Ejemplo n.º 1
0
def test_fully_qualified_name():
    assert fully_qualified_name(test_copying_preserves_argspec) == \
        'tests.cover.test_reflection.test_copying_preserves_argspec'
    assert fully_qualified_name(Container.funcy) == \
        'tests.cover.test_reflection.Container.funcy'
    assert fully_qualified_name(fully_qualified_name) == \
        'hypothesis.internal.reflection.fully_qualified_name'
Ejemplo n.º 2
0
def test_fully_qualified_name():
    assert (fully_qualified_name(test_copying_preserves_argspec) ==
            "tests.cover.test_reflection.test_copying_preserves_argspec")
    assert (fully_qualified_name(
        Container.funcy) == "tests.cover.test_reflection.Container.funcy")
    assert (fully_qualified_name(fully_qualified_name) ==
            "hypothesis.internal.reflection.fully_qualified_name")
Ejemplo n.º 3
0
def more_info(obj, fields: dict = {}):

	info = fields.copy()
	info['type_name'] = type(obj).__name__
	bclass = obj.__class__.__qualname__

	mro = obj.__class__.__mro__
	out['base_class'] = str(bclass)


	info['module'] = getattr(obj, '__module__', None)
	if hasattr(obj, '__self__'):
		selfname = fully_qualified_name(getattr(obj, "__self__"))
		info['parent'] = selfname

	if info.get('found'):
		info.pop('found')
		info.pop('isalias')
		#info.pop('isclass')
		info.pop('ismagic')
		info.pop('length')

	if 'argspec' in info:
		argspec = info.get('argspec', dict())
		if argspec:
			if 'args' in argspec:
				args = argspec.get('args', None)
				if args:
					info['args'] = args[:]
	else:
		info['args'] = []
	info.pop('argspec')
	info['tags'] = info.get('name')
	cleaned_info = {k:v for k,v in info.items() if v}
	return 
		cleaned_info
Ejemplo n.º 4
0
        def wrapped_test(*arguments, **kwargs):
            settings = wrapped_test._hypothesis_internal_use_settings
            if wrapped_test._hypothesis_internal_use_seed is not None:
                random = Random(wrapped_test._hypothesis_internal_use_seed)
            elif settings.derandomize:
                random = Random(function_digest(test))
            else:
                random = new_random()

            import hypothesis.strategies as sd

            selfy = None
            arguments, kwargs = convert_positional_arguments(wrapped_test, arguments, kwargs)

            # If the test function is a method of some kind, the bound object
            # will be the first named argument if there are any, otherwise the
            # first vararg (if any).
            if argspec.args:
                selfy = kwargs.get(argspec.args[0])
            elif arguments:
                selfy = arguments[0]
            test_runner = new_style_executor(selfy)

            for example in reversed(getattr(wrapped_test, "hypothesis_explicit_examples", ())):
                if example.args:
                    if len(example.args) > len(original_argspec.args):
                        raise InvalidArgument(
                            "example has too many arguments for test. "
                            "Expected at most %d but got %d" % (len(original_argspec.args), len(example.args))
                        )
                    example_kwargs = dict(zip(original_argspec.args[-len(example.args) :], example.args))
                else:
                    example_kwargs = example.kwargs
                if Phase.explicit not in settings.phases:
                    continue
                example_kwargs.update(kwargs)
                # Note: Test may mutate arguments and we can't rerun explicit
                # examples, so we have to calculate the failure message at this
                # point rather than than later.
                message_on_failure = "Falsifying example: %s(%s)" % (
                    test.__name__,
                    arg_string(test, arguments, example_kwargs),
                )
                try:
                    with BuildContext() as b:
                        test_runner(None, lambda data: test(*arguments, **example_kwargs))
                except BaseException:
                    report(message_on_failure)
                    for n in b.notes:
                        report(n)
                    raise
            if settings.max_examples <= 0:
                return

            arguments = tuple(arguments)

            given_specifier = sd.tuples(
                sd.just(arguments), sd.fixed_dictionaries(generator_kwargs).map(lambda args: dict(args, **kwargs))
            )

