Ejemplo n.º 1
0
 def create_figure(self):
     self.figure = utils.create_figure(
         window_title=("Figure " + self.title if self.title else None))
     canvas = self.figure.canvas
     self._background = canvas.copy_from_bbox(self.figure.bbox)
     self.figure.canvas.mpl_connect('draw_event', self._on_draw)
     utils.on_figure_window_close(self.figure, self.close)
Ejemplo n.º 2
0
 def plot(self, auto_update_plot = True):
     """Plots the current spectrum to the screen and a map with a cursor to 
     explore the SI.
     """
     
     # If new coordinates are assigned
     self.spectrum.plot()
     _plot = self.spectrum._plot
     l1 = _plot.spectrum_plot.ax_lines[0]
     color = l1.line.get_color()
     l1.line_properties_helper(color, 'scatter')
     l1.set_properties()
     
     l2 = hyperspy.drawing.spectrum.SpectrumLine()
     l2.data_function = self._model2plot
     l2.line_properties_helper('blue', 'line')        
     # Add the line to the figure
       
     _plot.spectrum_plot.add_line(l2)
     l2.plot()
     self.connect_parameters2update_plot()
     on_figure_window_close(_plot.spectrum_plot.figure, 
                                   self.disconnect_parameters2update_plot)
     self.set_auto_update_plot(True)
     self._plot = self.spectrum._plot
Ejemplo n.º 3
0
    def plot_signal(self):
        if self.signal_plot is not None:
            self.signal_plot.plot()
            return
        # Create the figure
        self.xlabel = '%s' % str(self.axes_manager.signal_axes[0])
        if self.axes_manager.signal_axes[0].units is not Undefined:
            self.xlabel += ' (%s)' % self.axes_manager.signal_axes[0].units
        self.ylabel = 'Intensity'
        self.axis = self.axes_manager.signal_axes[0].axis
        sf = spectrum.SpectrumFigure(title=self.signal_title + " Signal")
        sf.xlabel = self.xlabel
        sf.ylabel = self.ylabel
        sf.axis = self.axis
        sf.create_axis()
        sf.axes_manager = self.axes_manager
        self.signal_plot = sf
        # Create a line to the left axis with the default indices
        sl = spectrum.SpectrumLine()
        sl.autoscale = True
        sl.data_function = self.signal_data_function
        sl.plot_indices = True
        if self.pointer is not None:
            color = self.pointer.color
        else:
            color = 'red'
        sl.set_line_properties(color=color, type='step')
        # Add the line to the figure

        sf.add_line(sl)
        # If the data is complex create a line in the left axis with the
        # default coordinates
        sl = spectrum.SpectrumLine()
        sl.data_function = self.signal_data_function
        sl.plot_coordinates = True
        sl.get_complex = any(np.iscomplex(sl.data_function()))
        if sl.get_complex:
            sl.set_line_properties(color="blue", type='step')
            # Add extra line to the figure
            sf.add_line(sl)

        self.signal_plot = sf
        sf.plot()
        if self.navigator_plot is not None and sf.figure is not None:
            utils.on_figure_window_close(self.navigator_plot.figure,
                                         self._on_navigator_plot_closing)
            utils.on_figure_window_close(sf.figure, self.close_navigator_plot)
            self._key_nav_cid = \
                self.signal_plot.figure.canvas.mpl_connect(
                    'key_press_event',
                    self.axes_manager.key_navigator)
            self._key_nav_cid = \
                self.navigator_plot.figure.canvas.mpl_connect(
                    'key_press_event',
                    self.axes_manager.key_navigator)
            self.signal_plot.figure.canvas.mpl_connect(
                'key_press_event', self.key2switch_right_pointer)
            self.navigator_plot.figure.canvas.mpl_connect(
                'key_press_event', self.key2switch_right_pointer)
Ejemplo n.º 4
0
 def create_figure(self):
     self.figure = utils.create_figure(
         window_title=("Figure " + self.title
                       if self.title
                       else None))
     canvas = self.figure.canvas
     self._background = canvas.copy_from_bbox(self.figure.bbox)
     self.figure.canvas.mpl_connect('draw_event', self._on_draw)
     utils.on_figure_window_close(self.figure, self.close)
Ejemplo n.º 5
0
    def create_figure(self, max_size=8, min_size=2):
        if self.plot_scalebar is True:

