a = np.zeros_like(wl_aper) + 1
    color_list = plt.cm.jet(np.linspace(0, 1, len(wl_aper)+1))
    for i in range(0, len(wl_aper)):
        # occasionally users might want not to report some wavelength channels
        if wl_aper[i] in exclude_wl:
            continue
        # getting simulated SED from Hyperion output. (have to match with the reduced index)
        sed_dum = m.get_sed(group=index_reduced[np.where(aper_reduced == aper[i])],
                            inclination=0,aperture=-1,distance=dstar*pc, uncertainties=True)
        # plot the whole SED from this aperture (optional)
        if plot_all == True:
            ax_sed.plot(np.log10(sed_dum.wav), np.log10(sed_dum.val),'-', color=color_list[i])
            ax_sed.fill_between(np.log10(sed_dum.wav), np.log10(sed_dum.val-sed_dum.unc), np.log10(sed_dum.val+sed_dum.unc),\
                color=color_list[i], alpha=0.5)
        # Extracting spectrophotometry values from simulated SED
        # Not using the photometry filer function to extract spectrophotometry values
        # sort by wavelength first.
        sort_wl = np.argsort(sed_dum.wav)
        val_sort = sed_dum.val[sort_wl]
        unc_sort = sed_dum.unc[sort_wl]
        wav_sort = sed_dum.wav[sort_wl]
        # Before doing that, convert vSv to F_lambda
        flux_dum = val_sort / wav_sort
        unc_dum  = unc_sort / wav_sort

        # If no using filter function to extract the spectrophotometry,
        # then use the spectral resolution.
        if filter_func == False:
            # use a rectangle function the average the simulated SED
            # apply the spectral resolution
            if (wl_aper[i] < 50.) & (wl_aper[i] >= 5):
                res = 60.
            elif wl_aper[i] < 5:
                res = 10.
            else:
                res = 1000.
            ind = np.where((wav_sort < wl_aper[i]*(1+1./res)) & (wav_sort > wl_aper[i]*(1-1./res)))
            if len(ind[0]) != 0:
                flux_aper[i] = np.mean(flux_dum[ind])
                unc_aper[i]  = np.mean(unc_dum[ind])
            else:
                f = interp1d(wav_sort, flux_dum)
                f_unc = interp1d(wav_sort, unc_dum)
                flux_aper[i] = f(wl_aper[i])
                unc_aper[i]  = f_unc(wl_aper[i])
        # Using photometry filter function to extract spectrophotometry values
        else:
            # apply the filter function
            # decide the filter name
            if wl_aper[i] == 70:
                fil_name = 'Herschel PACS 70um'
            elif wl_aper[i] == 100:
                fil_name = 'Herschel PACS 100um'
            elif wl_aper[i] == 160:
                fil_name = 'Herschel PACS 160um'
            elif wl_aper[i] == 250:
                fil_name = 'Herschel SPIRE 250um'
            elif wl_aper[i] == 350:
                fil_name = 'Herschel SPIRE 350um'
            elif wl_aper[i] == 500:
                fil_name = 'Herschel SPIRE 500um'
            elif wl_aper[i] == 3.6:
                fil_name = 'IRAC Channel 1'
            elif wl_aper[i] == 4.5:
                fil_name = 'IRAC Channel 2'
            elif wl_aper[i] == 5.8:
                fil_name = 'IRAC Channel 3'
            elif wl_aper[i] == 8.0:
                fil_name = 'IRAC Channel 4'
            elif wl_aper[i] == 24:
                fil_name = 'MIPS 24um'
            elif wl_aper[i] == 850:
                fil_name = 'SCUBA 850WB'
            else:
                fil_name = None

            if fil_name != None:
                filter_func = phot_filter(fil_name)
                # Simulated SED should have enough wavelength coverage for applying photometry filters.
                f = interp1d(wav_sort, flux_dum)
                f_unc = interp1d(wav_sort, unc_dum)
                flux_aper[i] = np.trapz(f(filter_func['wave']/1e4)*\
                                          filter_func['transmission'],x=filter_func['wave']/1e4 )/\
                               np.trapz(filter_func['transmission'], x=filter_func['wave']/1e4)
                # fix a bug
                unc_aper[i] = unc_spectrophoto(filter_func['wave']/1e4,
                                    f_unc(filter_func['wave']/1e4), filter_func['transmission'])
            else:
                # use a rectangle function the average the simulated SED
                # apply the spectral resolution
                if (wl_aper[i] < 50.) & (wl_aper[i] >= 5):
                    res = 60.
                elif wl_aper[i] < 5:
                    res = 10.
                else:
                    res = 1000.
                ind = np.where((wav_sort < wl_aper[i]*(1+1./res)) & (wav_sort > wl_aper[i]*(1-1./res)))
                if len(ind[0]) != 0:
                    flux_aper[i] = np.mean(flux_dum[ind])
                    unc_aper[i]  = np.mean(unc_dum[ind])
                else:
                    f = interp1d(wav_sort, flux_dum)
                    f_unc = interp1d(wav_sort, unc_dum)
                    flux_aper[i] = f(wl_aper[i])
                    unc_aper[i]  = f_unc(wl_aper[i])
    # temperory step: solve issue of uncertainty greater than the value
    for i in range(len(wl_aper)):
        if unc_aper[i] >= flux_aper[i]:
            unc_aper[i] = flux_aper[i] - 1e-20

    ###########################
    # Observations Extraction #
    ###########################
    # perform the same procedure of flux extraction of aperture flux with observed spectra
    # wl_aper = np.array(wl_aper, dtype=float)
    obs_aper_wl = wl_aper[(wl_aper >= min(wl_tot)) & (wl_aper <= max(wl_tot))]
    obs_aper_flux = np.zeros_like(obs_aper_wl)
    obs_aper_unc = np.zeros_like(obs_aper_wl)
    # have change the simulation part to work in F_lambda for fliter convolution
    # flux_tot and unc_tot have units of erg/s/cm2/Hz.  Need to convert it to F_lambda (erg/s/cm2/um)
    fnu2fl = c/(wl_tot*1e-4)/wl_tot
    #
    # wl_tot and flux_tot are already hstacked and sorted by wavelength
    for i in range(0, len(obs_aper_wl)):
        # sometime users want not report some wavelength channels
        if obs_aper_wl[i] in exclude_wl:
            continue
        if filter_func == False:
            # use a rectangle function the average the simulated SED
            # apply the spectral resolution
            if (obs_aper_wl[i] < 50.) & (obs_aper_wl[i] >= 5):
                res = 60.
            elif obs_aper_wl[i] < 5:
                res = 10.
            else:
                res = 1000.
            ind = np.where((wl_tot < obs_aper_wl[i]*(1+1./res)) & (wl_tot > obs_aper_wl[i]*(1-1./res)))
            if len(ind[0]) != 0:
                obs_aper_flux[i] = np.mean(fnu2fl[ind]*flux_tot[ind])
                obs_aper_unc[i] = np.mean(fnu2fl[ind]*unc_tot[ind])
            else:
                f = interp1d(wl_tot, fnu2fl*flux_tot)
                f_unc = interp1d(wl_tot, fnu2fl*unc_tot)
                obs_aper_flux[i] = f(obs_aper_wl[i])
                obs_aper_unc[i] = f_unc(obs_aper_wl[i])
        else:
            # apply the filter function
            # decide the filter name
            if obs_aper_wl[i] == 70:
                fil_name = 'Herschel PACS 70um'
            elif obs_aper_wl[i] == 100:
                fil_name = 'Herschel PACS 100um'
            elif obs_aper_wl[i] == 160:
                fil_name = 'Herschel PACS 160um'
            elif obs_aper_wl[i] == 250:
                fil_name = 'Herschel SPIRE 250um'
            elif obs_aper_wl[i] == 350:
                fil_name = 'Herschel SPIRE 350um'
            elif obs_aper_wl[i] == 500:
                fil_name = 'Herschel SPIRE 500um'
            elif obs_aper_wl[i] == 3.6:
                fil_name = 'IRAC Channel 1'
            elif obs_aper_wl[i] == 4.5:
                fil_name = 'IRAC Channel 2'
            elif obs_aper_wl[i] == 5.8:
                fil_name = 'IRAC Channel 3'
            elif obs_aper_wl[i] == 8.0:
                fil_name = 'IRAC Channel 4'
            elif obs_aper_wl[i] == 24:
                fil_name = 'MIPS 24um'
            elif obs_aper_wl[i] == 850:
                fil_name = 'SCUBA 850WB'
            # do not have SCUBA spectra
            else:
                fil_name = None

            if fil_name != None:
                filter_func = phot_filter(fil_name)
                # Observed SED needs to be trimmed before applying photometry filters
                filter_func = filter_func[(filter_func['wave']/1e4 >= min(wl_tot))*\
                                          ((filter_func['wave']/1e4 >= 54.8)+(filter_func['wave']/1e4 <= 36.0853))*\
                                          ((filter_func['wave']/1e4 <= 95.05)+(filter_func['wave']/1e4 >=103))*\
                                          ((filter_func['wave']/1e4 <= 190.31)+(filter_func['wave']/1e4 >= 195))*\
                                          (filter_func['wave']/1e4 <= max(wl_tot))]
                f = interp1d(wl_tot, fnu2fl*flux_tot)
                f_unc = interp1d(wl_tot, fnu2fl*unc_tot)
                obs_aper_flux[i] = np.trapz(f(filter_func['wave']/1e4)*filter_func['transmission'], x=filter_func['wave']/1e4)/\
                                   np.trapz(filter_func['transmission'], x=filter_func['wave']/1e4)
                obs_aper_unc[i] = unc_spectrophoto(filter_func['wave']/1e4, f_unc(filter_func['wave']/1e4), filter_func['transmission'])
            else:
                # use a rectangle function the average the simulated SED
                # apply the spectral resolution
                if (obs_aper_wl[i] < 50.) & (obs_aper_wl[i] >= 5):
                    res = 60.
                elif obs_aper_wl[i] < 5:
                    res = 10.
                else:
                    res = 1000.
                ind = np.where((wl_tot < obs_aper_wl[i]*(1+1./res)) & (wl_tot > obs_aper_wl[i]*(1-1./res)))
                if len(ind[0]) != 0:
                    obs_aper_flux[i] = np.mean(fnu2fl[ind]*flux_tot[ind])
                    obs_aper_unc[i] = np.mean(fnu2fl[ind]*unc_tot[ind])
                else:
                    f = interp1d(wl_tot, fnu2fl*flux_tot)
                    f_unc = interp1d(wl_tot, fnu2fl*unc_tot)
                    obs_aper_flux[i] = f(obs_aper_wl[i])
                    obs_aper_unc[i] = f_unc(obs_aper_wl[i])

    # plot the aperture-extracted spectrophotometry fluxes from observed spectra and simulations
    # in log-scale
    if log:
        aper_obs = ax_sed.errorbar(np.log10(obs_aper_wl), np.log10(obs_aper_flux * obs_aper_wl ),\
            yerr=[np.log10(obs_aper_flux*obs_aper_wl)-np.log10(obs_aper_flux*obs_aper_wl-obs_aper_unc*obs_aper_wl), np.log10(obs_aper_flux*obs_aper_wl+obs_aper_unc*obs_aper_wl)-np.log10(obs_aper_flux*obs_aper_wl)],\
            fmt='s', mec='None', mfc='r', markersize=10, linewidth=1.5, ecolor='Red', elinewidth=3, capthick=3, barsabove=True)
        aper = ax_sed.errorbar(np.log10(wl_aper),np.log10(flux_aper*wl_aper),\
            yerr=[np.log10(flux_aper*wl_aper)-np.log10(flux_aper*wl_aper-unc_aper*wl_aper), np.log10(flux_aper*wl_aper+unc_aper*wl_aper)-np.log10(flux_aper*wl_aper)],\
            fmt='o', mec='Blue', mfc='None', color='b',markersize=12, markeredgewidth=2.5, linewidth=1.7, ecolor='Blue', elinewidth=3, barsabove=True)
        ax_sed.set_ylim([-14,-7])
        ax_sed.set_xlim([0,3.2])
    # in normal scale (normal in y-axis)
    else:
        aper_obs = ax_sed.errorbar(np.log10(obs_aper_wl), obs_aper_flux*obs_aper_wl, yerr=obs_aper_unc*obs_aper_wl,\
            fmt='s', mec='None', mfc='r', markersize=10, linewidth=1.5, ecolor='Red', elinewidth=3, capthick=3, barsabove=True)
        aper = ax_sed.errorbar(np.log10(wl_aper),flux_aper*wl_aper, yerr=unc_aper*wl_aper,\
            fmt='o', mec='Blue', mfc='None', color='b',markersize=12, markeredgewidth=2.5, linewidth=1.7, ecolor='Blue', elinewidth=3, barsabove=True)
        ax_sed.set_xlim([0,3.2])

    # calculate the bolometric luminosity of the aperture
    # print flux_aper
    l_bol_sim = l_bol(wl_aper, flux_aper*wl_aper/(c/np.array(wl_aper)*1e4)*1e23, dstar)
    print 'Bolometric luminosity of simulated spectrum: %5.2f lsun' % l_bol_sim