            def fail_health_check(message, label):
                if label in settings.suppress_health_check:
                    return
                message += (
                    "\nSee https://hypothesis.readthedocs.io/en/latest/health"
                    "checks.html for more information about this. "
                )
                message += (
                    "If you want to disable just this health check, add %s "
                    "to the suppress_health_check settings for this test."
                ) % (label,)
                raise FailedHealthCheck(message)

            search_strategy = given_specifier
            if selfy is not None:
                search_strategy = WithRunner(search_strategy, selfy)

            search_strategy.validate()

            perform_health_check = settings.perform_health_check
            perform_health_check &= Settings.default.perform_health_check

            from hypothesis.internal.conjecture.data import TestData, Status, StopTest

            if not (Phase.reuse in settings.phases or Phase.generate in settings.phases):
                return

            if perform_health_check:
                health_check_random = Random(random.getrandbits(128))
                # We "pre warm" the health check with one draw to give it some
                # time to calculate any cached data. This prevents the case
                # where the first draw of the health check takes ages because
                # of loading unicode data the first time.
                data = TestData(
                    max_length=settings.buffer_size,
                    draw_bytes=lambda data, n, distribution: distribution(health_check_random, n),
                )
                with Settings(settings, verbosity=Verbosity.quiet):
                    try:
                        test_runner(data, reify_and_execute(search_strategy, lambda *args, **kwargs: None))
                    except BaseException:
                        pass
                count = 0
                overruns = 0
                filtered_draws = 0
                start = time.time()
                while count < 10 and time.time() < start + 1 and filtered_draws < 50 and overruns < 20:
                    try:
                        data = TestData(
                            max_length=settings.buffer_size,
                            draw_bytes=lambda data, n, distribution: distribution(health_check_random, n),
                        )
                        with Settings(settings, verbosity=Verbosity.quiet):
                            test_runner(data, reify_and_execute(search_strategy, lambda *args, **kwargs: None))
                        count += 1
                    except UnsatisfiedAssumption:
                        filtered_draws += 1
                    except StopTest:
                        if data.status == Status.INVALID:
                            filtered_draws += 1
                        else:
                            assert data.status == Status.OVERRUN
                            overruns += 1
                    except InvalidArgument:
                        raise
                    except Exception:
                        if HealthCheck.exception_in_generation in settings.suppress_health_check:
                            raise
                        report(traceback.format_exc())
                        if test_runner is default_new_style_executor:
                            fail_health_check(
                                "An exception occurred during data "
                                "generation in initial health check. "
                                "This indicates a bug in the strategy. "
                                "This could either be a Hypothesis bug or "
                                "an error in a function you've passed to "
                                "it to construct your data.",
                                HealthCheck.exception_in_generation,
                            )
                        else:
                            fail_health_check(
                                "An exception occurred during data "
                                "generation in initial health check. "
                                "This indicates a bug in the strategy. "
                                "This could either be a Hypothesis bug or "
                                "an error in a function you've passed to "
                                "it to construct your data. Additionally, "
                                "you have a custom executor, which means "
                                "that this could be your executor failing "
                                "to handle a function which returns None. ",
                                HealthCheck.exception_in_generation,
                            )
                if overruns >= 20 or (not count and overruns > 0):
                    fail_health_check(
                        (
                            "Examples routinely exceeded the max allowable size. "
                            "(%d examples overran while generating %d valid ones)"
                            ". Generating examples this large will usually lead to"
                            " bad results. You should try setting average_size or "
                            "max_size parameters on your collections and turning "
                            "max_leaves down on recursive() calls."
                        )
                        % (overruns, count),
                        HealthCheck.data_too_large,
                    )
                if filtered_draws >= 50 or (not count and filtered_draws > 0):
                    fail_health_check(
                        (
                            "It looks like your strategy is filtering out a lot "
                            "of data. Health check found %d filtered examples but "
                            "only %d good ones. This will make your tests much "
                            "slower, and also will probably distort the data "
                            "generation quite a lot. You should adapt your "
                            "strategy to filter less. This can also be caused by "
                            "a low max_leaves parameter in recursive() calls"
                        )
                        % (filtered_draws, count),
                        HealthCheck.filter_too_much,
                    )
                runtime = time.time() - start
                if runtime > 1.0 or count < 10:
                    fail_health_check(
                        (
                            "Data generation is extremely slow: Only produced "
                            "%d valid examples in %.2f seconds (%d invalid ones "
                            "and %d exceeded maximum size). Try decreasing "
                            "size of the data you're generating (with e.g."
                            "average_size or max_leaves parameters)."
                        )
                        % (count, runtime, filtered_draws, overruns),
                        HealthCheck.too_slow,
                    )
            last_exception = [None]
            repr_for_last_exception = [None]

