Ejemplo n.º 1
0
 def test_quant_zeros(self):
     intens = np.array([[0.5, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.0, 0.0]]).T
     with ignore_warning(message="divide by zero encountered", category=RuntimeWarning):
         quant = utils_eds.quantification_cliff_lorimer(intens, [1, 1, 3]).T
     np.testing.assert_allclose(
         quant, np.array([[0.2, 0.2, 0.6], [0.0, 0.25, 0.75], [0.25, 0.0, 0.75], [0.5, 0.5, 0.0], [1.0, 0.0, 0.0]])
     )
Ejemplo n.º 2
0
 def test_quant_zeros(self):
     intens = np.array([[0.5, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.0, 0.5],
                        [0.5, 0.5, 0.0], [0.5, 0.0, 0.0]]).T
     with ignore_warning(message="divide by zero encountered",
                         category=RuntimeWarning):
         quant = utils_eds.quantification_cliff_lorimer(intens, [1, 1, 3]).T
     np.testing.assert_allclose(
         quant,
         np.array([[0.2, 0.2, 0.6], [0.0, 0.25, 0.75], [0.25, 0.0, 0.75],
                   [0.5, 0.5, 0.0], [1.0, 0.0, 0.0]]))
Ejemplo n.º 3
0
 def test_quant_zeros(self):
     intens = np.array([[0.5, 0.5, 0.5],
                        [0., 0.5, 0.5],
                        [0.5, 0.0, 0.5],
                        [0.5, 0.5, 0.0],
                        [0.5, 0.0, 0.0]]).T
     assert_true(np.allclose(
         utils_eds.quantification_cliff_lorimer(
             intens, [1, 1, 3]).T,
         np.array([[0.2, 0.2, 0.6],
                   [0., 0.25, 0.75],
                   [0.25, 0., 0.75],
                   [0.5, 0.5, 0.],
                   [1., 0., 0.]])))
Ejemplo n.º 4
0
 def test_quant_zeros(self):
     intens = np.array([[0.5, 0.5, 0.5],
                        [0., 0.5, 0.5],
                        [0.5, 0.0, 0.5],
                        [0.5, 0.5, 0.0],
                        [0.5, 0.0, 0.0]]).T
     assert_true(np.allclose(
         utils_eds.quantification_cliff_lorimer(
             intens, [1, 1, 3]).T,
         np.array([[0.2, 0.2, 0.6],
                   [0., 0.25, 0.75],
                   [0.25, 0., 0.75],
                   [0.5, 0.5, 0.],
                   [1., 0., 0.]])))
Ejemplo n.º 5
0
    def quantification(self,
                       intensities,
                       method,
                       factors,
                       composition_units='atomic',
                       navigation_mask=1.0,
                       closing=True,
                       plot_result=False,
                       **kwargs):
        """
        Quantification using Cliff-Lorimer, the zeta-factor method, or
        ionization cross sections.

        Parameters
        ----------
        intensities: list of signal
            the intensitiy for each X-ray lines.
        method: 'CL' or 'zeta' or 'cross_section'
            Set the quantification method: Cliff-Lorimer, zeta-factor, or
            ionization cross sections.
        factors: list of float
            The list of kfactors, zeta-factors or cross sections in same order
            as intensities. Note that intensities provided by Hyperspy are
            sorted by the alphabetical order of the X-ray lines.
            eg. factors =[0.982, 1.32, 1.60] for ['Al_Ka', 'Cr_Ka', 'Ni_Ka'].
        composition_units: 'weight' or 'atomic'
            The quantification returns the composition in atomic percent by
            default, but can also return weight percent if specified.
        navigation_mask : None or float or signal
            The navigation locations marked as True are not used in the
            quantification. If int is given the vacuum_mask method is used to
            generate a mask with the int value as threhsold.
            Else provides a signal with the navigation shape.
        closing: bool
            If true, applied a morphologic closing to the mask obtained by
            vacuum_mask.
        plot_result : bool
            If True, plot the calculated composition. If the current
            object is a single spectrum it prints the result instead.
        kwargs
            The extra keyword arguments are passed to plot.