            wfactor = 1.1
        else:
            wfactor = 1
        height = abs(self._extent[3] - self._extent[2]) * self._aspect
        width = abs(self._extent[1] - self._extent[0])
        figsize = np.array((width * wfactor, height)) * max_size / max((width * wfactor, height))
        self.figure = utils.create_figure(
            window_title=("Figure " + self.title if self.title else None), figsize=figsize.clip(min_size, max_size)
        )
        self.figure.canvas.mpl_connect("draw_event", self._on_draw)
        utils.on_figure_window_close(self.figure, self.close)
Ejemplo n.º 6
0
    def enable_adjust_position(self,
                               components=None,
                               fix_them=True,
                               show_label=True):
        """Allow changing the *x* position of component by dragging
        a vertical line that is plotted in the signal model figure

        Parameters
        ----------
        components : {None, list of components}
            If None, the position of all the active components of the
            model that has a well defined *x* position with a value
            in the axis range will get a position adjustment line.
            Otherwise the feature is added only to the given components.
            The components can be specified by name, index or themselves.
        fix_them : bool
            If True the position parameter of the components will be
            temporarily fixed until adjust position is disable.
            This can
            be useful to iteratively adjust the component positions and
            fit the model.
        show_label : bool, optional
            If True, a label showing the component name is added to the
            plot next to the vertical line.

        See also
        --------
        disable_adjust_position

        """
        if (self._plot is None or self._plot.is_active() is False):
            self.plot()
        if self._position_widgets:
            self.disable_adjust_position()
        on_figure_window_close(self._plot.signal_plot.figure,
                               self.disable_adjust_position)
        if components:
            components = [self._get_component(x) for x in components]
        else:
            self._adjust_position_all = (fix_them, show_label)

        components = components if components else self
        if not components:
            # The model does not have components so we do nothing
            return
        components = [
            component for component in components if component.active
        ]
        for component in components:
            self._make_position_adjuster(component, fix_them, show_label)
Ejemplo n.º 7
0
 def plot_signal(self):
     if self.signal_plot is not None:
         self.signal_plot.plot()
         return
     # Create the figure
     self.xlabel = '%s (%s)' % (
         self.axes_manager.signal_axes[0].name,
         self.axes_manager.signal_axes[0].units)
     self.ylabel = 'Intensity'
     self.axis = self.axes_manager.signal_axes[0].axis
     sf = spectrum.SpectrumFigure()
     sf.xlabel = self.xlabel
     sf.ylabel = self.ylabel
     sf.title = self.signal_title
     sf.axis = self.axis
     sf.create_axis()
     sf.axes_manager = self.axes_manager
     self.signal_plot = sf
     # Create a line to the left axis with the default indices
     sl = spectrum.SpectrumLine()
     sl.data_function = self.signal_data_function
     sl.plot_indices = True
     if self.pointer is not None:
         color = self.pointer.color
     else:
         color = 'red'
     sl.line_properties_helper(color, 'step')        
     # Add the line to the figure
       
     sf.add_line(sl)
     self.signal_plot = sf
     sf.plot()
     if self.navigator_plot is not None and sf.figure is not None:
         utils.on_figure_window_close(self.navigator_plot.figure, 
         self._disconnect)
         utils.on_figure_window_close(sf.figure,
                                         self.close_navigator_plot)
         self._key_nav_cid = \
             self.signal_plot.figure.canvas.mpl_connect(
                     'key_press_event',
                     self.axes_manager.key_navigator)
         self._key_nav_cid = \
             self.navigator_plot.figure.canvas.mpl_connect(
                 'key_press_event',
                 self.axes_manager.key_navigator)
         self.signal_plot.figure.canvas.mpl_connect(
             'key_press_event', self.key2switch_right_pointer)
         self.navigator_plot.figure.canvas.mpl_connect(
             'key_press_event', self.key2switch_right_pointer)
Ejemplo n.º 8
0
    def create_figure(self, max_size=8, min_size=2):
        if self.scalebar is True:

            wfactor = 1.1
        else:
            wfactor = 1
        height = abs(self._extent[3] - self._extent[2]) * self._aspect
        width = abs(self._extent[1] - self._extent[0])
        figsize = np.array((width * wfactor, height)) * max_size / max(
            (width * wfactor, height))
        self.figure = utils.create_figure(
            window_title=("Figure " + self.title if self.title else None),
            figsize=figsize.clip(min_size, max_size))
        self.figure.canvas.mpl_connect('draw_event', self._on_draw)
        utils.on_figure_window_close(self.figure, self._on_close)
Ejemplo n.º 9
0
    def enable_adjust_position(
            self, components=None, fix_them=True, show_label=True):
        """Allow changing the *x* position of component by dragging
        a vertical line that is plotted in the signal model figure