            def evaluate_test_data(data):
                try:
                    result = test_runner(data, reify_and_execute(search_strategy, test))
                    if result is not None and settings.perform_health_check:
                        fail_health_check(
                            ("Tests run under @given should return None, but " "%s returned %r instead.")
                            % (test.__name__, result),
                            HealthCheck.return_value,
                        )
                    return False
                except UnsatisfiedAssumption:
                    data.mark_invalid()
                except (HypothesisDeprecationWarning, FailedHealthCheck, StopTest):
                    raise
                except Exception:
                    last_exception[0] = traceback.format_exc()
                    verbose_report(last_exception[0])
                    data.mark_interesting()

            from hypothesis.internal.conjecture.engine import TestRunner

            falsifying_example = None
            database_key = str_to_bytes(fully_qualified_name(test))
            start_time = time.time()
            runner = TestRunner(evaluate_test_data, settings=settings, random=random, database_key=database_key)
            runner.run()
            run_time = time.time() - start_time
            timed_out = settings.timeout > 0 and run_time >= settings.timeout
            if runner.last_data is None:
                return
            if runner.last_data.status == Status.INTERESTING:
                falsifying_example = runner.last_data.buffer
                if settings.database is not None:
                    settings.database.save(database_key, falsifying_example)
            else:
                if runner.valid_examples < min(settings.min_satisfying_examples, settings.max_examples):
                    if timed_out:
                        raise Timeout(
                            (
                                "Ran out of time before finding a satisfying "
                                "example for "
                                "%s. Only found %d examples in " + "%.2fs."
                            )
                            % (get_pretty_function_description(test), runner.valid_examples, run_time)
                        )
                    else:
                        raise Unsatisfiable(
                            (
                                "Unable to satisfy assumptions of hypothesis "
                                "%s. Only %d examples considered "
                                "satisfied assumptions"
                            )
                            % (get_pretty_function_description(test), runner.valid_examples)
                        )
                return

            assert last_exception[0] is not None

            try:
                with settings:
                    test_runner(
                        TestData.for_buffer(falsifying_example),
                        reify_and_execute(search_strategy, test, print_example=True, is_final=True),
                    )
            except (UnsatisfiedAssumption, StopTest):
                report(traceback.format_exc())
                raise Flaky(
                    "Unreliable assumption: An example which satisfied " "assumptions on the first run now fails it."
                )

            report("Failed to reproduce exception. Expected: \n" + last_exception[0])

            filter_message = (
                "Unreliable test data: Failed to reproduce a failure "
                "and then when it came to recreating the example in "
                "order to print the test data with a flaky result "
                "the example was filtered out (by e.g. a "
                "call to filter in your strategy) when we didn't "
                "expect it to be."
            )

            try:
                test_runner(
                    TestData.for_buffer(falsifying_example),
                    reify_and_execute(
                        search_strategy,
                        test_is_flaky(test, repr_for_last_exception[0]),
                        print_example=True,
                        is_final=True,
                    ),
                )
            except (UnsatisfiedAssumption, StopTest):
                raise Flaky(filter_message)
Ejemplo n.º 5
0
        def wrapped_test(*arguments, **kwargs):
            if settings.derandomize:
                random = Random(function_digest(test))
            else:
                random = provided_random or new_random()

            import hypothesis.strategies as sd
            from hypothesis.internal.strategymethod import strategy

            selfy = None
            arguments, kwargs = convert_positional_arguments(
                wrapped_test, arguments, kwargs)

            for arg in hypothesis_owned_arguments:
                try:
                    value = kwargs[arg]
                except KeyError:
                    continue
                if not isinstance(value, HypothesisProvided):
                    note_deprecation(
                        'Passing in explicit values to override Hypothesis '
                        'provided values is deprecated and will no longer '
                        'work in Hypothesis 2.0. If you need to do this, '
                        'extract a common function and call that from a '
                        'Hypothesis based test.', settings
                    )