        Returns
        ------
        A list of quantified elemental maps (signal) giving the composition of
        the sample in weight or atomic percent.

        If the method is 'zeta' this function also returns the mass thickness
        profile for the data.

        If the method is 'cross_section' this function also returns the atom
        counts for each element.

        Examples
        --------
        >>> s = hs.datasets.example_signals.EDS_TEM_Spectrum()
        >>> s.add_lines()
        >>> kfactors = [1.450226, 5.075602] #For Fe Ka and Pt La
        >>> bw = s.estimate_background_windows(line_width=[5.0, 2.0])
        >>> s.plot(background_windows=bw)
        >>> intensities = s.get_lines_intensity(background_windows=bw)
        >>> res = s.quantification(intensities, kfactors, plot_result=True,
        >>>                        composition_units='atomic')
        Fe (Fe_Ka): Composition = 15.41 atomic percent
        Pt (Pt_La): Composition = 84.59 atomic percent

        See also
        --------
        vacuum_mask
        """
        if self.axes_manager.navigation_size == 0:
            navigation_mask = None
        elif isinstance(navigation_mask, float):
            navigation_mask = self.vacuum_mask(navigation_mask, closing).data
        elif navigation_mask is not None:
            navigation_mask = navigation_mask.data

        composition = utils.stack(intensities, lazy=False)
        if method == 'CL':
            composition.data = utils_eds.quantification_cliff_lorimer(
                composition.data, kfactors=factors,
                mask=navigation_mask) * 100.
        elif method == 'zeta':
            results = utils_eds.quantification_zeta_factor(composition.data,
                                                           zfactors=factors,
                                                           dose=self._get_dose(
                                                               method,
                                                               **kwargs))
            composition.data = results[0] * 100.
            mass_thickness = intensities[0].deepcopy()
            mass_thickness.data = results[1]
            mass_thickness.metadata.General.title = 'Mass thickness'
        elif method == 'cross_section':
            results = utils_eds.quantification_cross_section(
                composition.data,
                cross_sections=factors,
                dose=self._get_dose(method, **kwargs))
            composition.data = results[0] * 100
            number_of_atoms = composition._deepcopy_with_new_data(results[1])
            number_of_atoms = number_of_atoms.split()
        else:
            raise ValueError("Please specify method for quantification, "
                             "as 'CL', 'zeta' or 'cross_section'.")

        composition = composition.split()
        if composition_units == 'atomic':
            if method != 'cross_section':
                composition = utils.material.weight_to_atomic(composition)
        else:
            if method == 'cross_section':
                composition = utils.material.atomic_to_weight(composition)
        for i, intensity in enumerate(intensities):
            xray_line = intensity.metadata.Sample.xray_lines[0]
            element, line = utils_eds._get_element_and_line(xray_line)
            composition[i].metadata.General.title = composition_units + \
                ' percent of ' + element
            composition[i].metadata.set_item("Sample.elements", ([element]))
            composition[i].metadata.set_item("Sample.xray_lines",
                                             ([xray_line]))
            if plot_result and \
                    composition[i].axes_manager.navigation_size == 1:
                print("%s (%s): Composition = %.2f %s percent" %
                      (element, xray_line, composition[i].data,
                       composition_units))
            if method == 'cross_section':
                number_of_atoms[i].metadata.General.title = \
                    'atom counts of ' + element
                number_of_atoms[i].metadata.set_item("Sample.elements",
                                                     ([element]))
                number_of_atoms[i].metadata.set_item("Sample.xray_lines",
                                                     ([xray_line]))
        if plot_result and composition[i].axes_manager.navigation_size != 1:
            utils.plot.plot_signals(composition, **kwargs)
        if method == 'zeta':
            self.metadata.set_item("Sample.mass_thickness", mass_thickness)
            return composition, mass_thickness
        elif method == 'cross_section':
            return composition, number_of_atoms
        elif method == 'CL':
            return composition
        else:
            raise ValueError("Please specify method for quantification, as "
                             "'CL', 'zeta' or 'cross_section'.")
Ejemplo n.º 6
0
    def quantification(self,
                       intensities,
                       method,
                       factors='auto',
                       composition_units='atomic',
                       navigation_mask=1.0,
                       closing=True,
                       plot_result=False,
                       **kwargs):
        """
        Quantification using Cliff-Lorimer, the zeta-factor method, or
        ionization cross sections.