        Parameters
        ----------
        components : {None, list of components}
            If None, the position of all the active components of the
            model that has a well defined *x* position with a value
            in the axis range will get a position adjustment line.
            Otherwise the feature is added only to the given components.
            The components can be specified by name, index or themselves.
        fix_them : bool
            If True the position parameter of the components will be
            temporarily fixed until adjust position is disable.
            This can
            be useful to iteratively adjust the component positions and
            fit the model.
        show_label : bool, optional
            If True, a label showing the component name is added to the
            plot next to the vertical line.

        See also
        --------
        disable_adjust_position

        """
        if (self._plot is None or
                self._plot.is_active() is False):
            self.plot()
        if self._position_widgets:
            self.disable_adjust_position()
        on_figure_window_close(self._plot.signal_plot.figure,
                               self.disable_adjust_position)
        if components:
            components = [self._get_component(x) for x in components]
        else:
            self._adjust_position_all = (fix_them, show_label)

        components = components if components else self
        if not components:
            # The model does not have components so we do nothing
            return
        components = [
            component for component in components if component.active]
        for component in components:
            self._make_position_adjuster(component, fix_them, show_label)
Ejemplo n.º 10
0
    def create_figure(self, **kwargs):
        """Create matplotlib figure

        Parameters
        ----------
        **kwargs
            All keyword arguments are passed to ``plt.figure``.

        """
        self.figure = utils.create_figure(
            window_title="Figure " + self.title if self.title
            else None, **kwargs)
        utils.on_figure_window_close(self.figure, self._on_close)
        if self.figure.canvas.supports_blit:
            self._draw_event_cid = self.figure.canvas.mpl_connect(
                'draw_event', self._on_blit_draw)
Ejemplo n.º 11
0
    def create_figure(self, **kwargs):
        """Create matplotlib figure

        Parameters
        ----------
        **kwargs
            All keyword arguments are passed to ``plt.figure``.

        """
        self.figure = utils.create_figure(window_title="Figure " +
                                          self.title if self.title else None,
                                          **kwargs)
        utils.on_figure_window_close(self.figure, self._on_close)
        if self.figure.canvas.supports_blit:
            self._draw_event_cid = self.figure.canvas.mpl_connect(
                'draw_event', self._on_blit_draw)
Ejemplo n.º 12
0
    def virtual_aperture(self, signal=None, annulus=False, navigate=False):
        ui = self.ui
        if signal is None:
            signal = ui.get_selected_signal()
        dd = np.array([
            a.high_value + a.low_value for a in signal.axes_manager.signal_axes
        ]) / 2.0
        r = hs.roi.CircleROI(dd[0], dd[1],
                             signal.axes_manager.signal_axes[0].scale * 3)
        if annulus:
            r.r_inner = signal.axes_manager.signal_axes[0].scale * 2
        s_virtual = r.interactive(signal,
                                  None,
                                  axes=signal.axes_manager.signal_axes)
        s_nav = hs.interactive(s_virtual.mean,
                               s_virtual.events.data_changed,
                               axis=s_virtual.axes_manager.signal_axes)
        s_nav.axes_manager.set_signal_dimension(2)
        if navigate:
            signal.plot(navigator=s_nav)
            signal._plot.navigator_plot.update()
            s_nav.events.data_changed.connect(
                signal._plot.navigator_plot.update, [])
            utils.on_figure_window_close(signal._plot.navigator_plot.figure,
                                         partial(self._on_close, r))
        else:
            s_nav.plot()
            utils.on_figure_window_close(s_nav._plot.signal_plot.figure,
                                         partial(self._on_close, r))