    # print out the sed into ascii file for reading in later
    if save == True:
        # unapertured SED
        foo = open(outdir+print_name+'_sed_inf.txt','w')
        foo.write('%12s \t %12s \t %12s \n' % ('wave','vSv','sigma_vSv'))
        for i in range(0, len(sed_inf.wav)):
            foo.write('%12g \t %12g \t %12g \n' % (sed_inf.wav[i], sed_inf.val[i], sed_inf.unc[i]))
        foo.close()
        # SED with convolution of aperture sizes
        foo = open(outdir+print_name+'_sed_w_aperture.txt','w')
        foo.write('%12s \t %12s \t %12s \n' % ('wave','vSv','sigma_vSv'))
        for i in range(0, len(wl_aper)):
            foo.write('%12g \t %12g \t %12g \n' % (wl_aper[i], flux_aper[i]*wl_aper[i], unc_aper[i]*wl_aper[i]))
        foo.close()
        # print out the aperture-convolved fluxex from observations
        if print_data_w_aper:
            foo = open(outdir+print_name+'_obs_w_aperture.txt','w')
            foo.write('%12s \t %12s \t %12s \n' % ('wave','Jy','sigma_Jy'))
            for i in range(0, len(obs_aper_wl)):
                foo.write('%12g \t %12g \t %12g \n' % (obs_aper_wl[i], obs_aper_flux[i]*obs_aper_wl[i]/(c/obs_aper_wl[i]*1e4)*1e23, obs_aper_unc[i]*obs_aper_wl[i]/(c/obs_aper_wl[i]*1e4)*1e23))
            foo.close()

    # read the input central luminosity by reading in the source information from output file
    dum = Model()
    dum.use_sources(filename)
    L_cen = dum.sources[0].luminosity/lsun

    # legend
    lg_data = ax_sed.legend([irs, photometry, aper, aper_obs],
                            [r'$\rm{observation}$',
                             r'$\rm{photometry}$',r'$\rm{F_{aper,sim}}$',r'$\rm{F_{aper,obs}}$'],
                            loc='upper left',fontsize=14*mag,numpoints=1,framealpha=0.3)
    if clean == False:
        lg_sim = ax_sed.legend([sim],[r'$\rm{L_{bol,sim}=%5.2f\,L_{\odot},\,L_{center}=%5.2f\,L_{\odot}}$' % (l_bol_sim, L_cen)], \
                               loc='lower right',fontsize=mag*16)
        plt.gca().add_artist(lg_data)

    # plot setting
    ax_sed.set_xlabel(r'$\rm{log\,\lambda\,[{\mu}m]}$',fontsize=mag*20)
    ax_sed.set_ylabel(r'$\rm{log\,\nu S_{\nu}\,[erg\,s^{-1}\,cm^{-2}]}$',fontsize=mag*20)
    [ax_sed.spines[axis].set_linewidth(1.5*mag) for axis in ['top','bottom','left','right']]
    ax_sed.minorticks_on()
    ax_sed.tick_params('both',labelsize=mag*18,width=1.5*mag,which='major',pad=15,length=5*mag)
    ax_sed.tick_params('both',labelsize=mag*18,width=1.5*mag,which='minor',pad=15,length=2.5*mag)

    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=mag*18)
    for label in ax_sed.get_xticklabels():
        label.set_fontproperties(ticks_font)
    for label in ax_sed.get_yticklabels():
        label.set_fontproperties(ticks_font)

    # Write out the plot
    fig.savefig(outdir+print_name+'_sed.pdf',format='pdf',dpi=300,bbox_inches='tight')
    fig.clf()

    # option for suppress image plotting (for speed)
    if image:
        # Package for matching the colorbar
        from mpl_toolkits.axes_grid1 import make_axes_locatable, ImageGrid

        # Users may change the unit: mJy, Jy, MJy/sr, ergs/cm^2/s, ergs/cm^2/s/Hz
        # !!!
        image = m.get_image(group=len(aper_reduced)+1, inclination=0,
                            distance=dstar*pc, units='MJy/sr')

        # Open figure and create axes
        fig = plt.figure(figsize=(12,12))
        grid = ImageGrid(fig, 111,nrows_ncols=(3,3),direction='row',
                         add_all=True,label_mode='1',share_all=True,
                         cbar_location='right',cbar_mode='single',
                         cbar_size='3%',cbar_pad=0)

        for i, wav in enumerate([3.6, 8.0, 9.7, 24, 40, 100, 250, 500, 1000]):

            ax = grid[i]

            # Find the closest wavelength
            iwav = np.argmin(np.abs(wav - image.wav))

            # Calculate the image width in arcseconds given the distance used above
            # get the max radius
            rmax = max(m.get_quantities().r_wall)
            w = np.degrees(rmax / image.distance) * 3600.

            # Image in the unit of MJy/sr
            # Change it into erg/s/cm2/Hz/sr
            factor = 1e-23*1e6
            # avoid zero in log
            # flip the image, because the setup of inclination is upside down
            val = image.val[::-1, :, iwav] * factor + 1e-30

            # This is the command to show the image. The parameters vmin and vmax are
            # the min and max levels for the colorscale (remove for default values).
            cmap = plt.cm.CMRmap
            im = ax.imshow(np.log10(val), vmin= -22, vmax= -12,
                      cmap=cmap, origin='lower', extent=[-w, w, -w, w], aspect=1)

            ax.set_xlabel(r'$\rm{RA\,Offset\,[arcsec]}$', fontsize=14)
            ax.set_ylabel(r'$\rm{Dec\,Offset\,[arcsec]}$', fontsize=14)

            # fix the tick label font
            ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=14)
            for label in ax.get_xticklabels():
                label.set_fontproperties(ticks_font)
            for label in ax.get_yticklabels():
                label.set_fontproperties(ticks_font)

            # Colorbar setting
            cb = ax.cax.colorbar(im)
            cb.solids.set_edgecolor('face')
            cb.ax.minorticks_on()
            cb.ax.set_ylabel(r'$\rm{log(I_{\nu})\,[erg\,s^{-1}\,cm^{-2}\,Hz^{-1}\,sr^{-1}]}$',fontsize=18)
            cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
            plt.setp(cb_obj,fontsize=18)
            ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=18)
            for label in cb.ax.get_yticklabels():
                label.set_fontproperties(ticks_font)

            ax.tick_params(axis='both', which='major', labelsize=16)
            ax.text(0.7,0.88,str(wav) + r'$\rm{\,\mu m}$',fontsize=16,color='white', transform=ax.transAxes)

        fig.savefig(outdir+print_name+'_image_gridplot.pdf', format='pdf', dpi=300, bbox_inches='tight')
        fig.clf()
Ejemplo n.º 30
0
        ax_top.set_xticklabels(r_tick_labels)
        ax_top.tick_params('x', labelsize=14)

    else:
        r_ticks = scale(np.array([0, 1, 2, 3, 4]),
                        (np.log10(0.14), np.log10(41253)), (-w, w))
        ax_top = grid[i].twiny()
        ax_top.set_xticks(r_ticks)
        ax_top.set_xticklabels([])
    grid[i].tick_params('both', labelsize=14)

for i in range(4, 8):
    # get the H-band simulated image
    m = ModelOutput(filename[i - 4])
    image = m.get_image(group=0,
                        inclination=0,
                        distance=178 * pc,
                        units='MJy/sr')

    # Find the closest wavelength
    iwav = np.argmin(np.abs(wave - image.wav))

    # Calculate the image width in arcseconds given the distance used above
    # get the max radius
    rmax = max(m.get_quantities().r_wall)
    w = np.degrees(rmax / image.distance) * 3600.

    # Image in the unit of MJy/sr
    # Change it into erg/s/cm2/Hz/sr
    factor = 1e-23 * 1e6
    # avoid zero in log
    # flip the image, because the setup of inclination is upside down
Ejemplo n.º 31
0
def azimuthal_simulation(rtout, beam_size, wave, dist=200., group=22):
    """
	rtout: the filepath to the output file of Hyperion
	beam_size: the beam size used for the width of annulus
	dist: the physical distance to the source
	group: the group which contains image
	"""
    import numpy as np
    import matplotlib.pyplot as plt
    import astropy.constants as const
    from hyperion.model import ModelOutput

    # constant setup
    pc = const.pc.cgs.value
    au = const.au.cgs.value

    output = {'wave': wave, 'annuli': [], 'flux_annuli': []}

    # Read in the Hyperion output file
    m = ModelOutput(rtout)
    # get image
    image = m.get_image(group=5, inclination=0, distance=dist * pc, units='Jy')

    # Calculate the image width in arcsec given the distance to the source
    rmax = max(m.get_quantities().r_wall)
    w = np.degrees(rmax / image.distance) * 3600
    # grid of radii of annulus
    annuli = np.linspace(beam_size / 2.,
                         np.floor(
                             (w - beam_size / 2.) / beam_size) * beam_size,
                         np.floor((w - beam_size / 2.) / beam_size))  # plot

    fig = plt.figure(figsize=(8, 6))
    ax = fig.add_subplot(111)

    # iternate through wavelength
    if type(wave) == int or type(wave) == float:
        wave = [wave]
    color_list = plt.cm.viridis(np.linspace(0, 1, len(wave) + 1))
    for i in range(len(wave)):
        wav = wave[i]
        # Find the closest wavelength
        iwav = np.argmin(np.abs(wav - image.wav))
        # avoid zero when log, and flip the image
        val = image.val[::-1, :, iwav]
        # determine the center of the image
        npix = len(val[:, 0])
        center = np.array([npix / 2. + 0.5, npix / 2. + 0.5])
        scale = 2 * rmax / npix
        # create index array of the image
        x = np.empty_like(val)
        for j in range(len(val[0, :])):
            x[:, j] = j

        flux_annuli = np.empty_like(annuli)
        for k in range(len(annuli)):
            flux_annuli[k] = np.sum(val[(((x-center[0])**2+(x.T-center[1])**2)**0.5*2*w/npix >= annuli[k]-beam_size/2.) & \
                   (((x-center[0])**2+(x.T-center[1])**2)**0.5*2*w/npix < annuli[k]+beam_size/2.)])
        output['annuli'].append(np.array(annuli))
        output['flux_annuli'].append(flux_annuli)
        flux_annuli = flux_annuli / np.nanmax(flux_annuli)

        ax.plot(np.log10(annuli*dist), np.log10(flux_annuli), 'o-', color=color_list[i], \
          markersize=3, mec='None', label=r'$\rm{'+str(wav)+'\,\mu m}$')
    ax.axvline(np.log10((w - beam_size / 2.) * dist),
               linestyle='--',
               color='k')
    ax.axvline(np.log10(w * dist), linestyle='-', color='k')

    ax.legend(loc='best', fontsize=12, numpoints=1, ncol=2)
    ax.set_xlabel(r'$\rm{log(Radius)\,[AU]}$', fontsize=18)
    ax.set_ylabel(r'${\rm log(}F/F_{\rm max})$', fontsize=18)
    fig.gca().set_ylim(top=0.1)
    [
        ax.spines[axis].set_linewidth(1.5)
        for axis in ['top', 'bottom', 'left', 'right']
    ]
    ax.minorticks_on()
    ax.tick_params('both',
                   labelsize=18,
                   width=1.5,
                   which='major',
                   pad=15,
                   length=5)
    ax.tick_params('both',
                   labelsize=18,
                   width=1.5,
                   which='minor',
                   pad=15,
                   length=2.5)

    fig.savefig('/Users/yaolun/test/annuli_profile.pdf',
                format='pdf',
                dpi=300,
                bbox_inches='tight')
    fig.clf()

    return output
Ejemplo n.º 32
0
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

# Create output directory if it does not already exist
if not os.path.exists('frames'):
    os.mkdir('frames')

# Open model
m = ModelOutput('tutorial_model.rtout')

# Read image from model
wav, nufnu = m.get_image(group=2, distance=300 * pc)

# nufnu is now an array with four dimensions (n_view, n_wav, n_y, n_x)

# Fix the wavelength to the first one and cycle through viewing angles
iwav = 0
print "Wavelength is %g microns" % wav[iwav]

for iview in range(nufnu.shape[0]):

    # Open figure and create axes
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)

    # This is the command to show the image. The parameters vmin and vmax are
    # the min and max levels for the grayscale (remove for default values).
Ejemplo n.º 33
0
        ax_top.set_xlabel(r'$\rm{log(radius)\,[AU]}$', fontsize=16)
        ax_top.set_xticks(r_ticks)
        ax_top.set_xticklabels(r_tick_labels)
        ax_top.tick_params('x', labelsize=14)

    else:
        r_ticks = scale(np.array([0,1,2,3,4]), (np.log10(0.14), np.log10(41253)), (-w,w))
        ax_top = grid[i].twiny()
        ax_top.set_xticks(r_ticks)
        ax_top.set_xticklabels([])
    grid[i].tick_params('both',labelsize=14)

for i in range(4,8):
    # get the H-band simulated image
    m = ModelOutput(filename[i-4])
    image = m.get_image(group=0, inclination=0, distance=178 * pc, units='MJy/sr')

    # Find the closest wavelength
    iwav = np.argmin(np.abs(wave - image.wav))

    # Calculate the image width in arcseconds given the distance used above
    # get the max radius
    rmax = max(m.get_quantities().r_wall)
    w = np.degrees(rmax / image.distance) * 3600.