        Parameters
        ----------
        intensities: list of signal
            the intensitiy for each X-ray lines.
        method: 'CL' or 'zeta' or 'cross_section'
            Set the quantification method: Cliff-Lorimer, zeta-factor, or
            ionization cross sections.
        factors: list of float
            The list of kfactors, zeta-factors or cross sections in same order as
            intensities. Note that intensities provided by Hyperspy are sorted
            by the alphabetical order of the X-ray lines.
            eg. factors =[0.982, 1.32, 1.60] for ['Al_Ka', 'Cr_Ka', 'Ni_Ka'].
        composition_units: 'weight' or 'atomic'
            The quantification returns the composition in atomic percent by default,
            but can also return weight percent if specified.
        navigation_mask : None or float or signal
            The navigation locations marked as True are not used in the
            quantification. If int is given the vacuum_mask method is used to
            generate a mask with the int value as threhsold.
            Else provides a signal with the navigation shape.
        closing: bool
            If true, applied a morphologic closing to the mask obtained by
            vacuum_mask.
        plot_result : bool
            If True, plot the calculated composition. If the current
            object is a single spectrum it prints the result instead.
        kwargs
            The extra keyword arguments are passed to plot.

        Returns
        ------
        A list of quantified elemental maps (signal) giving the composition of
        the sample in weight or atomic percent.

        If the method is 'zeta' this function also returns the mass thickness
        profile for the data.

        If the method is 'cross_section' this function also returns the atom
        counts for each element.

        Examples
        --------
        >>> s = hs.datasets.example_signals.EDS_TEM_Spectrum()
        >>> s.add_lines()
        >>> kfactors = [1.450226, 5.075602] #For Fe Ka and Pt La
        >>> bw = s.estimate_background_windows(line_width=[5.0, 2.0])
        >>> s.plot(background_windows=bw)
        >>> intensities = s.get_lines_intensity(background_windows=bw)
        >>> res = s.quantification(intensities, kfactors, plot_result=True,
        >>>                        composition_units='atomic')
        Fe (Fe_Ka): Composition = 15.41 atomic percent
        Pt (Pt_La): Composition = 84.59 atomic percent

        See also
        --------
        vacuum_mask
        """
        if isinstance(navigation_mask, float):
            navigation_mask = self.vacuum_mask(navigation_mask, closing).data
        elif navigation_mask is not None:
            navigation_mask = navigation_mask.data
        xray_lines = self.metadata.Sample.xray_lines
        composition = utils.stack(intensities)
        if method == 'CL':
            composition.data = utils_eds.quantification_cliff_lorimer(
                composition.data, kfactors=factors,
                mask=navigation_mask) * 100.
        elif method == 'zeta':
            results = utils_eds.quantification_zeta_factor(
                composition.data, zfactors=factors,
                dose=self._get_dose(method))
            composition.data = results[0] * 100.
            mass_thickness = intensities[0].deepcopy()
            mass_thickness.data = results[1]
            mass_thickness.metadata.General.title = 'Mass thickness'
        elif method == 'cross_section':
            results = utils_eds.quantification_cross_section(composition.data,
                    cross_sections=factors,
                    dose=self._get_dose(method))
            composition.data = results[0] * 100
            number_of_atoms = utils.stack(intensities)
            number_of_atoms.data = results[1]
            number_of_atoms = number_of_atoms.split()
        else:
            raise ValueError ('Please specify method for quantification, as \'CL\', \'zeta\' or \'cross_section\'')
        composition = composition.split()
        if composition_units == 'atomic':
            if method != 'cross_section':
                composition = utils.material.weight_to_atomic(composition)
        else:
            if method == 'cross_section':
                composition = utils.material.atomic_to_weight(composition)
        for i, xray_line in enumerate(xray_lines):
            element, line = utils_eds._get_element_and_line(xray_line)
            composition[i].metadata.General.title = composition_units + \
                ' percent of ' + element
            composition[i].metadata.set_item("Sample.elements", ([element]))
            composition[i].metadata.set_item(
                "Sample.xray_lines", ([xray_line]))
            if plot_result and \
                    composition[i].axes_manager.signal_dimension == 0:
                print("%s (%s): Composition = %.2f %s percent"
                      % (element, xray_line, composition[i].data,
                         composition_units))
        if method=='cross_section':
            for i, xray_line in enumerate(xray_lines):
                element, line = utils_eds._get_element_and_line(xray_line)
                number_of_atoms[i].metadata.General.title = 'atom counts of ' +\
                    element
                number_of_atoms[i].metadata.set_item("Sample.elements",
                    ([element]))
                number_of_atoms[i].metadata.set_item(
                    "Sample.xray_lines", ([xray_line]))
        if plot_result and composition[i].axes_manager.signal_dimension != 0:
            utils.plot.plot_signals(composition, **kwargs)
        if method=='zeta':
            self.metadata.set_item("Sample.mass_thickness", mass_thickness)
            return composition, mass_thickness
        elif method == 'cross_section':
            return composition, number_of_atoms
        elif method == 'CL':
            return composition
        else:
            raise ValueError ('Please specify method for quantification, as \'CL\', \'zeta\' or \'cross_section\'')
Ejemplo n.º 7
0
    def quantification(
        self,
        intensities,
        kfactors,
        composition_units="weight",
        navigation_mask=1.0,
        closing=True,
        plot_result=False,
        **kwargs
    ):
        """
        Quantification of intensities to return elemental composition