        if navigate:
            r.add_widget(signal,
                         axes=signal.axes_manager.signal_axes,
                         color='darkorange')
        else:
            r.add_widget(signal, axes=signal.axes_manager.signal_axes)
        self._rois.append(r)
        self.record_code("<p>.virtual_aperture(navigate=%s)" % navigate)
Ejemplo n.º 13
0
    def virtual_aperture(self, signal=None, annulus=False, navigate=False):
        ui = self.ui
        if signal is None:
            signal = ui.get_selected_signal()
        dd = np.array([a.high_value + a.low_value for a in
                       signal.axes_manager.signal_axes]) / 2.0
        r = hs.roi.CircleROI(dd[0], dd[1],
                             signal.axes_manager.signal_axes[0].scale*3)
        if annulus:
            r.r_inner = signal.axes_manager.signal_axes[0].scale*2
        s_virtual = r.interactive(signal, None,
                                  axes=signal.axes_manager.signal_axes)
        s_nav = hs.interactive(
            s_virtual.mean,
            s_virtual.events.data_changed,
            axis=s_virtual.axes_manager.signal_axes)
        s_nav.axes_manager.set_signal_dimension(2)
        if navigate:
            signal.plot(navigator=s_nav)
            signal._plot.navigator_plot.update()
            s_nav.events.data_changed.connect(
                signal._plot.navigator_plot.update, [])
            utils.on_figure_window_close(
                signal._plot.navigator_plot.figure,
                partial(self._on_close, r))
        else:
            s_nav.plot()
            utils.on_figure_window_close(
                s_nav._plot.signal_plot.figure,
                partial(self._on_close, r))

        if navigate:
            r.add_widget(signal, axes=signal.axes_manager.signal_axes,
                         color='darkorange')
        else:
            r.add_widget(signal, axes=signal.axes_manager.signal_axes)
        self._rois.append(r)
        self.record_code("<p>.virtual_aperture(navigate=%s)" % navigate)
Ejemplo n.º 14
0
    def plot_signal(self):
        if self.signal_plot is not None:
            self.signal_plot.plot()
            return
        imf = image.ImagePlot()
        imf.axes_manager = self.axes_manager
        imf.data_function = self.signal_data_function
        imf.title = self.signal_title + " Signal"
        imf.xaxis, imf.yaxis = self.axes_manager.signal_axes
        imf.plot_colorbar = True
        imf.plot()
        self.signal_plot = imf

        if self.navigator_plot is not None and imf.figure is not None:
            utils.on_figure_window_close(self.navigator_plot.figure,
                                         self.close_navigator_plot)
            utils.on_figure_window_close(imf.figure, self.close_navigator_plot)
            self._key_nav_cid = \
                self.signal_plot.figure.canvas.mpl_connect(
                    'key_press_event', self.axes_manager.key_navigator)
            self._key_nav_cid = \
                self.navigator_plot.figure.canvas.mpl_connect(
                    'key_press_event', self.axes_manager.key_navigator)
Ejemplo n.º 15
0
    def plot(self, plot_components=False):
        """Plots the current spectrum to the screen and a map with a
        cursor to explore the SI.

        Parameters
        ----------
        plot_components : bool
            If True, add a line per component to the signal figure.

        """

        # If new coordinates are assigned
        self.spectrum.plot()
        _plot = self.spectrum._plot
        l1 = _plot.signal_plot.ax_lines[0]
        color = l1.line.get_color()
        l1.set_line_properties(color=color, type='scatter')

        l2 = hyperspy.drawing.spectrum.SpectrumLine()
        l2.data_function = self._model2plot
        l2.set_line_properties(color='blue', type='line')
        # Add the line to the figure
        _plot.signal_plot.add_line(l2)
        l2.plot()
        on_figure_window_close(_plot.signal_plot.figure,
                               self._close_plot)

        self._model_line = l2
        self._plot = self.spectrum._plot
        self._connect_parameters2update_plot(self)
        if plot_components is True:
            self.enable_plot_components()
        else:
            # If we were plotted before, make sure we reset state here
            self.disable_plot_components()
        # If we were plotted before, make sure we reset state here
        self.disable_adjust_position()
Ejemplo n.º 16
0
    def plot_signal(self):
        if self.signal_plot is not None:
            self.signal_plot.plot()
            return
        imf = image.ImagePlot()
        imf.axes_manager = self.axes_manager
        imf.data_function = self.signal_data_function
        imf.title = self.signal_title + " Signal"
        imf.xaxis, imf.yaxis = self.axes_manager.signal_axes
        imf.plot_colorbar = True
        imf.plot()
        self.signal_plot = imf

        if self.navigator_plot is not None and imf.figure is not None:
            utils.on_figure_window_close(self.navigator_plot.figure,
                                         self.close_navigator_plot)
            utils.on_figure_window_close(
                imf.figure, self.close_navigator_plot)
            self._key_nav_cid = \
                self.signal_plot.figure.canvas.mpl_connect(
                    'key_press_event', self.axes_manager.key_navigator)
            self._key_nav_cid = \
                self.navigator_plot.figure.canvas.mpl_connect(
                    'key_press_event', self.axes_manager.key_navigator)
Ejemplo n.º 17
0
    def plot(self, plot_components=False):
        """Plots the current spectrum to the screen and a map with a
        cursor to explore the SI.

