def my_suggest(new_ids,
               domain,
               trials,
               seed,
               prior_weight=_default_prior_weight,
               n_startup_jobs=_default_n_startup_jobs,
               n_EI_candidates=_default_n_EI_candidates,
               gamma=_default_gamma):
    return tpe.suggest(new_ids, domain, trials, seed, prior_weight,
                       n_startup_jobs, n_EI_candidates, gamma)
Ejemplo n.º 2
0
    def _hyperopt_suggest(self):
        new_ids = self.trials.new_trial_ids(1)
        assert len(new_ids) == 1
        self.trials.refresh()

        seed = random_seed(self.random)
        new_trials = tpe.suggest(new_ids, self.domain, self.trials, seed)
        assert len(new_trials) == 1

        self.trials.insert_trial_docs(new_trials)
        self.trials.refresh()

        new_trial, = new_trials  # extract singleton
        return new_trial
Ejemplo n.º 3
0
    def _suggest(self):
        """Helper function to `suggest` that does the work of calling
        `hyperopt` via its dumb API.
        """
        new_ids = self.trials.new_trial_ids(1)
        assert len(new_ids) == 1
        self.trials.refresh()

        seed = random_seed(self.random)
        new_trials = tpe.suggest(new_ids, self.domain, self.trials, seed)
        assert len(new_trials) == 1

        self.trials.insert_trial_docs(new_trials)
        self.trials.refresh()

        new_trial, = new_trials  # extract singleton
        return new_trial
Ejemplo n.º 4
0
    def _internal_ask_candidate(self) -> p.Parameter:
        # Inspired from FMinIter class (hyperopt)
        next_id = self.trials.new_trial_ids(1)
        new_trial = tpe.suggest(next_id, self.domain, self.trials,
                                self._rng.randint(2**31 - 1),
                                **self.tpe_args)[0]
        self.trials.insert_trial_doc(new_trial)
        self.trials.refresh()

        candidate = self.parametrization.spawn_child()

        if self._transform:
            data = np.array([
                new_trial["misc"]["vals"][f"x_{i}"][0]
                for i in range(self.dimension)
            ])
            candidate = candidate.set_standardized_data(
                self._transform.backward(data))

            # For consistency, we need to update hyperopt history
            # when standardized data is changed
            if any(data != self._transform.forward(
                    candidate.get_standardized_data(
                        reference=self.parametrization))):
                for it, val in enumerate(
                        self._transform.forward(
                            candidate.get_standardized_data(
                                reference=self.parametrization))):
                    self.trials._dynamic_trials[
                        next_id[0]]["misc"]["vals"][f"x_{it}"][0] = val
        else:
            spec = hyperopt.base.spec_from_misc(new_trial["misc"])
            config = hyperopt.space_eval(self.space, spec)
            candidate.value = _hp_dict_to_parametrization(config)

        candidate._meta["trial_id"] = new_trial["tid"]
        return candidate
Ejemplo n.º 5
0
 def suggest(*args, **kwargs):
     return tpe.suggest(*args,
                        **kwargs,
                        gamma=self.gamma,
                        n_startup_jobs=self.seeds)
Ejemplo n.º 6
0
    def _fit_on_prepared_data(self, metadata):
        trials = Trials()
        domain = Domain(None, self.hyperopt_search_space)
        rand = np.random.RandomState(constants.RANDOM_SEED)

        all_estimators = []
        all_estimator_results = {}
        for i in range(0, self.num_params, self.parallelism):
            n = min(self.num_params - i, self.parallelism)

            # Using HyperOpt TPE to generate parameters
            hyperopt_params = []
            for j in range(i, i + n):
                new_param = tpe.suggest([j], domain, trials, rand.randint(0, 2 ** 31 - 1))
                new_param[0]['status'] = STATUS_RUNNING

                trials.insert_trial_docs(new_param)
                trials.refresh()
                hyperopt_params.append(new_param[0])

            # Generating Cerebro params from HyperOpt params
            estimator_param_maps = []
            for hyperopt_param in hyperopt_params:
                param = {}
                for k in hyperopt_param['misc']['vals']:
                    val = hyperopt_param['misc']['vals'][k][0].item()
                    if isinstance(self.search_space[k], _HPChoice):
                        # if the hyperparamer is a choice the index is returned
                        val = self.search_space[k].options[val]
                    param[k] = val
                estimator_param_maps.append(param)

            # Generating Cerebro estimators
            estimators = [self._estimator_gen_fn_wrapper(param) for param in estimator_param_maps]
            estimator_results = {model.getRunId(): {} for model in estimators}
            # log hyperparameters to TensorBoard
            self._log_hp_to_tensorboard(estimators, estimator_param_maps)