        Method: Cliff-Lorimer

        Parameters
        ----------
        intensities: list of signal
            the intensitiy for each X-ray lines.
        kfactors: list of float
            The list of kfactor in same order as intensities. Note that
            intensities provided by hyperspy are sorted by the aplhabetical
            order of the X-ray lines. eg. kfactors =[0.982, 1.32, 1.60] for
            ['Al_Ka','Cr_Ka', 'Ni_Ka'].
        composition_units: 'weight' or 'atomic'
            Quantification returns weight percent. By choosing 'atomic', the
            return composition is in atomic percent.
        navigation_mask : None or float or signal
            The navigation locations marked as True are not used in the
            quantification. If int is given the vacuum_mask method is used to
            generate a mask with the int value as threhsold.
            Else provides a signal with the navigation shape.
        closing: bool
            If true, applied a morphologic closing to the mask obtained by
            vacuum_mask.
        plot_result : bool
            If True, plot the calculated composition. If the current
            object is a single spectrum it prints the result instead.
        kwargs
            The extra keyword arguments are passed to plot.

        Return
        ------
        A list of quantified elemental maps (signal) giving the composition of
        the sample in weight or atomic percent.

        Examples
        --------
        >>> s = utils.example_signals.EDS_TEM_Spectrum()
        >>> s.add_lines()
        >>> kfactors = [1.450226, 5.075602] #For Fe Ka and Pt La
        >>> bw = s.estimate_background_windows(line_width=[5.0, 2.0])
        >>> s.plot(background_windows=bw)
        >>> intensities = s.get_lines_intensity(background_windows=bw)
        >>> res = s.quantification(intensities, kfactors, plot_result=True,
        >>>                        composition_units='atomic')
        Fe (Fe_Ka): Composition = 15.41 atomic percent
        Pt (Pt_La): Composition = 84.59 atomic percent