        Parameters
        ----------
        plot_components : bool
            If True, add a line per component to the signal figure.

        """

        # If new coordinates are assigned
        self.spectrum.plot()
        _plot = self.spectrum._plot
        l1 = _plot.signal_plot.ax_lines[0]
        color = l1.line.get_color()
        l1.set_line_properties(color=color, type='scatter')

        l2 = hyperspy.drawing.spectrum.SpectrumLine()
        l2.data_function = self._model2plot
        l2.set_line_properties(color='blue', type='line')
        # Add the line to the figure
        _plot.signal_plot.add_line(l2)
        l2.plot()
        on_figure_window_close(_plot.signal_plot.figure, self._close_plot)

        self._model_line = l2
        self._plot = self.spectrum._plot
        self._connect_parameters2update_plot(self)
        if plot_components is True:
            self.enable_plot_components()
        else:
            # If we were plotted before, make sure we reset state here
            self.disable_plot_components()
        # If we were plotted before, make sure we reset state here
        self.disable_adjust_position()
Ejemplo n.º 18
0
 def connect(self, ax):
     """Connect to the matplotlib Axes' events.
     """
     on_figure_window_close(ax.figure, self.close)
     if self._navigating:
         self.connect_navigate()
Ejemplo n.º 19
0
 def create_figure(self):
     self.figure = utils.create_figure(
         window_title="Figure " + self.title if self.title
         else None)
     utils.on_figure_window_close(self.figure, self.close)
     self.figure.canvas.mpl_connect('draw_event', self._on_draw)
Ejemplo n.º 20
0
 def create_figure(self):
     self.figure = utils.create_figure(window_title="Figure " +
                                       self.title if self.title else None)
     utils.on_figure_window_close(self.figure, self.close)
     self.figure.canvas.mpl_connect('draw_event', self._on_draw)
Ejemplo n.º 21
0
    def plot_signal(self,
                    colorbar=True,
                    scalebar=True,
                    scalebar_color="white",
                    axes_ticks=None,
                    auto_contrast=True,
                    saturated_pixels=0.2,
                    vmin=None,
                    vmax=None,
                    no_nans=False,
                    **kwargs
                    ):
        """Plot image.

        Parameters
        ----------
        colorbar : bool, optional
             If true, a colorbar is plotted for non-RGB images.
        scalebar : bool, optional
            If True and the units and scale of the x and y axes are the same a
            scale bar is plotted.
        scalebar_color : str, optional
            A valid MPL color string; will be used as the scalebar color.
        axes_ticks : {None, bool}, optional
            If True, plot the axes ticks. If None axes_ticks are only
            plotted when the scale bar is not plotted. If False the axes ticks
            are never plotted.
        auto_contrast : bool, optional
            If True, the contrast is stretched for each image using the
            `saturated_pixels` value. Default True
        saturated_pixels: scalar
            The percentage of pixels that are left out of the bounds. For
            example, the low and high bounds of a value of 1 are the
            0.5% and 99.5% percentiles. It must be in the [0, 100] range.
        vmin, vmax : scalar, optional
            `vmin` and `vmax` are used to normalize luminance data. If
            `auto_contrast` is True (i.e. default) these values are ignore.
        no_nans : bool, optional
            If True, set nans to zero for plotting.
        **kwargs, optional
            Additional key word arguments passed to matplotlib.imshow()