    # Image in the unit of MJy/sr
    # Change it into erg/s/cm2/Hz/sr
    factor = 1e-23*1e6
    # avoid zero in log
    # flip the image, because the setup of inclination is upside down
    val = image.val[::-1, :, iwav] * factor + 1e-30
Ejemplo n.º 34
0
def azimuthal_avg_radial_intensity(wave, rtout, plotname, dstar,
                                   annulus_width=10, rrange=[10,200], group=8, obs=None,
                                   other_obs=None):

    """
    The 'obs' option only works for Herschel PACS/SPIRE image.
    The 'obs' option now accept
    """

    import numpy as np
    import matplotlib as mpl
    # to avoid X server error
    mpl.use('Agg')
    from astropy.io import ascii, fits
    import matplotlib.pyplot as plt
    from photutils import aperture_photometry as ap
    from photutils import CircularAperture, CircularAnnulus
    from astropy import units as u
    from astropy.coordinates import SkyCoord
    from astropy import wcs
    from hyperion.model import ModelOutput
    import astropy.constants as const
    import os

    pc = const.pc.cgs.value
    AU = const.au.cgs.value

    # radial grid in arcsec
    # make the annulus center on
    r = np.arange(rrange[0], rrange[1], annulus_width, dtype=float) - annulus_width*0.5
    # r = np.arange(rrange[0], rrange[1], annulus_width, dtype=float) - annulus_width*0.55

    # source_center = '12 01 36.3 -65 08 53.0'

    def ExtractIntensityObs(rrange, annulus_width, obs):
        import numpy as np
        from astropy.io import fits
        from astropy.coordinates import SkyCoord
        from astropy import wcs
        from photutils import aperture_photometry as ap
        from photutils import CircularAperture, CircularAnnulus

        r = np.arange(rrange[0], rrange[1], annulus_width, dtype=float) - annulus_width*0.5
        # r = np.arange(rrange[0], rrange[1], annulus_width, dtype=float) - annulus_width*0.55

        imgpath = obs['imgpath']
        source_center = obs['source_center']
        # Read in data and set up coversions
        im_hdu = fits.open(imgpath)
        im = im_hdu[1].data
        wave = im_hdu[0].header['WAVELNTH']
        # error
        if (wave < 200.0) & (wave > 70.0):
            im_err = im_hdu[5].data
        elif (wave > 200.0) & (wave < 670.0):
            im_err = im_hdu[2].data
        else:
            im_err_exten = raw_input('The extension that includes the image error: ')
            im_err = im_hdu[int(im_err_exten)].data

        w = wcs.WCS(im_hdu[1].header)

        coord = SkyCoord(source_center, unit=(u.hourangle, u.deg))
        pixcoord = w.wcs_world2pix(coord.ra.degree, coord.dec.degree, 1)
        pix2arcsec = abs(im_hdu[1].header['CDELT1'])*3600.

        # determine whether need to convert the unit
        factor = 1
        print 'Image unit is ', im_hdu[1].header['BUNIT']
        if im_hdu[1].header['BUNIT'] != 'Jy/pixel':
            print 'Image unit is ', im_hdu[1].header['BUNIT']

            if im_hdu[1].header['BUNIT'] == 'MJy/sr':
                # convert intensity unit from MJy/sr to Jy/pixel
                factor = 1e6/4.25e10*abs(im_hdu[1].header['CDELT1']*im_hdu[1].header['CDELT2'])*3600**2
            else:
                factor = raw_input('What is the conversion factor to Jy/pixel?')

        I = np.empty_like(r[:-1])
        I_low = np.empty_like(r[:-1])
        I_hi = np.empty_like(r[:-1])
        I_err = np.empty_like(r[:-1])

        # for calculating the uncertainty from the variation within each annulus
        # construct the x- and y-matrix
        grid_x, grid_y = np.meshgrid(np.linspace(0,len(im[0,:])-1,len(im[0,:])),
                                     np.linspace(0,len(im[:,0])-1,len(im[:,0])))

        grid_dist = ((grid_x-pixcoord[0])**2+(grid_y-pixcoord[1])**2)**0.5

        # iteration
        for ir in range(len(r)-1):
            aperture = CircularAnnulus((pixcoord[0],pixcoord[1]), r_in=r[ir]/pix2arcsec, r_out=r[ir+1]/pix2arcsec)
            phot = ap(im, aperture, error=im_err)
            I[ir] = phot['aperture_sum'].data * factor / aperture.area()

            # uncertainty
            im_dum = np.where((grid_dist < r[ir+1]/pix2arcsec) & (grid_dist >= r[ir]/pix2arcsec), im, np.nan)

            # estimate the uncertainty by offsetting the annulus by +/- 1 pixel
            offset = -1
            if r[ir]/pix2arcsec + offset < 0:
                offset = -r[ir]/pix2arcsec
            aperture = CircularAnnulus((pixcoord[0],pixcoord[1]),
                                r_in=r[ir]/pix2arcsec + offset, r_out=r[ir+1]/pix2arcsec + offset)
            phot = ap(im, aperture, error=im_err)
            I_low[ir] = phot['aperture_sum'].data * factor / aperture.area()

            offset = 1
            aperture = CircularAnnulus((pixcoord[0],pixcoord[1]),
                                r_in=r[ir]/pix2arcsec + offset, r_out=r[ir+1]/pix2arcsec + offset)
            phot = ap(im, aperture, error=im_err)
            I_hi[ir] = phot['aperture_sum'].data * factor / aperture.area()

        I_err = (abs(I_low - I) + abs(I_hi - I))/2.

        return r, I, I_err

    if obs != None:
        I_obs = []
        for o in obs:
            if 'label' not in o.keys():
                label_dum = r'$\rm{observation}$'
                color_dum = 'g'
                linestyle_dum = '-'
                rrange_dum = rrange
                annulus_width_dum = annulus_width
            else:
                label_dum = o['label']
                color_dum = o['plot_color']
                linestyle_dum = o['plot_linestyle']
                rrange_dum = o['rrange']
                annulus_width_dum = o['annulus_width']

            r_dum, I_dum, I_err_dum = ExtractIntensityObs(rrange_dum, annulus_width_dum, o)
            # determine the label
            I_obs.append({'imgpath':o['imgpath'], 'r':r_dum, 'I':I_dum, 'I_err':I_err_dum, 'label': label_dum,
                          'plot_color':color_dum, 'plot_linestyle':linestyle_dum})

        # The first image should be the one to be compared primarily, and written out
        I = I_obs[0]['I']
        I_err = I_obs[0]['I_err']
        imgpath = I_obs[0]['imgpath']
        #

    # read in from RTout
    rtout = ModelOutput(rtout)

    im = rtout.get_image(group=group, inclination=0, distance=dstar*pc, units='Jy', uncertainties=True)
    factor = 1

    # Find the closest wavelength
    iwav = np.argmin(np.abs(wave - im.wav))
    # avoid zero when log, and flip the image
    val = im.val[::-1, :, iwav]
    unc = im.unc[::-1, :, iwav]

    w = np.degrees(max(rtout.get_quantities().r_wall) / im.distance) * 3600
    npix = len(val[:,0])
    pix2arcsec = 2*w/npix

    I_sim = np.empty_like(r[:-1])
    I_sim_hi = np.empty_like(r[:-1])
    I_sim_low = np.empty_like(r[:-1])
    I_sim_err = np.empty_like(r[:-1])

    # for calculating the uncertainty from the variation within each annulus
    # construct the x- and y-matrix
    grid_x, grid_y = np.meshgrid(np.linspace(0,npix-1,npix),
                                 np.linspace(0,npix-1,npix))

    dist_x = abs(grid_x - ((npix-1)/2.))
    dist_y = abs(grid_y - ((npix-1)/2.))

    grid_dist = (dist_x**2+dist_y**2)**0.5

    # iteration
    for ir in range(len(r)-1):
        aperture = CircularAnnulus((npix/2.+0.5, npix/2.+0.5),
                            r_in=r[ir]/pix2arcsec, r_out=r[ir+1]/pix2arcsec)
        phot = ap(val, aperture, error=unc)
        I_sim[ir] = phot['aperture_sum'].data / aperture.area()

        # uncertainty
        im_dum = np.where((grid_dist < r[ir+1]/pix2arcsec) & (grid_dist >= r[ir]/pix2arcsec), val, np.nan)
        # I_sim_err[ir] = phot['aperture_sum_err'].data / aperture.area()
        # I_sim_err[ir] = (np.nanstd(im_dum)**2+phot['aperture_sum_err'].data**2)**0.5 * factor / aperture.area()

        offset = -1
        aperture = CircularAnnulus((npix/2.+0.5, npix/2.+0.5),
                            r_in=r[ir]/pix2arcsec + offset, r_out=r[ir+1]/pix2arcsec + offset)
        phot = ap(val, aperture, error=unc)
        I_sim_low[ir] = phot['aperture_sum'].data * factor / aperture.area()

        offset = 1
        aperture = CircularAnnulus((npix/2.+0.5, npix/2.+0.5),
                            r_in=r[ir]/pix2arcsec + offset, r_out=r[ir+1]/pix2arcsec + offset)
        phot = ap(val, aperture, error=unc)
        I_sim_hi[ir] = phot['aperture_sum'].data * factor / aperture.area()

    I_sim_err = (abs(I_sim_low - I_sim)+ abs(I_sim_hi - I_sim))/2.


    if obs != None:
        # write the numbers into file
        foo = open(plotname+'_radial_profile_'+str(wave)+'um.txt', 'w')
        # print some header info
        foo.write('# wavelength '+str(wave)+' um \n')
        foo.write('# image file '+os.path.basename(imgpath)+' \n')
        foo.write('# annulus width '+str(annulus_width)+' arcsec \n')
        # write profiles
        foo.write('r_in \t I \t I_err \t I_sim \t I_sim_err \n')
        foo.write('# [arcsec] \t [Jy/pixel] \t [Jy/pixel] \t [Jy/pixel] \t [Jy/pixel] \n')
        for i in range(len(I)):
            foo.write('%f \t %e \t %e \t %e \t %e \n' % (r[i]+annulus_width/2., I[i], I_err[i], I_sim[i], I_sim_err[i]))
        foo.close()
    else:
        # write the numbers into file
        foo = open(plotname+'_radial_profile_'+str(wave)+'um.txt', 'w')
        # print some header info
        foo.write('# wavelength '+str(wave)+' um \n')
        foo.write('# annulus width '+str(annulus_width)+' arcsec \n')
        # write profiles
        foo.write('r_in \t I_sim \t I_sim_err \n')
        foo.write('# [arcsec] \t [Jy/pixel] \t [Jy/pixel] \n')
        for i in range(len(I_sim)):
            foo.write('%f \t %e \t %e \n' % (r[i]+annulus_width/2., I_sim[i], I_sim_err[i]))
        foo.close()

    # plot
    fig = plt.figure(figsize=(8,6))
    ax = fig.add_subplot(111)

    I_sim_hi = np.log10((I_sim+I_sim_err)/I_sim.max())-np.log10(I_sim/I_sim.max())
    I_sim_low = np.log10(I_sim/I_sim.max())-np.log10((I_sim-I_sim_err)/I_sim.max())
    i_sim = ax.errorbar(np.log10(r[:-1]*dstar), np.log10(I_sim/I_sim.max()), color='b',
                    yerr=(I_sim_low, I_sim_hi), marker='o', linestyle='-', mec='None', markersize=5,
                    ecolor='b', elinewidth=1.5, capthick=1.5, barsabove=True)

    if obs != None:
        plot_profile = []
        plot_label = []
        for o in I_obs:
            I_hi = np.log10((o['I']+o['I_err'])/o['I'].max())-np.log10(o['I']/o['I'].max())
            I_low = np.log10(o['I']/o['I'].max())-np.log10((o['I']-o['I_err'])/o['I'].max())
            i = ax.errorbar(np.log10(o['r'][:-1]*dstar), np.log10(o['I']/o['I'].max()), color=o['plot_color'],
                            yerr=(I_low, I_hi), marker='o', linestyle=o['plot_linestyle'], mec='None', markersize=5,
                            ecolor=o['plot_color'], elinewidth=1.5, capthick=1.5, barsabove=True)
            plot_profile.append(i)
            plot_label.append(o['label'])

        plot_profile.append(i_sim)
        plot_label.append(r'$\rm{simulation}$')
        ax.legend(plot_profile, plot_label,
                  fontsize=16, numpoints=1, loc='best')
    else:
        ax.legend([i_sim], [r'$\rm{simulation}$'], fontsize=16, numpoints=1, loc='best')

    # limit radius
    ax.axvline([np.log10(100*dstar)], color='k', linestyle='--', linewidth=1)
    #
    [ax.spines[axis].set_linewidth(1.5) for axis in ['top','bottom','left','right']]
    ax.minorticks_on()
    ax.tick_params('both',labelsize=18,width=1.5,which='major',pad=10,length=5)
    ax.tick_params('both',labelsize=18,width=1.5,which='minor',pad=10,length=2.5)
    ax.set_xlabel(r'$\rm{log(\it{b})\,[\rm{AU}]}$', fontsize=18)
    ax.set_ylabel(r'$\rm{log(I\,/\,I_{max})}$', fontsize=18)