        See also
        --------
        vacuum_mask
        """
        if isinstance(navigation_mask, float):
            navigation_mask = self.vacuum_mask(navigation_mask, closing).data
        elif navigation_mask is not None:
            navigation_mask = navigation_mask.data
        xray_lines = self.metadata.Sample.xray_lines
        composition = utils.stack(intensities)
        composition.data = (
            utils_eds.quantification_cliff_lorimer(composition.data, kfactors=kfactors, mask=navigation_mask) * 100.0
        )
        composition = composition.split()
        if composition_units == "atomic":
            composition = utils.material.weight_to_atomic(composition)
        for i, xray_line in enumerate(xray_lines):
            element, line = utils_eds._get_element_and_line(xray_line)
            composition[i].metadata.General.title = composition_units + " percent of " + element
            composition[i].metadata.set_item("Sample.elements", ([element]))
            composition[i].metadata.set_item("Sample.xray_lines", ([xray_line]))
            if plot_result and composition[i].axes_manager.signal_dimension == 0:
                print(
                    "%s (%s): Composition = %.2f %s percent"
                    % (element, xray_line, composition[i].data, composition_units)
                )
        if plot_result and composition[i].axes_manager.signal_dimension != 0:
            utils.plot.plot_signals(composition, **kwargs)
        return composition
Ejemplo n.º 8
0
    def quantification(self,
                       intensities,
                       kfactors,
                       composition_units='weight',
                       navigation_mask=1.0,
                       closing=True,
                       plot_result=False,
                       **kwargs):
        """
        Quantification of intensities to return elemental composition

        Method: Cliff-Lorimer

        Parameters
        ----------
        intensities: list of signal
            the intensitiy for each X-ray lines.
        kfactors: list of float
            The list of kfactor in same order as intensities. Note that
            intensities provided by hyperspy are sorted by the aplhabetical
            order of the X-ray lines. eg. kfactors =[0.982, 1.32, 1.60] for
            ['Al_Ka','Cr_Ka', 'Ni_Ka'].
        composition_units: 'weight' or 'atomic'
            Quantification returns weight percent. By choosing 'atomic', the
            return composition is in atomic percent.
        navigation_mask : None or float or signal
            The navigation locations marked as True are not used in the
            quantification. If int is given the vacuum_mask method is used to
            generate a mask with the int value as threhsold.
            Else provides a signal with the navigation shape.
        closing: bool
            If true, applied a morphologic closing to the mask obtained by
            vacuum_mask.
        plot_result : bool
            If True, plot the calculated composition. If the current
            object is a single spectrum it prints the result instead.
        kwargs
            The extra keyword arguments are passed to plot.

        Return
        ------
        A list of quantified elemental maps (signal) giving the composition of
        the sample in weight or atomic percent.

        Examples
        --------
        >>> s = utils.example_signals.EDS_TEM_Spectrum()
        >>> s.add_lines()
        >>> kfactors = [1.450226, 5.075602] #For Fe Ka and Pt La
        >>> bw = s.estimate_background_windows(line_width=[5.0, 2.0])
        >>> s.plot(background_windows=bw)
        >>> intensities = s.get_lines_intensity(background_windows=bw)
        >>> res = s.quantification(intensities, kfactors, plot_result=True,
        >>>                        composition_units='atomic')
        Fe (Fe_Ka): Composition = 15.41 atomic percent
        Pt (Pt_La): Composition = 84.59 atomic percent

        See also
        --------
        vacuum_mask
        """
        if isinstance(navigation_mask, float):
            navigation_mask = self.vacuum_mask(navigation_mask, closing).data
        elif navigation_mask is not None:
            navigation_mask = navigation_mask.data
        xray_lines = self.metadata.Sample.xray_lines
        composition = utils.stack(intensities)
        composition.data = utils_eds.quantification_cliff_lorimer(
            composition.data, kfactors=kfactors,
            mask=navigation_mask) * 100.
        composition = composition.split()
        if composition_units == 'atomic':
            composition = utils.material.weight_to_atomic(composition)
        for i, xray_line in enumerate(xray_lines):
            element, line = utils_eds._get_element_and_line(xray_line)
            composition[i].metadata.General.title = composition_units + \
                ' percent of ' + element
            composition[i].metadata.set_item("Sample.elements", ([element]))
            composition[i].metadata.set_item(
                "Sample.xray_lines", ([xray_line]))
            if plot_result and \
                    composition[i].axes_manager.signal_dimension == 0:
                print("%s (%s): Composition = %.2f %s percent"
                      % (element, xray_line, composition[i].data,
                         composition_units))
        if plot_result and composition[i].axes_manager.signal_dimension != 0:
            utils.plot.plot_signals(composition, **kwargs)
        return composition