            # Trains the models up to the number of epochs specified. For each iteration also performs validation
            for epoch in range(self.num_epochs):
                epoch_results = self.backend.train_for_one_epoch(estimators, self.store, self.feature_cols,
                                                                 self.label_cols)
                update_model_results(estimator_results, epoch_results)

                epoch_results = self.backend.train_for_one_epoch(estimators, self.store, self.feature_cols,
                                                                 self.label_cols, is_train=False)
                update_model_results(estimator_results, epoch_results)

                self._log_epoch_metrics_to_tensorboard(estimators, estimator_results)

            all_estimators.extend(estimators)
            all_estimator_results.update(estimator_results)

            # HyperOpt TPE update
            for i, hyperopt_param in enumerate(hyperopt_params):
                hyperopt_param['status'] = STATUS_OK
                hyperopt_param['result'] = {'loss': estimator_results[estimators[i].getRunId()][
                    'val_' + self.evaluation_metric][-1], 'status': STATUS_OK}
            trials.refresh()

        # find the best model and crate ModelSearchModel
        models = [est.create_model(all_estimator_results[est.getRunId()], est.getRunId(), metadata) for est in
                  all_estimators]
        val_metrics = [all_estimator_results[est.getRunId()]['val_' + self.evaluation_metric][-1] for est in
                       all_estimators]
        best_model = models[np.argmin(val_metrics)]

        return ModelSelectionResult(best_model, estimator_results, models, [x+"__output" for x in self.label_cols])
Ejemplo n.º 7
0
def tpeSuggestWrapper(*args, **kwargs):
    modifiedKwargs = dict(kwargs)
    modifiedKwargs["seed"] = options.seed
    return tpe.suggest(*args, **modifiedKwargs)
Ejemplo n.º 8
0
def tpeSuggestWrapper(*args, **kwargs):
    modifiedKwargs = dict(kwargs)
    modifiedKwargs["seed"] = options.seed
    return tpe.suggest(*args, **modifiedKwargs)
    def search(self, run_name, store, context, hp_records, runs):
        
        def make_trial(tid, arg_dict, loss_value):
            trial = {"book_time": None, "exp_key": None, "owner": None, "refresh_time": None, "spec": None, "state": 0, "tid": tid, "version": 0}
            #trial["result"] = {"status": "New"}
            misc = {}
            trial["misc"] = misc

            misc["cmd"] = ("domain_attachment", "FMinIter_Domain")
            misc["idxs"] = {key: [tid] for key in arg_dict.keys()}
            misc["tid"] = tid
            misc["vals"] = arg_dict

            trial["state"] = 2   # done
            trial["result"] = {"loss": loss_value, "status": "ok"}
            #trial["refresh_time"] = coarse_utcnow()

            return trial

        dummy_loss = lambda x: None
        param_space = {r["name"]: r["space_func"] for r in hp_records} 
        domain = base.Domain(dummy_loss, param_space)

        rstate = np.random.RandomState()

        # convert runs to Trials
        trial_list = []

        for run in runs:
            # don't trip over inappropriate runs
            if (not "run_name" in run) or (not "hparams" in run) or (not context.primary_metric in run):
                continue

            run_name = run["run_name"]
            arg_dict = run["hparams"]

            loss_value = run[context.primary_metric]
            if context.maximize_metric:
                loss_value = -loss_value

            # extract a unique int from run_name   (parent.childnum)
            tid = run_helper.get_int_from_run_name(run_name)

            trial = make_trial(tid, arg_dict, loss_value)
            trial_list.append(trial)

        # finally, add our trial_list to trials
        trials = Trials()
        trials.insert_trial_docs(trial_list)
        trials.refresh()

        # get next suggested hyperparameter values from TPE algorithm
        tid = run_helper.get_int_from_run_name(run_name)

        min_trials = 3      # before this, just do rand sampling
        seed =  rstate.randint(2 ** 31 - 1)

        if len(trials) < min_trials:
            new_trials = rand.suggest([tid], domain, trials, seed)
        else:
            new_trials = tpe.suggest([tid], domain, trials, seed)

        # apply the suggested hparam values
        trial = new_trials[0]
        arg_dict = trial["misc"]["vals"]
        arg_dict = self.fixup_hyperopt_hparams(param_space, arg_dict)

        return arg_dict
Ejemplo n.º 10
0
def suggest_model(sid, trials):
    sug = tpe.suggest((sid, ), domain, trials, rstate.randint(2**31 - 1))[0]
    suggestions[sid] = sug
    return sug