    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=18)
    for label in ax.get_xticklabels():
        label.set_fontproperties(ticks_font)
    for label in ax.get_yticklabels():
        label.set_fontproperties(ticks_font)

    fig.savefig(plotname+'_radial_profile_'+str(wave)+'um.pdf', format='pdf', dpi=300, bbox_inches='tight')
    fig.clf()
Ejemplo n.º 35
0
def plot_results(cli):
	
	file = filename(cli, "plot")
	file += ".rtout"
	
	#
	# Read in the model:
	#
	model = ModelOutput(file)
	
	if(cli.mode == "images"):
	
		#
		# Extract the quantities
		#
		g = model.get_quantities()
	
		#
		# Get the wall positions:
		#
		ww = g.w_wall / pc
		zw = g.z_wall / pc
		pw = g.p_wall
	
		grid_Nw = len(ww) - 1
		grid_Nz = len(zw) - 1
		grid_Np = len(pw) - 1
		
		#
		# Graphics:
		#
		fig = plt.figure()
	
		los = [0 for i in range(3)]
		los[0] = 'x'
		los[1] = 'y'
		los[2] = 'z'
	
		#Imaxp = [0 for i in range(4)]
		##Imaxp[0] = 1e-4
		#Imaxp[1] = 1e-5
		#Imaxp[2] = 1e-7
		#Imaxp[3] = 1e-8
	
		for k in range(0, 3):
			if(cli.verbose):
				print("Group: ", k)
		
			image = model.get_image(distance=1*pc, units='MJy/sr', inclination=0, component='total', group=k)
			source_emit = model.get_image(distance=1*pc, units='MJy/sr', inclination=0, component='source_emit', group=k)
			dust_emit   = model.get_image(distance=1*pc, units='MJy/sr', inclination=0, component='dust_emit'  , group=k)
			source_scat = model.get_image(distance=1*pc, units='MJy/sr', inclination=0, component='source_scat', group=k)
			dust_scat   = model.get_image(distance=1*pc, units='MJy/sr', inclination=0, component='dust_scat'  , group=k)
			
			if(cli.verbose):
				print(" Data cube: ", image.val.shape)
				print(" Wavelengths =", image.wav)
				print(" Uncertainties =", image.unc)
		
			image_Nx=image.val.shape[0]
			image_Ny=image.val.shape[1]
			Nwavelength=image.val.shape[2]

			if(cli.verbose):
				print(" Image Nx =", image_Nx)
				print(" Image Ny =", image_Ny)
				print(" Nwavelength =", Nwavelength)
			
			for i in range(0, Nwavelength):
				
				if(cli.verbose):
					print(" Image #", i,":")
					print("  Wavelength =", image.wav[i])
	
				Imin = np.min(image.val[:, :, i])
				Imax = np.max(image.val[:, :, i])
				# TODO: compute the mean value as well and use this for specifying the maximum value/color?!
		
				if(cli.verbose):
					print("  Intensity min =", Imin)
					print("  Intensity max =", Imax)
			
				#Imax=Imaxp[i]
	
				#ax = fig.add_subplot(2, 1, 2)
				ax = fig.add_subplot(1, 1, 1)
				if(image.wav[i] < 10.0):
					ax.imshow(source_scat.val[:, :, i] + dust_scat.val[:, :, i], vmin=Imin, vmax=Imax/10, cmap=plt.cm.gist_heat, origin='lower')
				else:
					ax.imshow(image.val[:, :, i], vmin=Imin, vmax=Imax/10, cmap=plt.cm.gist_heat, origin='lower')
				ax.set_xticks([0,100,200,300], minor=False)
				ax.set_yticks([0,100,200,300], minor=False)
				ax.set_xlabel('x (pixel)')
				ax.set_ylabel('y (pixel)')
				ax.set_title(str(image.wav[i]) + ' microns' + '\n' + los[k] + '-direction', y=0.88, x=0.5, color='white')
				
				#ax = fig.add_subplot(2, 1, 1)
				#ax.imshow([np.logspace(np.log10(Imin+1e-10),np.log10(Imax/10),100),np.logspace(np.log10(Imin+1e-10),np.log10(Imax/10),100)], vmin=Imin, vmax=Imax/10, cmap=plt.cm.gist_heat)
				#ax.set_xticks(np.logspace(np.log10(Imin+1e-10),np.log10(Imax/10),1), minor=False)
				##ax.set_xticks(np.linspace(np.log10(Imin+1e-10),np.log10(Imax/10),10), minor=False)
				#ax.set_yticks([], minor=False)
				#ax.set_xlabel('flux (MJy/sr)')
	
				file = filename(cli, "plot")
				file += "_wavelength=" + str(image.wav[i]) + "micron_los=" + los[k] + ".png"
	
				fig.savefig(file, bbox_inches='tight')
				if(cli.verbose):
					print("  The image graphics was written to", file)
				plt.clf()
	
	elif(cli.mode == "sed"):
	
		#
		# Graphics:
		#
		fig = plt.figure()

		z_center = [0 for i in range(3)]
		z_center[0] = '2.5'
		z_center[1] = '5.0'
		z_center[2] = '7.5'
		
		for k in range(0, 3):
			if(cli.verbose):
				print("Group: ", k)
				
			sed = model.get_sed(distance=1*pc, inclination=0, aperture=-1, group=k)
			
			ax = fig.add_subplot(1, 1, 1)
			ax.loglog(sed.wav, sed.val)
			ax.set_xlabel(r'$\lambda$ [$\mu$m]')
			ax.set_ylabel(r'$\lambda F_\lambda$ [ergs/s/cm$^2$]')
			ax.set_xlim(0.01, 2000.0)
			#ax.set_ylim(2.e-16, 2.e-9)
			
			file = filename(cli, "plot")
			file += "_z=" + z_center[k] + ".png"
			fig.savefig(file)
			if(cli.verbose):
				print(" The sed graphics was written to", file)
			plt.clf()
	
	else:
		print("ERROR: The specified mode", mode, "is not available. Use 'images' or 'sed' only.")
Ejemplo n.º 36
0
def hyperion_image(rtout, wave, plotdir, printname, dstar=200., group=0, marker=0,
                    size='full', convolve=False, unit=None, scalebar=None):
    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    import astropy.constants as const
    from hyperion.model import ModelOutput
    # Package for matching the colorbar
    from mpl_toolkits.axes_grid1 import make_axes_locatable

    pc = const.pc.cgs.value

    if unit == None:
        unit = 'erg\,s^{-1}\,cm^{-2}\,Hz^{-1}\,sr^{-1}'

    m = ModelOutput(rtout)

    # Extract the image.
    image = m.get_image(group=group, inclination=0, distance=dstar * pc, units='MJy/sr')

    # print np.shape(image.val)
    # Open figure and create axes
    fig = plt.figure(figsize=(8,8))
    ax = fig.add_subplot(111)

    # Find the closest wavelength
    iwav = np.argmin(np.abs(wave - image.wav))

    # Calculate the image width in arcseconds given the distance used above
    # get the max radius
    rmax = max(m.get_quantities().r_wall)
    w = np.degrees(rmax / image.distance) * 3600.

    # Image in the unit of MJy/sr
    # Change it into erg/s/cm2/Hz/sr
    # factor = 1e-23*1e6
    factor = 1
    # avoid zero in log
    # flip the image, because the setup of inclination is upside down
    val = image.val[::-1, :, iwav] * factor + 1e-30

    if convolve:
        from astropy.convolution import convolve, Gaussian2DKernel
        img_res = 2*w/len(val[:,0])
        kernel = Gaussian2DKernel(0.27/2.354/img_res)
        val = convolve(val, kernel)

    if size != 'full':
        pix_e2c = (w-size/2.)/w * len(val[:,0])/2
        val = val[pix_e2c:-pix_e2c, pix_e2c:-pix_e2c]
        w = size/2.

    # This is the command to show the image. The parameters vmin and vmax are
    # the min and max levels for the colorscale (remove for default values).
    # cmap = sns.cubehelix_palette(start=0.1, rot=-0.7, gamma=0.2, as_cmap=True)

    cmap = plt.cm.CMRmap
    im = ax.imshow(val,
            # norm=mpl.colors.LogNorm(vmin=1.515e-01, vmax=4.118e+01),
            norm=mpl.colors.LogNorm(vmin=1e-04, vmax=1e+01),
            cmap=cmap, origin='lower', extent=[-w, w, -w, w], aspect=1)

    # draw the flux extraction regions
    # x = 100
    # y = 100
    # area = x*y / 4.25e10
    # offset = 50
    #
    # pos_n = (len(val[0,:])/2.-1,len(val[0,:])/2.-1 + offset*len(val[0,:])/2/w)
    # pos_s = (len(val[0,:])/2.-1,len(val[0,:])/2.-1 - offset*len(val[0,:])/2/w)
    #
    # import matplotlib.patches as patches
    # ax.add_patch(patches.Rectangle((-x/2, -y), x, y, fill=False, edgecolor='lime'))
    # ax.add_patch(patches.Rectangle((-x/2, 0), x, y, fill=False, edgecolor='lime'))

    # plot the marker for center position by default or user input offset
    ax.plot([0],[-marker], '+', color='lime', markersize=10, mew=2)
    ax.set_xlim([-w,w])
    ax.set_ylim([-w,w])
    # ax.plot([0],[-10], '+', color='m', markersize=10, mew=2)
    print(w)

    # plot scalebar
    if scalebar != None:
        ax.plot([0.85*w-scalebar, 0.85*w], [-0.8*w, -0.8*w], color='w', linewidth=3)
        # add text
        ax.text(0.85*w-scalebar/2, -0.9*w, r'$\rm{'+str(scalebar)+"\,arcsec}$",
                color='w', fontsize=18, fontweight='bold', ha='center')

    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=16)
    for label in ax.get_xticklabels():
        label.set_fontproperties(ticks_font)
    for label in ax.get_yticklabels():
        label.set_fontproperties(ticks_font)

    # Colorbar setting
    # create an axes on the right side of ax. The width of cax will be 5%
    # of ax and the padding between cax and ax will be fixed at 0.05 inch.
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.05)
    cb = fig.colorbar(im, cax=cax)
    cb.solids.set_edgecolor("face")
    cb.ax.minorticks_on()
    cb.ax.set_ylabel(r'$\rm{Intensity\,['+unit+']}$',fontsize=16)
    cb.ax.tick_params('both', width=1.5, which='major', length=3)
    cb.ax.tick_params('both', width=1.5, which='minor', length=2)
    cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
    plt.setp(cb_obj,fontsize=18)
    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',size=18)
    for label in cb.ax.get_yticklabels():
        label.set_fontproperties(ticks_font)

    ax.set_xlabel(r'$\rm{RA\,Offset\,[arcsec]}$', fontsize=16)
    ax.set_ylabel(r'$\rm{Dec\,Offset\,[arcsec]}$', fontsize=16)

    # set the frame color
    ax.spines['bottom'].set_color('white')
    ax.spines['top'].set_color('white')
    ax.spines['left'].set_color('white')
    ax.spines['right'].set_color('white')

    ax.tick_params(axis='both', which='major', width=1.5, labelsize=18, color='white', length=5)
    ax.text(0.7,0.88,str(wave) + r'$\rm{\,\mu m}$',fontsize=20,color='white', transform=ax.transAxes)

    fig.savefig(plotdir+printname+'_image_'+str(wave)+'.pdf', format='pdf', dpi=300, bbox_inches='tight')
    fig.clf()
Ejemplo n.º 37
0
import numpy as np
from PIL import Image

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

m = ModelOutput('simple_cube.rtout')
image = m.get_image(inclination=0, distance=300 * pc, units='MJy/sr')

# Extract the slices we want to use for red, green, and blue
r = image.val[:, :, 17]
g = image.val[:, :, 18]
b = image.val[:, :, 19]

# Now we need to rescale the values we want to the range 0 to 255, clip values
# outside the range, and convert to unsigned 8-bit integers. We also use a sqrt
# stretch (hence the ** 0.5)

r = np.clip((r / 0.5)**0.5 * 255., 0., 255.)
r = np.array(r, dtype=np.uint8)

g = np.clip((g / 2)**0.5 * 255., 0., 255.)
g = np.array(g, dtype=np.uint8)

b = np.clip((b / 4.)**0.5 * 255., 0., 255.)
b = np.array(b, dtype=np.uint8)

# We now convert to image objects
image_r = Image.fromarray(r)
image_g = Image.fromarray(g)
image_b = Image.fromarray(b)
Ejemplo n.º 38
0
def hyperion_image(rtout,
                   wave,
                   plotdir,
                   printname,
                   dstar=200.,
                   group=0,
                   marker=0,
                   size='full',
                   convolve=False,
                   unit=None,
                   scalebar=None):
    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    import astropy.constants as const
    from hyperion.model import ModelOutput
    # Package for matching the colorbar
    from mpl_toolkits.axes_grid1 import make_axes_locatable

    pc = const.pc.cgs.value

    if unit == None:
        unit = 'erg\,s^{-1}\,cm^{-2}\,Hz^{-1}\,sr^{-1}'

    m = ModelOutput(rtout)

    # Extract the image.
    image = m.get_image(group=group,
                        inclination=0,
                        distance=dstar * pc,
                        units='MJy/sr')

    # print np.shape(image.val)
    # Open figure and create axes
    fig = plt.figure(figsize=(8, 8))
    ax = fig.add_subplot(111)

    # Find the closest wavelength
    iwav = np.argmin(np.abs(wave - image.wav))

    # Calculate the image width in arcseconds given the distance used above
    # get the max radius
    rmax = max(m.get_quantities().r_wall)
    w = np.degrees(rmax / image.distance) * 3600.