        """
        if self.signal_plot is not None:
            self.signal_plot.plot(**kwargs)
            return
        imf = image.ImagePlot()
        imf.axes_manager = self.axes_manager
        imf.data_function = self.signal_data_function
        imf.title = self.signal_title + " Signal"
        imf.xaxis, imf.yaxis = self.axes_manager.signal_axes
        imf.colorbar = colorbar
        imf.scalebar = scalebar
        imf.axes_ticks = axes_ticks
        imf.vmin, imf.vmax = vmin, vmax
        imf.saturated_pixels = saturated_pixels
        imf.no_nans = no_nans
        imf.scalebar_color = scalebar_color
        imf.auto_contrast = auto_contrast
        imf.plot(**kwargs)
        self.signal_plot = imf

        if self.navigator_plot is not None and imf.figure is not None:
            utils.on_figure_window_close(self.navigator_plot.figure,
                                         self.close_navigator_plot)
            utils.on_figure_window_close(
                imf.figure, self.close_navigator_plot)
            self._key_nav_cid = \
                self.signal_plot.figure.canvas.mpl_connect(
                    'key_press_event', self.axes_manager.key_navigator)
            self._key_nav_cid = \
                self.navigator_plot.figure.canvas.mpl_connect(
                    'key_press_event', self.axes_manager.key_navigator)
Ejemplo n.º 22
0
    def plot_signal(self):
        if self.signal_plot is not None:
            self.signal_plot.plot()
            return
        # Create the figure
        self.xlabel = '%s' % str(self.axes_manager.signal_axes[0])
        if self.axes_manager.signal_axes[0].units is not Undefined:
            self.xlabel += ' (%s)' % self.axes_manager.signal_axes[0].units
        self.ylabel = 'Intensity'
        self.axis = self.axes_manager.signal_axes[0]
        sf = spectrum.SpectrumFigure(title=self.signal_title +
                                     " Signal")
        sf.xlabel = self.xlabel
        sf.ylabel = self.ylabel
        sf.axis = self.axis
        sf.create_axis()
        sf.axes_manager = self.axes_manager
        self.signal_plot = sf
        # Create a line to the left axis with the default indices
        sl = spectrum.SpectrumLine()
        sl.autoscale = True
        sl.data_function = self.signal_data_function
        sl.plot_indices = True
        if self.pointer is not None:
            color = self.pointer.color
        else:
            color = 'red'
        sl.set_line_properties(color=color, type='step')
        # Add the line to the figure

        sf.add_line(sl)
        # If the data is complex create a line in the left axis with the
        # default coordinates
        sl = spectrum.SpectrumLine()
        sl.data_function = self.signal_data_function
        sl.plot_coordinates = True
        sl.get_complex = any(np.iscomplex(sl.data_function()))
        if sl.get_complex:
            sl.set_line_properties(color="blue", type='step')
            # Add extra line to the figure
            sf.add_line(sl)

        self.signal_plot = sf
        sf.plot()
        if self.navigator_plot is not None and sf.figure is not None:
            utils.on_figure_window_close(self.navigator_plot.figure,
                                         self._on_navigator_plot_closing)
            utils.on_figure_window_close(sf.figure,
                                         self.close_navigator_plot)
            self._key_nav_cid = \
                self.signal_plot.figure.canvas.mpl_connect(
                    'key_press_event',
                    self.axes_manager.key_navigator)
            self._key_nav_cid = \
                self.navigator_plot.figure.canvas.mpl_connect(
                    'key_press_event',
                    self.axes_manager.key_navigator)
            self.signal_plot.figure.canvas.mpl_connect(
                'key_press_event', self.key2switch_right_pointer)
            self.navigator_plot.figure.canvas.mpl_connect(
                'key_press_event', self.key2switch_right_pointer)
Ejemplo n.º 23
0
 def connect(self, ax):
     """Connect to the matplotlib Axes' events.
     """
     on_figure_window_close(ax.figure, self.close)
     if self._navigating:
         self.connect_navigate()
Ejemplo n.º 24
0
    def plot_signal(self,
                    colorbar=True,
                    scalebar=True,
                    scalebar_color="white",
                    axes_ticks=None,
                    auto_contrast=True,
                    saturated_pixels=0.2,
                    vmin=None,
                    vmax=None,
                    no_nans=False,
                    centre_colormap="auto",
                    **kwargs
                    ):
        """Plot image.