            # Anything in unused_kwargs hasn't been injected through
            # argspec.defaults, so we need to add them.
            for k in unused_kwargs:
                if k not in kwargs:
                    kwargs[k] = unused_kwargs[k]
            # If the test function is a method of some kind, the bound object
            # will be the first named argument if there are any, otherwise the
            # first vararg (if any).
            if argspec.args:
                selfy = kwargs.get(argspec.args[0])
            elif arguments:
                selfy = arguments[0]
            if isinstance(selfy, HypothesisProvided):
                selfy = None
            test_runner = executor(selfy)

            for example in reversed(getattr(
                wrapped_test, u'hypothesis_explicit_examples', ()
            )):
                if example.args:
                    example_kwargs = dict(zip(
                        argspec.args[-len(example.args):], example.args
                    ))
                else:
                    example_kwargs = dict(example.kwargs)

                for k, v in kwargs.items():
                    if not isinstance(v, HypothesisProvided):
                        example_kwargs[k] = v
                # Note: Test may mutate arguments and we can't rerun explicit
                # examples, so we have to calculate the failure message at this
                # point rather than than later.
                message_on_failure = u'Falsifying example: %s(%s)' % (
                    test.__name__, arg_string(test, arguments, example_kwargs)
                )
                try:
                    with BuildContext() as b:
                        test_runner(
                            lambda: test(*arguments, **example_kwargs)
                        )
                except BaseException:
                    report(message_on_failure)
                    for n in b.notes:
                        report(n)
                    raise

            if not any(
                isinstance(x, HypothesisProvided)
                for xs in (arguments, kwargs.values())
                for x in xs
            ):
                # All arguments have been satisfied without needing to invoke
                # hypothesis
                test_runner(lambda: test(*arguments, **kwargs))
                return

            def convert_to_specifier(v):
                if isinstance(v, HypothesisProvided):
                    return strategy(v.value, settings)
                else:
                    return sd.just(v)

            given_specifier = sd.tuples(
                sd.tuples(*map(convert_to_specifier, arguments)),
                sd.fixed_dictionaries(dict(
                    (k, convert_to_specifier(v)) for (k, v) in kwargs.items()))
            )

            def fail_health_check(message):
                message += (
                    '\nSee http://hypothesis.readthedocs.org/en/latest/health'
                    'checks.html for more information about this.'
                )
                if settings.strict:
                    raise FailedHealthCheck(message)
                else:
                    warnings.warn(FailedHealthCheck(message))

            search_strategy = strategy(given_specifier, settings)
            search_strategy.validate()

            if settings.database:
                storage = settings.database.storage(
                    fully_qualified_name(test))
            else:
                storage = None

            start = time.time()
            warned_random = [False]
            perform_health_check = settings.perform_health_check
            if Settings.default is not None:
                perform_health_check &= Settings.default.perform_health_check