    # Image in the unit of MJy/sr
    # Change it into erg/s/cm2/Hz/sr
    # factor = 1e-23*1e6
    factor = 1
    # avoid zero in log
    # flip the image, because the setup of inclination is upside down
    val = image.val[::-1, :, iwav] * factor + 1e-30

    if convolve:
        from astropy.convolution import convolve, Gaussian2DKernel
        img_res = 2 * w / len(val[:, 0])
        kernel = Gaussian2DKernel(0.27 / 2.354 / img_res)
        val = convolve(val, kernel)

    if size != 'full':
        pix_e2c = (w - size / 2.) / w * len(val[:, 0]) / 2
        val = val[pix_e2c:-pix_e2c, pix_e2c:-pix_e2c]
        w = size / 2.

    # This is the command to show the image. The parameters vmin and vmax are
    # the min and max levels for the colorscale (remove for default values).
    # cmap = sns.cubehelix_palette(start=0.1, rot=-0.7, gamma=0.2, as_cmap=True)

    cmap = plt.cm.CMRmap
    im = ax.imshow(
        val,
        # norm=mpl.colors.LogNorm(vmin=1.515e-01, vmax=4.118e+01),
        norm=mpl.colors.LogNorm(vmin=1e-04, vmax=1e+01),
        cmap=cmap,
        origin='lower',
        extent=[-w, w, -w, w],
        aspect=1)

    # draw the flux extraction regions
    # x = 100
    # y = 100
    # area = x*y / 4.25e10
    # offset = 50
    #
    # pos_n = (len(val[0,:])/2.-1,len(val[0,:])/2.-1 + offset*len(val[0,:])/2/w)
    # pos_s = (len(val[0,:])/2.-1,len(val[0,:])/2.-1 - offset*len(val[0,:])/2/w)
    #
    # import matplotlib.patches as patches
    # ax.add_patch(patches.Rectangle((-x/2, -y), x, y, fill=False, edgecolor='lime'))
    # ax.add_patch(patches.Rectangle((-x/2, 0), x, y, fill=False, edgecolor='lime'))

    # plot the marker for center position by default or user input offset
    ax.plot([0], [-marker], '+', color='lime', markersize=10, mew=2)
    ax.set_xlim([-w, w])
    ax.set_ylim([-w, w])
    # ax.plot([0],[-10], '+', color='m', markersize=10, mew=2)
    print(w)

    # plot scalebar
    if scalebar != None:
        ax.plot([0.85 * w - scalebar, 0.85 * w], [-0.8 * w, -0.8 * w],
                color='w',
                linewidth=3)
        # add text
        ax.text(0.85 * w - scalebar / 2,
                -0.9 * w,
                r'$\rm{' + str(scalebar) + "\,arcsec}$",
                color='w',
                fontsize=18,
                fontweight='bold',
                ha='center')

    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral', size=16)
    for label in ax.get_xticklabels():
        label.set_fontproperties(ticks_font)
    for label in ax.get_yticklabels():
        label.set_fontproperties(ticks_font)

    # Colorbar setting
    # create an axes on the right side of ax. The width of cax will be 5%
    # of ax and the padding between cax and ax will be fixed at 0.05 inch.
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.05)
    cb = fig.colorbar(im, cax=cax)
    cb.solids.set_edgecolor("face")
    cb.ax.minorticks_on()
    cb.ax.set_ylabel(r'$\rm{Intensity\,[' + unit + ']}$', fontsize=16)
    cb.ax.tick_params('both', width=1.5, which='major', length=3)
    cb.ax.tick_params('both', width=1.5, which='minor', length=2)
    cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
    plt.setp(cb_obj, fontsize=18)
    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral', size=18)
    for label in cb.ax.get_yticklabels():
        label.set_fontproperties(ticks_font)

    ax.set_xlabel(r'$\rm{RA\,Offset\,[arcsec]}$', fontsize=16)
    ax.set_ylabel(r'$\rm{Dec\,Offset\,[arcsec]}$', fontsize=16)

    # set the frame color
    ax.spines['bottom'].set_color('white')
    ax.spines['top'].set_color('white')
    ax.spines['left'].set_color('white')
    ax.spines['right'].set_color('white')

    ax.tick_params(axis='both',
                   which='major',
                   width=1.5,
                   labelsize=18,
                   color='white',
                   length=5)
    ax.text(0.7,
            0.88,
            str(wave) + r'$\rm{\,\mu m}$',
            fontsize=20,
            color='white',
            transform=ax.transAxes)

    fig.savefig(plotdir + printname + '_image_' + str(wave) + '.pdf',
                format='pdf',
                dpi=300,
                bbox_inches='tight')
    fig.clf()
Ejemplo n.º 39
0
import matplotlib.pyplot as plt
from hyperion.model import ModelOutput
from hyperion.util.constants import pc

mo = ModelOutput('pure_scattering.rtout')

wav, fnu = mo.get_image(inclination=0, units='MJy/sr', distance=300. * pc)
wav, pol = mo.get_image(inclination=0, stokes='linpol')

fig = plt.figure(figsize=(8, 8))

# Make total intensity sub-plot

ax = fig.add_axes([0.1, 0.3, 0.4, 0.4])
ax.imshow(fnu[:, :, 0], extent=[-13, 13, -13, 13],
          interpolation='none', cmap=plt.cm.gist_heat,
          origin='lower', vmin=0., vmax=4e9)
ax.set_xlim(-13., 13.)
ax.set_ylim(-13., 13.)
ax.set_xlabel("x (solar radii)")
ax.set_ylabel("y (solar radii)")
ax.set_title("Surface brightness")

# Make linear polarization sub-plot

ax = fig.add_axes([0.51, 0.3, 0.4, 0.4])
im = ax.imshow(pol[:, :, 0] * 100., extent=[-13, 13, -13, 13],
               interpolation='none', cmap=plt.cm.gist_heat,
               origin='lower', vmin=0., vmax=100.)
ax.set_xlim(-13., 13.)
ax.set_ylim(-13., 13.)
Ejemplo n.º 40
0
def extract_hyperion(filename,indir=None,outdir=None,dstar=178.0,wl_aper=None,save=True,filter_func=False,\
    plot_all=False,clean=False,exclude_wl=[],log=True):
    def l_bol(wl, fv, dist=178.0):
        import numpy as np
        import astropy.constants as const
        # wavelength unit: um
        # Flux density unit: Jy
        #
        # constants setup
        #
        c = const.c.cgs.value
        pc = const.pc.cgs.value
        PI = np.pi
        SL = const.L_sun.cgs.value
        # Convert the unit from Jy to erg s-1 cm-2 Hz-1
        fv = np.array(fv) * 1e-23
        freq = c / (1e-4 * np.array(wl))

        diff_dum = freq[1:] - freq[0:-1]
        freq_interpol = np.hstack(
            (freq[0:-1] + diff_dum / 2.0, freq[0:-1] + diff_dum / 2.0, freq[0],
             freq[-1]))
        freq_interpol = freq_interpol[np.argsort(freq_interpol)[::-1]]
        fv_interpol = np.empty(len(freq_interpol))
        # calculate the histogram style of spectrum
        #
        for i in range(0, len(fv)):
            if i == 0:
                fv_interpol[i] = fv[i]
            else:
                fv_interpol[2 * i - 1] = fv[i - 1]
                fv_interpol[2 * i] = fv[i]
        fv_interpol[-1] = fv[-1]

        dv = freq_interpol[0:-1] - freq_interpol[1:]
        dv = np.delete(dv, np.where(dv == 0))

        fv = fv[np.argsort(freq)]
        freq = freq[np.argsort(freq)]

        return (np.trapz(fv, freq) * 4. * PI * (dist * pc)**2) / SL

    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    #
    import matplotlib.pyplot as plt
    import numpy as np
    import os
    from hyperion.model import ModelOutput, Model
    from scipy.interpolate import interp1d
    from hyperion.util.constants import pc, c, lsun, au
    from astropy.io import ascii
    import sys
    sys.path.append(os.path.expanduser('~') + '/programs/spectra_analysis/')
    from phot_filter import phot_filter
    from get_bhr71_obs import get_bhr71_obs

    # seaborn colormap, because jet is bad obviously
    import seaborn.apionly as sns

    # Read in the observation data and calculate the noise & variance
    if indir == None:
        indir = '/Users/yaolun/bhr71/'
    if outdir == None:
        outdir = '/Users/yaolun/bhr71/hyperion/'

    # assign the file name from the input file
    print_name = os.path.splitext(os.path.basename(filename))[0]

    # use a canned function to extract BHR71 observational data
    bhr71 = get_bhr71_obs(indir)  # unit in um, Jy
    wl_tot, flux_tot, unc_tot = bhr71['spec']
    flux_tot = flux_tot * 1e-23  # convert unit from Jy to erg s-1 cm-2 Hz-1
    unc_tot = unc_tot * 1e-23
    l_bol_obs = l_bol(wl_tot, flux_tot * 1e23)

    wl_phot, flux_phot, flux_sig_phot = bhr71['phot']
    flux_phot = flux_phot * 1e-23  # convert unit from Jy to erg s-1 cm-2 Hz-1
    flux_sig_phot = flux_sig_phot * 1e-23
    # Print the observed L_bol
    # wl_tot = np.hstack((wl_irs,wl_obs,wl_phot))
    # flux_tot = np.hstack((flux_irs,flux_obs,flux_phot))
    # flux_tot = flux_tot[np.argsort(wl_tot)]
    # wl_tot = wl_tot[np.argsort(wl_tot)]
    # l_bol_obs = l_bol(wl_tot,flux_tot*1e23)

    # Open the model
    m = ModelOutput(filename)

    if wl_aper == None:
        wl_aper = [
            3.6, 4.5, 5.8, 8.0, 10, 16, 20, 24, 35, 70, 100, 160, 250, 350,
            500, 850
        ]

    # Create the plot
    mag = 1.5
    fig = plt.figure(figsize=(8 * mag, 6 * mag))
    ax_sed = fig.add_subplot(1, 1, 1)

    # Plot the observed SED
    # plot the observed spectra
    if not clean:
        color_seq = ['Green', 'Red', 'Blue']
    else:
        color_seq = ['DimGray', 'DimGray', 'DimGray']
    # plot the observations
    if log:
        pacs, = ax_sed.plot(np.log10(wl_tot[(wl_tot>40) & (wl_tot<190.31)]),\
                            np.log10(c/(wl_tot[(wl_tot>40) & (wl_tot<190.31)]*1e-4)*flux_tot[(wl_tot>40) & (wl_tot<190.31)]),\
                            '-',color=color_seq[0],linewidth=1.5*mag, alpha=0.7)
        spire, = ax_sed.plot(np.log10(wl_tot[wl_tot > 194]),np.log10(c/(wl_tot[wl_tot > 194]*1e-4)*flux_tot[wl_tot > 194]),\
                            '-',color=color_seq[1],linewidth=1.5*mag, alpha=0.7)
        irs, = ax_sed.plot(np.log10(wl_tot[wl_tot < 40]),np.log10(c/(wl_tot[wl_tot < 40]*1e-4)*flux_tot[wl_tot < 40]),\
                            '-',color=color_seq[2],linewidth=1.5*mag, alpha=0.7)
        photometry, = ax_sed.plot(np.log10(wl_phot),
                                  np.log10(c / (wl_phot * 1e-4) * flux_phot),
                                  's',
                                  mfc='DimGray',
                                  mec='k',
                                  markersize=8)
        # plot the observed photometry data
        ax_sed.errorbar(np.log10(wl_phot),np.log10(c/(wl_phot*1e-4)*flux_phot),\
            yerr=[np.log10(c/(wl_phot*1e-4)*flux_phot)-np.log10(c/(wl_phot*1e-4)*(flux_phot-flux_sig_phot)),\
                  np.log10(c/(wl_phot*1e-4)*(flux_phot+flux_sig_phot))-np.log10(c/(wl_phot*1e-4)*flux_phot)],\
            fmt='s',mfc='DimGray',mec='k',markersize=8)
    else:
        pacs, = ax_sed.plot(np.log10(wl_tot[(wl_tot>40) & (wl_tot<190.31)]),\
                            c/(wl_tot[(wl_tot>40) & (wl_tot<190.31)]*1e-4)*flux_tot[(wl_tot>40) & (wl_tot<190.31)],\
                            '-',color=color_seq[0],linewidth=1.5*mag, alpha=0.7)
        spire, = ax_sed.plot(np.log10(wl_tot[wl_tot > 194]),c/(wl_tot[wl_tot > 194]*1e-4)*flux_tot[wl_tot > 194],\
                            '-',color=color_seq[1],linewidth=1.5*mag, alpha=0.7)
        irs, = ax_sed.plot(np.log10(wl_tot[wl_tot < 40]),c/(wl_tot[wl_tot < 40]*1e-4)*flux_tot[wl_tot < 40],\
                            '-',color=color_seq[2],linewidth=1.5*mag, alpha=0.7)
        photometry, = ax_sed.plot(wl_phot,
                                  c / (wl_phot * 1e-4) * flux_phot,
                                  's',
                                  mfc='DimGray',
                                  mec='k',
                                  markersize=8)
        # plot the observed photometry data
        ax_sed.errorbar(np.log10(wl_phot),c/(wl_phot*1e-4)*flux_phot,\
            yerr=[c/(wl_phot*1e-4)*flux_phot-c/(wl_phot*1e-4)*(flux_phot-flux_sig_phot),\
                  c/(wl_phot*1e-4)*(flux_phot+flux_sig_phot)-c/(wl_phot*1e-4)*flux_phot],\
            fmt='s',mfc='DimGray',mec='k',markersize=8)

    if not clean:
        ax_sed.text(0.75,
                    0.9,
                    r'$\rm{L_{bol}= %5.2f L_{\odot}}$' % l_bol_obs,
                    fontsize=mag * 16,
                    transform=ax_sed.transAxes)
    # else:
    #     pacs, = ax_sed.plot(np.log10(wl_tot[(wl_tot>40) & (wl_tot<190.31)]),\
    #                         np.log10(c/(wl_tot[(wl_tot>40) & (wl_tot<190.31)]*1e-4)*flux_tot[(wl_tot>40) & (wl_tot<190.31)]),\
    #                         '-',color='DimGray',linewidth=1.5*mag, alpha=0.7)
    #     spire, = ax_sed.plot(np.log10(wl_tot[wl_tot > 194]),np.log10(c/(wl_tot[wl_tot > 194]*1e-4)*flux_tot[wl_tot > 194]),\
    #                         '-',color='DimGray',linewidth=1.5*mag, alpha=0.7)
    #     irs, = ax_sed.plot(np.log10(wl_tot[wl_tot < 40]),np.log10(c/(wl_tot[wl_tot < 40]*1e-4)*flux_tot[wl_tot < 40]),\
    #                         '-',color='DimGray',linewidth=1.5*mag, alpha=0.7)