        Parameters
        ----------
        colorbar : bool, optional
             If true, a colorbar is plotted for non-RGB images.
        scalebar : bool, optional
            If True and the units and scale of the x and y axes are the same a
            scale bar is plotted.
        scalebar_color : str, optional
            A valid MPL color string; will be used as the scalebar color.
        axes_ticks : {None, bool}, optional
            If True, plot the axes ticks. If None axes_ticks are only
            plotted when the scale bar is not plotted. If False the axes ticks
            are never plotted.
        auto_contrast : bool, optional
            If True, the contrast is stretched for each image using the
            `saturated_pixels` value. Default True
        saturated_pixels: scalar
            The percentage of pixels that are left out of the bounds. For
            example, the low and high bounds of a value of 1 are the
            0.5% and 99.5% percentiles. It must be in the [0, 100] range.
        vmin, vmax : scalar, optional
            `vmin` and `vmax` are used to normalize luminance data. If
            `auto_contrast` is True (i.e. default) these values are ignore.
        no_nans : bool, optional
            If True, set nans to zero for plotting.
        **kwargs, optional
            Additional key word arguments passed to matplotlib.imshow()

        """
        if self.signal_plot is not None:
            self.signal_plot.plot(**kwargs)
            return
        imf = image.ImagePlot()
        imf.axes_manager = self.axes_manager
        imf.data_function = self.signal_data_function
        imf.title = self.signal_title + " Signal"
        imf.xaxis, imf.yaxis = self.axes_manager.signal_axes
        imf.colorbar = colorbar
        imf.scalebar = scalebar
        imf.axes_ticks = axes_ticks
        imf.vmin, imf.vmax = vmin, vmax
        imf.saturated_pixels = saturated_pixels
        imf.no_nans = no_nans
        imf.scalebar_color = scalebar_color
        imf.auto_contrast = auto_contrast
        imf.centre_colormap = centre_colormap
        imf.plot(**kwargs)
        self.signal_plot = imf

        if self.navigator_plot is not None and imf.figure is not None:
            utils.on_figure_window_close(self.navigator_plot.figure,
                                         self.close_navigator_plot)
            utils.on_figure_window_close(
                imf.figure, self.close_navigator_plot)
            self._key_nav_cid = \
                self.signal_plot.figure.canvas.mpl_connect(
                    'key_press_event', self.axes_manager.key_navigator)
            self._key_nav_cid = \
                self.navigator_plot.figure.canvas.mpl_connect(
                    'key_press_event', self.axes_manager.key_navigator)
Ejemplo n.º 25
0
 def enable_adjust_position(self, components=None, fix_them=True):
     """Allow changing the *x* position of component by dragging 
     a vertical line that is plotted in the signal model figure
     
     Parameters
     ----------
     components : {None, list of components}
         If None, the position of all the active components of the 
         model that has a well defined *x* position with a value 
         in the axis range will get a position adjustment line. 
         Otherwise the feature is added only to the given components.
     fix_them : bool
         If True the position parameter of the components will be
         temporarily fixed until adjust position is disable.
         This can 
         be useful to iteratively adjust the component positions and 
         fit the model.
         
     See also
     --------
     disable_adjust_position
     
     """
     if (self._plot is None or 
         self._plot.is_active() is False):
         self.plot()
     if self._position_widgets:
         self.disable_adjust_position()
     on_figure_window_close(self._plot.signal_plot.figure, 
                            self.disable_adjust_position)
     components = components if components else self
     if not components:
         # The model does not have components so we do nothing
         return
     components = [
         component for component in components if component.active]
     axis_dict = self.axes_manager.signal_axes[0].get_axis_dictionary()
     axis_dict['index_in_array'] = 0
     for component in self:
         if (component._position is not None and
             not component._position.twin):
             set_value = component._position._setvalue
             get_value = component._position._getvalue        
         else:
             continue
         # Create an AxesManager for the widget
         am = AxesManager([axis_dict,])
         am.axes[0].navigate = True
         try:
             am.axes[0].value = get_value()
         except TraitError:
             # The value is outside of the axis range
             continue
         # Create the vertical line and labels
         self._position_widgets.extend((
             DraggableVerticalLine(am),
             DraggableLabel(am),))
         # Store the component to reset its twin when disabling
         # adjust position
         self._position_widgets[-1].component = component
         w = self._position_widgets[-1]
         w.string = component._get_short_description().replace(
                                                 ' component', '')
         w.add_axes(self._plot.signal_plot.ax)
         self._position_widgets[-2].add_axes(
                                         self._plot.signal_plot.ax)
         # Create widget -> parameter connection
         am.axes[0].continuous_value = True
         am.axes[0].on_trait_change(set_value, 'value')
         # Create parameter -> widget connection
         # This is done with a duck typing trick
         # We disguise the AxesManager axis of Parameter by adding
         # the _twin attribute
         am.axes[0]._twins  = set()
         component._position.twin = am.axes[0]