            if perform_health_check:
                initial_state = getglobalrandomstate()
                health_check_random = Random(random.getrandbits(128))
                count = 0
                bad_draws = 0
                filtered_draws = 0
                errors = 0
                while (
                    count < 10 and time.time() < start + 1 and
                    filtered_draws < 50 and bad_draws < 50
                ):
                    try:
                        with Settings(settings, verbosity=Verbosity.quiet):
                            test_runner(reify_and_execute(
                                search_strategy,
                                search_strategy.draw_template(
                                    health_check_random,
                                    search_strategy.draw_parameter(
                                        health_check_random,
                                    )),
                                lambda *args, **kwargs: None,
                            ))
                        count += 1
                    except BadTemplateDraw:
                        bad_draws += 1
                    except UnsatisfiedAssumption:
                        filtered_draws += 1
                    except Exception:
                        if errors == 0:
                            report(traceback.format_exc())
                        errors += 1
                        if test_runner is default_executor:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                "an error in a function you've passed to "
                                'it to construct your data.'
                            )
                        else:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                'an error in a function you\'ve passed to '
                                'it to construct your data. Additionally, '
                                'you have a custom executor, which means '
                                'that this could be your executor failing '
                                'to handle a function which returns None. '
                            )
                if filtered_draws >= 50:
                    fail_health_check((
                        'It looks like your strategy is filtering out a lot '
                        'of data. Health check found %d filtered examples but '
                        'only %d good ones. This will make your tests much '
                        'slower, and also will probably distort the data '
                        'generation quite a lot. You should adapt your '
                        'strategy to filter less.') % (
                        filtered_draws, count
                    ))
                if bad_draws >= 50:
                    fail_health_check(
                        'Hypothesis is struggling to generate examples. '
                        'This is often a sign of a recursive strategy which '
                        'fans out too broadly. If you\'re using recursive, '
                        'try to reduce the size of the recursive step or '
                        'increase the maximum permitted number of leaves.'
                    )
                runtime = time.time() - start
                if runtime > 1.0 or count < 10:
                    fail_health_check((
                        'Data generation is extremely slow: Only produced '
                        '%d valid examples in %.2f seconds. Try decreasing '
                        "size of the data you're generating (with e.g."
                        'average_size or max_leaves parameters).'
                    ) % (count, runtime))
                if getglobalrandomstate() != initial_state:
                    warned_random[0] = True
                    fail_health_check(
                        'Data generation depends on global random module. '
                        'This makes results impossible to replay, which '
                        'prevents Hypothesis from working correctly. '
                        'If you want to use methods from random, use '
                        'randoms() from hypothesis.strategies to get an '
                        'instance of Random you can use. Alternatively, you '
                        'can use the random_module() strategy to explicitly '
                        'seed the random module.'
                    )

            last_exception = [None]
            repr_for_last_exception = [None]

            def is_template_example(xs):
                if perform_health_check and not warned_random[0]:
                    initial_state = getglobalrandomstate()
                record_repr = [None]
                try:
                    result = test_runner(reify_and_execute(
                        search_strategy, xs, test,
                        record_repr=record_repr,
                    ))
                    if result is not None:
                        note_deprecation((
                            'Tests run under @given should return None, but '
                            '%s returned %r instead.'
                            'In Hypothesis 2.0 this will become an error.'
                        ) % (test.__name__, result), settings)
                    return False
                except HypothesisDeprecationWarning:
                    raise
                except UnsatisfiedAssumption as e:
                    raise e
                except Exception as e:
                    last_exception[0] = traceback.format_exc()
                    repr_for_last_exception[0] = record_repr[0]
                    verbose_report(last_exception[0])
                    return True
                finally:
                    if (
                        not warned_random[0] and
                        perform_health_check and
                        getglobalrandomstate() != initial_state
                    ):
                        warned_random[0] = True
                        fail_health_check(
                            'Your test used the global random module. '
                            'This is unlikely to work correctly. You should '
                            'consider using the randoms() strategy from '
                            'hypothesis.strategies instead. Alternatively, '
                            'you can use the random_module() strategy to '
                            'explicitly seed the random module.'
                        )
            is_template_example.__name__ = test.__name__
            is_template_example.__qualname__ = qualname(test)

            falsifying_template = None
            try:
                falsifying_template = best_satisfying_template(
                    search_strategy, random, is_template_example,
                    settings, storage, start_time=start,
                )
            except NoSuchExample:
                return

            assert last_exception[0] is not None

            with settings:
                test_runner(reify_and_execute(
                    search_strategy, falsifying_template, test,
                    print_example=True, is_final=True
                ))

                report(
                    u'Failed to reproduce exception. Expected: \n' +
                    last_exception[0],
                )