    # Extract the SED for the smallest inclination and largest aperture, and
    # scale to 300pc. In Python, negative indices can be used for lists and
    # arrays, and indicate the position from the end. So to get the SED in the
    # largest aperture, we set aperture=-1.
    # aperture group is aranged from smallest to infinite
    sed_inf = m.get_sed(group=0,
                        inclination=0,
                        aperture=-1,
                        distance=dstar * pc,
                        uncertainties=True)

    # plot the simulated SED
    if clean == False:
        sim, = ax_sed.plot(np.log10(sed_inf.wav),
                           np.log10(sed_inf.val),
                           '-',
                           color='GoldenRod',
                           linewidth=0.5 * mag)
        ax_sed.fill_between(np.log10(sed_inf.wav), np.log10(sed_inf.val-sed_inf.unc), np.log10(sed_inf.val+sed_inf.unc),\
            color='GoldenRod', alpha=0.5)
    # get flux at different apertures
    flux_aper = np.zeros_like(wl_aper, dtype=float)
    unc_aper = np.zeros_like(wl_aper, dtype=float)
    a = np.zeros_like(wl_aper) + 1
    color_list = plt.cm.jet(np.linspace(0, 1, len(wl_aper) + 1))
    for i in range(0, len(wl_aper)):
        if wl_aper[i] in exclude_wl:
            continue
        # if (wl_aper[i] == 5.8) or (wl_aper[i] == 8.0) or (wl_aper[i] == 10.5) or (wl_aper[i] == 11):
        #     continue
        sed_dum = m.get_sed(group=i + 1,
                            inclination=0,
                            aperture=-1,
                            distance=dstar * pc,
                            uncertainties=True)
        if plot_all == True:
            ax_sed.plot(np.log10(sed_dum.wav),
                        np.log10(sed_dum.val),
                        '-',
                        color=color_list[i])
            ax_sed.fill_between(np.log10(sed_dum.wav), np.log10(sed_dum.val-sed_dum.unc), np.log10(sed_dum.val+sed_dum.unc),\
                color=color_list[i], alpha=0.5)
        if filter_func == False:
            # use a rectangle function the average the simulated SED
            # apply the spectral resolution
            if (wl_aper[i] < 50.) & (wl_aper[i] >= 5):
                res = 60.
            elif wl_aper[i] < 5:
                res = 10.
            else:
                res = 1000.
            ind = np.where((sed_dum.wav < wl_aper[i] * (1 + 1. / res))
                           & (sed_dum.wav > wl_aper[i] * (1 - 1. / res)))
            if len(ind[0]) != 0:
                flux_aper[i] = np.mean(sed_dum.val[ind])
                unc_aper[i] = np.mean(sed_dum.unc[ind])
            else:
                f = interp1d(sed_dum.wav, sed_dum.val)
                f_unc = interp1d(sed_dum.wav, sed_dum.unc)
                flux_aper[i] = f(wl_aper[i])
                unc_aper[i] = f_unc(wl_aper[i])
        else:
            # apply the filter function
            # decide the filter name
            if wl_aper[i] == 70:
                fil_name = 'Herschel PACS 70um'
            elif wl_aper[i] == 100:
                fil_name = 'Herschel PACS 100um'
            elif wl_aper[i] == 160:
                fil_name = 'Herschel PACS 160um'
            elif wl_aper[i] == 250:
                fil_name = 'Herschel SPIRE 250um'
            elif wl_aper[i] == 350:
                fil_name = 'Herschel SPIRE 350um'
            elif wl_aper[i] == 500:
                fil_name = 'Herschel SPIRE 500um'
            elif wl_aper[i] == 3.6:
                fil_name = 'IRAC Channel 1'
            elif wl_aper[i] == 4.5:
                fil_name = 'IRAC Channel 2'
            elif wl_aper[i] == 5.8:
                fil_name = 'IRAC Channel 3'
            elif wl_aper[i] == 8.0:
                fil_name = 'IRAC Channel 4'
            elif wl_aper[i] == 24:
                fil_name = 'MIPS 24um'
            elif wl_aper[i] == 850:
                fil_name = 'SCUBA 850WB'
            else:
                fil_name = None

            if fil_name != None:
                filter_func = phot_filter(fil_name)
                # Simulated SED should have enough wavelength coverage for applying photometry filters.
                f = interp1d(sed_dum.wav, sed_dum.val)
                f_unc = interp1d(sed_dum.wav, sed_dum.unc)
                flux_aper[i] = np.trapz(
                    filter_func['wave'] / 1e4,
                    f(filter_func['wave'] / 1e4) *
                    filter_func['transmission']) / np.trapz(
                        filter_func['wave'] / 1e4, filter_func['transmission'])
                unc_aper[i] = abs(
                    np.trapz((filter_func['wave'] / 1e4)**2,
                             (f_unc(filter_func['wave'] / 1e4) *
                              filter_func['transmission'])**2))**0.5 / abs(
                                  np.trapz(filter_func['wave'] / 1e4,
                                           filter_func['transmission']))
            else:
                # use a rectangle function the average the simulated SED
                # apply the spectral resolution
                if (wl_aper[i] < 50.) & (wl_aper[i] >= 5):
                    res = 60.
                elif wl_aper[i] < 5:
                    res = 10.
                else:
                    res = 1000.
                ind = np.where((sed_dum.wav < wl_aper[i] * (1 + 1. / res))
                               & (sed_dum.wav > wl_aper[i] * (1 - 1. / res)))
                if len(ind[0]) != 0:
                    flux_aper[i] = np.mean(sed_dum.val[ind])
                    unc_aper[i] = np.mean(sed_dum.unc[ind])
                else:
                    f = interp1d(sed_dum.wav, sed_dum.val)
                    f_unc = interp1d(sed_dum.wav, sed_dum.unc)
                    flux_aper[i] = f(wl_aper[i])
                    unc_aper[i] = f_unc(wl_aper[i])
    # temperory step: solve issue of uncertainty greater than the value
    for i in range(len(wl_aper)):
        if unc_aper[i] >= flux_aper[i]:
            unc_aper[i] = flux_aper[i] - 1e-20

    # perform the same procedure of flux extraction of aperture flux with observed spectra
    wl_aper = np.array(wl_aper, dtype=float)
    obs_aper_wl = wl_aper[(wl_aper >= min(wl_tot)) & (wl_aper <= max(wl_tot))]
    obs_aper_sed = np.zeros_like(obs_aper_wl)
    obs_aper_sed_unc = np.zeros_like(obs_aper_wl)
    sed_tot = c / (wl_tot * 1e-4) * flux_tot
    sed_unc_tot = c / (wl_tot * 1e-4) * unc_tot
    # wl_tot and flux_tot are already hstacked and sorted by wavelength
    for i in range(0, len(obs_aper_wl)):
        if obs_aper_wl[i] in exclude_wl:
            continue
        if filter_func == False:
            # use a rectangle function the average the simulated SED
            # apply the spectral resolution
            if (obs_aper_wl[i] < 50.) & (obs_aper_wl[i] >= 5):
                res = 60.
            elif obs_aper_wl[i] < 5:
                res = 10.
            else:
                res = 1000.
            ind = np.where((wl_tot < obs_aper_wl[i] * (1 + 1. / res))
                           & (wl_tot > obs_aper_wl[i] * (1 - 1. / res)))
            if len(ind[0]) != 0:
                obs_aper_sed[i] = np.mean(sed_tot[ind])
                obs_aper_sed_unc[i] = np.mean(sed_unc_tot[ind])
            else:
                f = interp1d(wl_tot, sed_tot)
                f_unc = interp1d(wl_tot, sed_unc_tot)
                obs_aper_sed[i] = f(obs_aper_wl[i])
                obs_aper_sed_unc[i] = f_unc(obs_aper_wl[i])
        else:
            # apply the filter function
            # decide the filter name
            if obs_aper_wl[i] == 70:
                fil_name = 'Herschel PACS 70um'
            elif obs_aper_wl[i] == 100:
                fil_name = 'Herschel PACS 100um'
            elif obs_aper_wl[i] == 160:
                fil_name = 'Herschel PACS 160um'
            elif obs_aper_wl[i] == 250:
                fil_name = 'Herschel SPIRE 250um'
            elif obs_aper_wl[i] == 350:
                fil_name = 'Herschel SPIRE 350um'
            elif obs_aper_wl[i] == 500:
                fil_name = 'Herschel SPIRE 500um'
            elif obs_aper_wl[i] == 3.6:
                fil_name = 'IRAC Channel 1'
            elif obs_aper_wl[i] == 4.5:
                fil_name = 'IRAC Channel 2'
            elif obs_aper_wl[i] == 5.8:
                fil_name = 'IRAC Channel 3'
            elif obs_aper_wl[i] == 8.0:
                fil_name = 'IRAC Channel 4'
            elif obs_aper_wl[i] == 24:
                fil_name = 'MIPS 24um'
            # elif obs_aper_wl[i] == 850:
            #     fil_name = 'SCUBA 850WB'
            # do not have SCUBA spectra
            else:
                fil_name = None

            # print obs_aper_wl[i], fil_name

            if fil_name != None:
                filter_func = phot_filter(fil_name)
                # Observed SED needs to be trimmed before applying photometry filters
                filter_func = filter_func[(filter_func['wave']/1e4 >= min(wl_tot))*\
                                          ((filter_func['wave']/1e4 >= 54.8)+(filter_func['wave']/1e4 <= 36.0853))*\
                                          ((filter_func['wave']/1e4 <= 95.05)+(filter_func['wave']/1e4 >=103))*\
                                          ((filter_func['wave']/1e4 <= 190.31)+(filter_func['wave']/1e4 >= 195))*\
                                          (filter_func['wave']/1e4 <= max(wl_tot))]
                f = interp1d(wl_tot, sed_tot)
                f_unc = interp1d(wl_tot, sed_unc_tot)
                obs_aper_sed[i] = np.trapz(
                    filter_func['wave'] / 1e4,
                    f(filter_func['wave'] / 1e4) *
                    filter_func['transmission']) / np.trapz(
                        filter_func['wave'] / 1e4, filter_func['transmission'])
                obs_aper_sed_unc[i] = abs(
                    np.trapz((filter_func['wave'] / 1e4)**2,
                             (f_unc(filter_func['wave'] / 1e4) *
                              filter_func['transmission'])**2))**0.5 / abs(
                                  np.trapz(filter_func['wave'] / 1e4,
                                           filter_func['transmission']))
            else:
                # use a rectangle function the average the simulated SED
                # apply the spectral resolution
                if (obs_aper_wl[i] < 50.) & (obs_aper_wl[i] >= 5):
                    res = 60.
                elif obs_aper_wl[i] < 5:
                    res = 10.
                else:
                    res = 1000.
                ind = np.where((wl_tot < obs_aper_wl[i] * (1 + 1. / res))
                               & (wl_tot > obs_aper_wl[i] * (1 - 1. / res)))
                if len(ind[0]) != 0:
                    obs_aper_sed[i] = np.mean(sed_tot[ind])
                    obs_aper_sed_unc[i] = np.mean(sed_unc_tot[ind])
                else:
                    f = interp1d(wl_tot, sed_tot)
                    f_unc = interp1d(wl_tot, sed_unc_tot)
                    obs_aper_sed[i] = f(obs_aper_wl[i])
                    obs_aper_sed_unc[i] = f_unc(obs_aper_wl[i])

    # if clean == False:
    #     if log:
    #         aper_obs = ax_sed.errorbar(np.log10(obs_aper_wl), np.log10(obs_aper_sed), \
    #             yerr=[np.log10(obs_aper_sed)-np.log10(obs_aper_sed-obs_aper_sed_unc), np.log10(obs_aper_sed+obs_aper_sed_unc)-np.log10(obs_aper_sed)],\
    #             fmt='s', mec='Magenta', mfc='Magenta', markersize=10, elinewidth=3, ecolor='Magenta',capthick=3,barsabove=True)
    #         aper = ax_sed.errorbar(np.log10(wl_aper), np.log10(flux_aper),\
    #             yerr=[np.log10(flux_aper)-np.log10(flux_aper-unc_aper), np.log10(flux_aper+unc_aper)-np.log10(flux_aper)],\
    #             fmt='o', mfc='None', mec='k', ecolor='Black', markersize=12, markeredgewidth=3, elinewidth=3, barsabove=True)
    #     else:
    #         aper_obs = ax_sed.errorbar(obs_aper_wl, obs_aper_sed, yerr=obs_aper_sed_unc,\
    #             fmt='s', mec='Magenta', mfc='Magenta', markersize=10, elinewidth=3, ecolor='Magenta',capthick=3,barsabove=True)
    #         aper = ax_sed.errorbar(wl_aper, flux_aper, yerr=unc_aper,\
    #             fmt='o', mfc='None', mec='k', ecolor='Black', markersize=12, markeredgewidth=3, elinewidth=3, barsabove=True)
    # else:
    if log:
        aper_obs = ax_sed.errorbar(np.log10(obs_aper_wl), np.log10(obs_aper_sed),\
            yerr=[np.log10(obs_aper_sed)-np.log10(obs_aper_sed-obs_aper_sed_unc), np.log10(obs_aper_sed+obs_aper_sed_unc)-np.log10(obs_aper_sed)],\
            fmt='s', mec='None', mfc='r', markersize=10, linewidth=1.5, ecolor='Red', elinewidth=3, capthick=3, barsabove=True)
        aper = ax_sed.errorbar(np.log10(wl_aper),np.log10(flux_aper),\
            yerr=[np.log10(flux_aper)-np.log10(flux_aper-unc_aper), np.log10(flux_aper+unc_aper)-np.log10(flux_aper)],\
            fmt='o', mec='Blue', mfc='None', color='b',markersize=12, markeredgewidth=2.5, linewidth=1.7, ecolor='Blue', elinewidth=3, barsabove=True)
        ax_sed.set_ylim([-14, -7])
        ax_sed.set_xlim([0, 3])
    else:
        aper_obs = ax_sed.errorbar(np.log10(obs_aper_wl), obs_aper_sed, yerr=obs_aper_sed_unc,\
            fmt='s', mec='None', mfc='r', markersize=10, linewidth=1.5, ecolor='Red', elinewidth=3, capthick=3, barsabove=True)
        aper = ax_sed.errorbar(np.log10(wl_aper),flux_aper, yerr=unc_aper,\
            fmt='o', mec='Blue', mfc='None', color='b',markersize=12, markeredgewidth=2.5, linewidth=1.7, ecolor='Blue', elinewidth=3, barsabove=True)
        # ax_sed.set_xlim([1, 1000])
        ax_sed.set_xlim([0, 3])
        # ax_sed.set_ylim([1e-14, 1e-8])
    # calculate the bolometric luminosity of the aperture
    # print flux_aper
    l_bol_sim = l_bol(wl_aper,
                      flux_aper / (c / np.array(wl_aper) * 1e4) * 1e23)
    print 'Bolometric luminosity of simulated spectrum: %5.2f lsun' % l_bol_sim

    # print out the sed into ascii file for reading in later
    if save == True:
        # unapertured SED
        foo = open(outdir + print_name + '_sed_inf.txt', 'w')
        foo.write('%12s \t %12s \t %12s \n' % ('wave', 'vSv', 'sigma_vSv'))
        for i in range(0, len(sed_inf.wav)):
            foo.write('%12g \t %12g \t %12g \n' %
                      (sed_inf.wav[i], sed_inf.val[i], sed_inf.unc[i]))
        foo.close()
        # SED with convolution of aperture sizes
        foo = open(outdir + print_name + '_sed_w_aperture.txt', 'w')
        foo.write('%12s \t %12s \t %12s \n' % ('wave', 'vSv', 'sigma_vSv'))
        for i in range(0, len(wl_aper)):
            foo.write('%12g \t %12g \t %12g \n' %
                      (wl_aper[i], flux_aper[i], unc_aper[i]))
        foo.close()

    # Read in and plot the simulated SED produced by RADMC-3D using the same parameters
    # [wl,fit] = np.genfromtxt(indir+'hyperion/radmc_comparison/spectrum.out',dtype='float',skip_header=3).T
    # l_bol_radmc = l_bol(wl,fit*1e23/dstar**2)
    # radmc, = ax_sed.plot(np.log10(wl),np.log10(c/(wl*1e-4)*fit/dstar**2),'-',color='DimGray', linewidth=1.5*mag, alpha=0.5)

    # print the L bol of the simulated SED (both Hyperion and RADMC-3D)
    # lg_sim = ax_sed.legend([sim,radmc],[r'$\rm{L_{bol,sim}=%5.2f\,L_{\odot},\,L_{center}=9.18\,L_{\odot}}$' % l_bol_sim, \
    #   r'$\rm{L_{bol,radmc3d}=%5.2f\,L_{\odot},\,L_{center}=9.18\,L_{\odot}}$' % l_bol_radmc],\
    #   loc='lower right',fontsize=mag*16)

    # read the input central luminosity by reading in the source information from output file
    dum = Model()
    dum.use_sources(filename)
    L_cen = dum.sources[0].luminosity / lsun

    # legend
    lg_data = ax_sed.legend([irs, photometry, aper, aper_obs],\
    [r'$\rm{observation}$',\
    r'$\rm{photometry}$',r'$\rm{F_{aper,sim}}$',r'$\rm{F_{aper,obs}}$'],\
    loc='upper left',fontsize=14*mag,numpoints=1,framealpha=0.3)
    if clean == False:
        lg_sim = ax_sed.legend([sim],[r'$\rm{L_{bol,sim}=%5.2f\,L_{\odot},\,L_{center}=%5.2f\,L_{\odot}}$' % (l_bol_sim, L_cen)], \
            loc='lower right',fontsize=mag*16)
        plt.gca().add_artist(lg_data)

    # plot setting
    ax_sed.set_xlabel(r'$\rm{log\,\lambda\,({\mu}m)}$', fontsize=mag * 20)
    ax_sed.set_ylabel(r'$\rm{log\,\nu S_{\nu}\,(erg/cm^{2}/s)}$',
                      fontsize=mag * 20)
    [
        ax_sed.spines[axis].set_linewidth(1.5 * mag)
        for axis in ['top', 'bottom', 'left', 'right']
    ]
    ax_sed.minorticks_on()
    ax_sed.tick_params('both',
                       labelsize=mag * 18,
                       width=1.5 * mag,
                       which='major',
                       pad=15,
                       length=5 * mag)
    ax_sed.tick_params('both',
                       labelsize=mag * 18,
                       width=1.5 * mag,
                       which='minor',
                       pad=15,
                       length=2.5 * mag)

    # fix the tick label font
    ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',
                                                 size=mag * 18)
    for label in ax_sed.get_xticklabels():
        label.set_fontproperties(ticks_font)
    for label in ax_sed.get_yticklabels():
        label.set_fontproperties(ticks_font)

    # if clean == False:
    #     lg_data = ax_sed.legend([irs, pacs, spire,photometry],[r'$\rm{{\it Spitzer}-IRS}$',r'$\rm{{\it Herschel}-PACS}$',r'$\rm{{\it Herschel}-SPIRE}$',r'$\rm{Photometry}$'],\
    #                             loc='upper left',fontsize=14*mag,numpoints=1,framealpha=0.3)
    #     plt.gca().add_artist(lg_sim)
    # else:
    #     lg_data = ax_sed.legend([irs, photometry, aper, aper_obs],\
    #     [r'$\rm{observation}$',\
    #     r'$\rm{photometry}$',r'$\rm{F_{aper,sim}}$',r'$\rm{F_{aper,obs}}$'],\
    #     loc='upper left',fontsize=14*mag,numpoints=1,framealpha=0.3)

    # Write out the plot
    fig.savefig(outdir + print_name + '_sed.pdf',
                format='pdf',
                dpi=300,
                bbox_inches='tight')
    fig.clf()

    # Package for matching the colorbar
    from mpl_toolkits.axes_grid1 import make_axes_locatable

    # Extract the image for the first inclination, and scale to 300pc. We
    # have to specify group=1 as there is no image in group 0.
    image = m.get_image(group=len(wl_aper) + 1,
                        inclination=0,
                        distance=dstar * pc,
                        units='MJy/sr')
    # image = m.get_image(group=14, inclination=0, distance=dstar * pc, units='MJy/sr')
    # Open figure and create axes
    # fig = plt.figure(figsize=(8, 8))
    fig, axarr = plt.subplots(3,
                              3,
                              sharex='col',
                              sharey='row',
                              figsize=(13.5, 12))

    # Pre-set maximum for colorscales
    VMAX = {}
    # VMAX[3.6] = 10.
    # VMAX[24] = 100.
    # VMAX[160] = 2000.
    # VMAX[500] = 2000.
    VMAX[100] = 10.
    VMAX[250] = 100.
    VMAX[500] = 2000.
    VMAX[1000] = 2000.

    # We will now show four sub-plots, each one for a different wavelength
    # for i, wav in enumerate([3.6, 24, 160, 500]):
    # for i, wav in enumerate([100, 250, 500, 1000]):
    # for i, wav in enumerate([4.5, 9.7, 24, 40, 70, 100, 250, 500, 1000]):
    for i, wav in enumerate([3.6, 8.0, 9.7, 24, 40, 100, 250, 500, 1000]):

        # ax = fig.add_subplot(3, 3, i + 1)
        ax = axarr[i / 3, i % 3]

        # Find the closest wavelength
        iwav = np.argmin(np.abs(wav - image.wav))

        # Calculate the image width in arcseconds given the distance used above
        # get the max radius
        rmax = max(m.get_quantities().r_wall)
        w = np.degrees(rmax / image.distance) * 3600.

        # Image in the unit of MJy/sr
        # Change it into erg/s/cm2/Hz/sr
        factor = 1e-23 * 1e6
        # avoid zero in log
        # flip the image, because the setup of inclination is upside down
        val = image.val[::-1, :, iwav] * factor + 1e-30
        # val = image.val[:, :, iwav] * factor + 1e-30

        # This is the command to show the image. The parameters vmin and vmax are
        # the min and max levels for the colorscale (remove for default values).
        # cmap = sns.cubehelix_palette(start=0.1, rot=-0.7, gamma=0.2, as_cmap=True)
        cmap = plt.cm.CMRmap
        im = ax.imshow(np.log10(val),
                       vmin=-22,
                       vmax=-12,
                       cmap=cmap,
                       origin='lower',
                       extent=[-w, w, -w, w],
                       aspect=1)

        # fix the tick label font
        ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',
                                                     size=14)
        for label in ax.get_xticklabels():
            label.set_fontproperties(ticks_font)
        for label in ax.get_yticklabels():
            label.set_fontproperties(ticks_font)

        # Colorbar setting
        # create an axes on the right side of ax. The width of cax will be 5%
        # of ax and the padding between cax and ax will be fixed at 0.05 inch.
        if (i + 1) % 3 == 0:
            divider = make_axes_locatable(ax)
            cax = divider.append_axes("right", size="5%", pad=0.05)
            cb = fig.colorbar(im, cax=cax)
            cb.solids.set_edgecolor("face")
            cb.ax.minorticks_on()
            cb.ax.set_ylabel(
                r'$\rm{log(I_{\nu})\,[erg\,s^{-1}\,cm^{-2}\,Hz^{-1}\,sr^{-1}]}$',
                fontsize=12)
            cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
            plt.setp(cb_obj, fontsize=12)
            # fix the tick label font
            ticks_font = mpl.font_manager.FontProperties(family='STIXGeneral',
                                                         size=12)
            for label in cb.ax.get_yticklabels():
                label.set_fontproperties(ticks_font)

        if (i + 1) == 7:
            # Finalize the plot
            ax.set_xlabel(r'$\rm{RA\,Offset\,(arcsec)}$', fontsize=14)
            ax.set_ylabel(r'$\rm{Dec\,Offset\,(arcsec)}$', fontsize=14)

        ax.tick_params(axis='both', which='major', labelsize=16)
        ax.set_adjustable('box-forced')
        ax.text(0.7,
                0.88,
                str(wav) + r'$\rm{\,\mu m}$',
                fontsize=16,
                color='white',
                transform=ax.transAxes)

    fig.subplots_adjust(hspace=0, wspace=-0.2)

    # Adjust the spaces between the subplots
    # plt.tight_layout()
    fig.savefig(outdir + print_name + '_cube_plot.png',
                format='png',
                dpi=300,
                bbox_inches='tight')
    fig.clf()
Ejemplo n.º 41
0
import numpy as np
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