                test_runner(reify_and_execute(
                    search_strategy, falsifying_template,
                    test_is_flaky(test, repr_for_last_exception[0]),
                    print_example=True, is_final=True
                ))
Ejemplo n.º 6
0
    def run(self):
        database_key = str_to_bytes(fully_qualified_name(self.test))
        start_time = time.time()
        runner = ConjectureRunner(
            self.evaluate_test_data,
            settings=self.settings,
            random=self.random,
            database_key=database_key,
        )
        runner.run()
        note_engine_for_statistics(runner)
        run_time = time.time() - start_time
        timed_out = (self.settings.timeout > 0
                     and run_time >= self.settings.timeout)
        if runner.last_data is None:
            return
        if runner.last_data.status == Status.INTERESTING:
            self.falsifying_example = runner.last_data.buffer
            if self.settings.database is not None:
                self.settings.database.save(database_key,
                                            self.falsifying_example)
        else:
            if runner.valid_examples < min(
                    self.settings.min_satisfying_examples,
                    self.settings.max_examples,
            ) and not (runner.exit_reason == ExitReason.finished
                       and self.at_least_one_success):
                if timed_out:
                    raise Timeout(
                        ('Ran out of time before finding a satisfying '
                         'example for '
                         '%s. Only found %d examples in ' + '%.2fs.') %
                        (get_pretty_function_description(
                            self.test), runner.valid_examples, run_time))
                else:
                    raise Unsatisfiable(
                        ('Unable to satisfy assumptions of hypothesis '
                         '%s. Only %d examples considered '
                         'satisfied assumptions') % (
                             get_pretty_function_description(self.test),
                             runner.valid_examples,
                         ))

        if self.falsifying_example is None:
            return

        assert self.last_exception is not None

        try:
            with self.settings:
                self.test_runner(
                    ConjectureData.for_buffer(self.falsifying_example),
                    reify_and_execute(self.search_strategy,
                                      self.test,
                                      print_example=True,
                                      is_final=True))
        except (UnsatisfiedAssumption, StopTest):
            report(traceback.format_exc())
            raise Flaky('Unreliable assumption: An example which satisfied '
                        'assumptions on the first run now fails it.')

        report(
            'Failed to reproduce exception. Expected: \n' +
            self.last_exception, )

        filter_message = (
            'Unreliable test data: Failed to reproduce a failure '
            'and then when it came to recreating the example in '
            'order to print the test data with a flaky result '
            'the example was filtered out (by e.g. a '
            'call to filter in your strategy) when we didn\'t '
            'expect it to be.')

        try:
            self.test_runner(
                ConjectureData.for_buffer(self.falsifying_example),
                reify_and_execute(self.search_strategy,
                                  test_is_flaky(self.test,
                                                self.repr_for_last_exception),
                                  print_example=True,
                                  is_final=True))
        except (UnsatisfiedAssumption, StopTest):
            raise Flaky(filter_message)
Ejemplo n.º 7
0
    def run(self):
        # Tell pytest to omit the body of this function from tracebacks
        __tracebackhide__ = True
        if global_force_seed is None:
            database_key = str_to_bytes(fully_qualified_name(self.test))
        else:
            database_key = None
        self.start_time = time.time()
        global in_given
        runner = ConjectureRunner(
            self.evaluate_test_data,
            settings=self.settings,
            random=self.random,
            database_key=database_key,
        )

        if in_given or self.collector is None:
            runner.run()
        else:  # pragma: no cover
            in_given = True
            original_trace = sys.gettrace()
            try:
                sys.settrace(None)
                runner.run()
            finally:
                in_given = False
                sys.settrace(original_trace)
                self.used_examples_from_database = \
                    runner.used_examples_from_database
        note_engine_for_statistics(runner)
        run_time = time.time() - self.start_time

        self.used_examples_from_database = runner.used_examples_from_database

        if runner.used_examples_from_database:
            if self.settings.derandomize:
                note_deprecation(
                    'In future derandomize will imply database=None, but your '
                    'test is currently using examples from the database. To '
                    'get the future behaviour, update your settings to '
                    'include database=None.')
            if self.__had_seed:
                note_deprecation(
                    'In future use of @seed will imply database=None in your '
                    'settings, but your test is currently using examples from '
                    'the database. To get the future behaviour, update your '
                    'settings for this test to include database=None.')