# Create output directory if it does not already exist
if not os.path.exists('frames'):
    os.mkdir('frames')

# Open model
m = ModelOutput('flyaround_cube.rtout')

# Read image from model
image = m.get_image(distance=300 * pc, units='MJy/sr')

# image.val is now an array with four dimensions (n_view, n_y, n_x, n_wav)

for iview in range(image.val.shape[0]):

    # Open figure and create axes
    fig = plt.figure(figsize=(3, 3))
    ax = fig.add_subplot(1, 1, 1)

    # This is the command to show the image. The parameters vmin and vmax are
    # the min and max levels for the grayscale (remove for default values).
    # The colormap is set here to be a heat map. Other possible heat maps
    # include plt.cm.gray (grayscale), plt.cm.gist_yarg (inverted grayscale),
    # plt.cm.jet (default, colorful). The np.sqrt() is used to plot the
    # images on a sqrt stretch.
Ejemplo n.º 42
0
def alma_cavity(freq,
                outdir,
                vlim,
                units='MJy/sr',
                pix=300,
                filename=None,
                label=None):
    import numpy as np
    import matplotlib.pyplot as plt
    import astropy.constants as const
    from hyperion.model import ModelOutput
    from matplotlib.ticker import MaxNLocator

    # constants setup
    c = const.c.cgs.value
    pc = const.pc.cgs.value
    au = const.au.cgs.value
    # Image in the unit of MJy/sr
    # Change it into erg/s/cm2/Hz/sr
    if units == 'erg/s/cm2/Hz/sr':
        factor = 1e-23 * 1e6
        cb_label = r'$\rm{I_{\nu}\,(erg\,s^{-1}\,cm^{-2}\,Hz^{-1}\,sr^{-1})}$'
    elif units == 'MJy/sr':
        factor = 1
        cb_label = r'$\rm{I_{\nu}\,(MJy\,sr^{-1})}$'

    if filename == None:
        # input files setup
        filename_reg = '/Users/yaolun/test/model12.rtout'
        filename_r2 = '/Users/yaolun/test/model13.rtout'
        filename_r15 = '/Users/yaolun/test/model17.rtout'
        filename_uni = '/Users/yaolun/test/model62.rtout'
    else:
        filename_reg = filename['reg']
        filename_r2 = filename['r2']
        filename_r15 = filename['r15']
        filename_uni = filename['uni']

    if label == None:
        label_reg = r'$\rm{const.+r^{-2}}$'
        label_r2 = r'$\rm{r^{-2}}$'
        label_r15 = r'$\rm{r^{-1.5}}$'
        label_uni = r'$\rm{uniform}$'
    else:
        label_reg = label['reg']
        label_r2 = label['r2']
        label_r15 = label['r15']
        label_uni = label['uni']

    wl_aper = [
        3.6, 4.5, 5.8, 8.0, 8.5, 9, 9.7, 10, 10.5, 11, 16, 20, 24, 35, 70, 100,
        160, 250, 350, 500, 850
    ]
    wav = c / freq / 1e9 * 1e4
    # wav = 40

    # read in
    # regular cavity setting
    m_reg = ModelOutput(filename_reg)
    image_reg = m_reg.get_image(group=len(wl_aper) + 1,
                                inclination=0,
                                distance=178.0 * pc,
                                units='MJy/sr')
    # Calculate the image width in arcseconds given the distance used above
    rmax = max(m_reg.get_quantities().r_wall)
    w = np.degrees(rmax / image_reg.distance) * 3600.
    # w = np.degrees((1.5 * pc) / image_reg.distance) * 60.
    pix_num = len(image_reg.val[:, 0, 0])
    pix2arcsec = 2 * w / pix_num
    pix2au = np.radians(2 * w / pix_num / 3600.) * image_reg.distance / au

    iwav = np.argmin(np.abs(wav - image_reg.wav))
    # avoid zero in log
    val_reg = image_reg.val[:, :, iwav] * factor + 1e-30

    # r^-2 cavity setting
    m_r2 = ModelOutput(filename_r2)
    image_r2 = m_r2.get_image(group=len(wl_aper) + 1,
                              inclination=0,
                              distance=178.0 * pc,
                              units='MJy/sr')
    # Calculate the image width in arcseconds given the distance used above
    rmax = max(m_r2.get_quantities().r_wall)
    w = np.degrees(rmax / image_r2.distance) * 3600.
    pix_num = len(image_reg.val[:, 0, 0])
    pix2arcsec = 2 * w / pix_num
    pix2au = np.radians(2 * w / pix_num / 3600.) * image_reg.distance / au
    iwav = np.argmin(np.abs(wav - image_r2.wav))
    # avoid zero in log
    val_r2 = image_r2.val[:, :, iwav] * factor + 1e-30

    # r^-1.5 cavity setting
    m_r15 = ModelOutput(filename_r15)
    image_r15 = m_r15.get_image(group=len(wl_aper) + 1,
                                inclination=0,
                                distance=178.0 * pc,
                                units='MJy/sr')
    # Calculate the image width in arcseconds given the distance used above
    rmax = max(m_r15.get_quantities().r_wall)
    w = np.degrees(rmax / image_r15.distance) * 3600.
    pix_num = len(image_reg.val[:, 0, 0])
    pix2arcsec = 2 * w / pix_num
    pix2au = np.radians(2 * w / pix_num / 3600.) * image_reg.distance / au
    iwav = np.argmin(np.abs(wav - image_r15.wav))
    # avoid zero in log
    val_r15 = image_r15.val[:, :, iwav] * factor + 1e-30

    # uniform cavity setting
    m_uni = ModelOutput(filename_uni)
    image_uni = m_uni.get_image(group=len(wl_aper) + 1,
                                inclination=0,
                                distance=178.0 * pc,
                                units='MJy/sr')
    # Calculate the image width in arcseconds given the distance used above
    rmax = max(m_uni.get_quantities().r_wall)
    w = np.degrees(rmax / image_uni.distance) * 3600.
    print w
    pix_num = len(image_reg.val[:, 0, 0])
    pix2arcsec = 2 * w / pix_num
    pix2au = np.radians(2 * w / pix_num / 3600.) * image_reg.distance / au
    iwav = np.argmin(np.abs(wav - image_uni.wav))
    # avoid zero in log
    val_uni = image_uni.val[:, :, iwav] * factor + 1e-30

    # 1-D radial intensity profile
    # get y=0 plane, and plot it
    fig = plt.figure(figsize=(8, 6))
    ax = fig.add_subplot(111)

    reg, = ax.plot(np.linspace(-pix / 2, pix / 2, num=pix) * pix2arcsec,
                   val_reg[:, pix / 2 - 1],
                   color='b',
                   linewidth=2)
    r2, = ax.plot(np.linspace(-pix / 2, pix / 2, num=pix) * pix2arcsec,
                  val_r2[:, pix / 2 - 1],
                  color='r',
                  linewidth=1.5)
    r15, = ax.plot(np.linspace(-pix / 2, pix / 2, num=pix) * pix2arcsec,
                   val_r15[:, pix / 2 - 1],
                   '--',
                   color='r',
                   linewidth=1.5)
    uni, = ax.plot(np.linspace(-pix / 2, pix / 2, num=pix) * pix2arcsec,
                   val_uni[:, pix / 2 - 1],
                   color='k',
                   linewidth=1.5)
    ax.legend([reg, r2, r15, uni], [label_reg, label_r2, label_r15, label_uni],\
              numpoints=1, loc='lower center', fontsize=18)

    ax.set_xlim([-1, 1])
    ax.set_xlabel(r'$\rm{offset\,(arcsec)}$', fontsize=24)
    # ax.set_ylabel(r'$\rm{I_{\nu}~(erg~s^{-1}~cm^{-2}~Hz^{-1}~sr^{-1})}$', fontsize=16)
    ax.set_ylabel(cb_label, fontsize=24)

    [
        ax.spines[axis].set_linewidth(2)
        for axis in ['top', 'bottom', 'left', 'right']
    ]
    ax.minorticks_on()
    ax.tick_params('both',
                   labelsize=16,
                   width=2,
                   which='major',
                   pad=10,
                   length=5)
    ax.tick_params('both',
                   labelsize=16,
                   width=2,
                   which='minor',
                   pad=10,
                   length=2.5)

    fig.savefig(outdir + 'cavity_intensity_' + str(freq) + '.pdf',
                format='pdf',
                dpi=300,
                bbox_inches='tight')

    # 2-D intensity map
    from mpl_toolkits.axes_grid1 import AxesGrid
    image_grid = [val_reg, val_uni, val_r2, val_r15]
    label_grid = [label_reg, label_r2, label_r15, label_uni]
    fig = plt.figure(figsize=(30, 30))
    grid = AxesGrid(
        fig,
        142,  # similar to subplot(142)
        nrows_ncols=(2, 2),
        axes_pad=0,
        share_all=True,
        label_mode="L",
        cbar_location="right",
        cbar_mode="single",
    )
    for i in range(4):
        offset = np.linspace(-pix / 2, pix / 2, num=pix) * pix2arcsec
        trim = np.where(abs(offset) <= 2)
        im = grid[i].pcolor(np.linspace(-pix/2,pix/2,num=pix)*pix2arcsec, np.linspace(-pix/2,pix/2,num=pix)*pix2arcsec,\
            image_grid[i], cmap=plt.cm.jet, vmin=vlim[0], vmax=vlim[1])#vmin=(image_grid[i][trim,trim]).min(), vmax=(image_grid[i][trim,trim]).max())
        grid[i].set_xlim([-20, 20])
        grid[i].set_ylim([-20, 20])
        grid[i].set_xlabel(r'$\rm{RA\,offset\,(arcsec)}$', fontsize=14)
        grid[i].set_ylabel(r'$\rm{Dec\,offset\,(arcsec)}$', fontsize=14)
        # lg = grid[i].legend([label_grid[i]], loc='upper center', numpoints=1, fontsize=16)
        # for text in lg.get_texts():
        #     text.set_color('w')
        grid[i].text(0.5,
                     0.8,
                     label_grid[i],
                     color='w',
                     weight='heavy',
                     fontsize=18,
                     transform=grid[i].transAxes,
                     ha='center')
        grid[i].locator_params(axis='x', nbins=5)
        grid[i].locator_params(axis='y', nbins=5)
        [
            grid[i].spines[axis].set_linewidth(1.2)
            for axis in ['top', 'bottom', 'left', 'right']
        ]
        grid[i].tick_params('both',
                            labelsize=12,
                            width=1.2,
                            which='major',
                            pad=10,
                            color='white',
                            length=5)
        grid[i].tick_params('both',
                            labelsize=12,
                            width=1.2,
                            which='minor',
                            pad=10,
                            color='white',
                            length=2.5)

        # fix the overlap tick labels
        if i != 0:
            x_nbins = len(grid[i].get_xticklabels())
            y_nbins = len(grid[i].get_yticklabels())
            grid[i].yaxis.set_major_locator(MaxNLocator(nbins=5,
                                                        prune='upper'))
            if i != 2:
                grid[i].xaxis.set_major_locator(
                    MaxNLocator(nbins=5, prune='lower'))

    [grid[0].spines[axis].set_color('white') for axis in ['bottom', 'right']]
    [grid[1].spines[axis].set_color('white') for axis in ['bottom', 'left']]
    [grid[2].spines[axis].set_color('white') for axis in ['top', 'right']]
    [grid[3].spines[axis].set_color('white') for axis in ['top', 'left']]

    #     ax.set_aspect('equal')
    cb = grid.cbar_axes[0].colorbar(im)
    cb.solids.set_edgecolor("face")
    cb.ax.minorticks_on()
    cb.ax.set_ylabel(cb_label, fontsize=12)
    cb_obj = plt.getp(cb.ax.axes, 'yticklabels')
    plt.setp(cb_obj, fontsize=12)

    # fig.text(0.5, -0.05 , r'$\rm{RA~offset~(arcsec)}$', fontsize=12, ha='center')
    # fig.text(0, 0.5, r'$\rm{Dec~offset~(arcsec)}$', fontsize=12, va='center', rotation='vertical')

    fig.savefig(outdir + 'cavity_2d_intensity_' + str(freq) + '.png',
                format='png',
                dpi=300,
                bbox_inches='tight')
Ejemplo n.º 43
0
import numpy as np
import matplotlib.pyplot as plt

from hyperion.model import ModelOutput
from hyperion.util.constants import pc

# Open the model
m = ModelOutput('simple_cube.rtout')

# Extract the image for the first inclination, and scale to 300pc. We
# have to specify group=1 as there is no image in group 0.
image = m.get_image(inclination=0, distance=300 * pc, units='MJy/sr')

# Open figure and create axes
fig = plt.figure(figsize=(8, 8))

# Pre-set maximum for colorscales
VMAX = {}
VMAX[1] = 10.
VMAX[30] = 100.
VMAX[100] = 2000.
VMAX[300] = 2000.

# We will now show four sub-plots, each one for a different wavelength
for i, wav in enumerate([1, 30, 100, 300]):

    ax = fig.add_subplot(2, 2, i + 1)

    # Find the closest wavelength
    iwav = np.argmin(np.abs(wav - image.wav))
Ejemplo n.º 44
0
 def setup_method(self, method):
     path = os.path.join(os.path.dirname(__file__), 'hyperion_output.rtout')
     m = ModelOutput(path)
     self.image = m.get_image(group=0, inclination=0, distance=8.5*kpc, units='ergs/cm^2/s')