        timed_out = runner.exit_reason == ExitReason.timeout
        if runner.call_count == 0:
            return
        if runner.interesting_examples:
            self.falsifying_examples = sorted(
                [d for d in runner.interesting_examples.values()],
                key=lambda d: sort_key(d.buffer),
                reverse=True)
        else:
            if timed_out:
                note_deprecation((
                    'Your tests are hitting the settings timeout (%.2fs). '
                    'This functionality will go away in a future release '
                    'and you should not rely on it. Instead, try setting '
                    'max_examples to be some value lower than %d (the number '
                    'of examples your test successfully ran here). Or, if you '
                    'would prefer your tests to run to completion, regardless '
                    'of how long they take, you can set the timeout value to '
                    'hypothesis.unlimited.') % (self.settings.timeout,
                                                runner.valid_examples),
                                 self.settings)
            if runner.valid_examples == 0:
                if timed_out:
                    raise Timeout(
                        ('Ran out of time before finding a satisfying '
                         'example for %s. Only found %d examples in %.2fs.') %
                        (get_pretty_function_description(
                            self.test), runner.valid_examples, run_time))
                else:
                    raise Unsatisfiable(
                        'Unable to satisfy assumptions of hypothesis %s.' %
                        (get_pretty_function_description(self.test), ))

        if not self.falsifying_examples:
            return

        self.failed_normally = True

        flaky = 0

        for falsifying_example in self.falsifying_examples:
            ran_example = ConjectureData.for_buffer(falsifying_example.buffer)
            self.__was_flaky = False
            assert falsifying_example.__expected_exception is not None
            try:
                self.execute(ran_example,
                             print_example=True,
                             is_final=True,
                             expected_failure=(
                                 falsifying_example.__expected_exception,
                                 falsifying_example.__expected_traceback,
                             ))
            except (UnsatisfiedAssumption, StopTest):
                report(traceback.format_exc())
                self.__flaky(
                    'Unreliable assumption: An example which satisfied '
                    'assumptions on the first run now fails it.')
            except BaseException:
                if len(self.falsifying_examples) <= 1:
                    raise
                report(traceback.format_exc())
            finally:  # pragma: no cover
                # This section is in fact entirely covered by the tests in
                # test_reproduce_failure, but it seems to trigger a lovely set
                # of coverage bugs: The branches show up as uncovered (despite
                # definitely being covered - you can add an assert False else
                # branch to verify this and see it fail - and additionally the
                # second branch still complains about lack of coverage even if
                # you add a pragma: no cover to it!
                # See https://bitbucket.org/ned/coveragepy/issues/623/
                if self.settings.print_blob is not PrintSettings.NEVER:
                    failure_blob = encode_failure(falsifying_example.buffer)
                    # Have to use the example we actually ran, not the original
                    # falsifying example! Otherwise we won't catch problems
                    # where the repr of the generated example doesn't parse.
                    can_use_repr = ran_example.can_reproduce_example_from_repr
                    if (self.settings.print_blob is PrintSettings.ALWAYS or
                        (self.settings.print_blob is PrintSettings.INFER
                         and not can_use_repr and len(failure_blob) < 200)):
                        report((
                            '\n'
                            'You can reproduce this example by temporarily '
                            'adding @reproduce_failure(%r, %r) as a decorator '
                            'on your test case') % (
                                __version__,
                                failure_blob,
                            ))
            if self.__was_flaky:
                flaky += 1

        # If we only have one example then we should have raised an error or
        # flaky prior to this point.
        assert len(self.falsifying_examples) > 1

        if flaky > 0:
            raise Flaky(
                ('Hypothesis found %d distinct failures, but %d of them '
                 'exhibited some sort of flaky behaviour.') %
                (len(self.falsifying_examples), flaky))
        else:
            raise MultipleFailures(('Hypothesis found %d distinct failures.') %
                                   (len(self.falsifying_examples, )))
Ejemplo n.º 8
0
    def run(self):
        # Tell pytest to omit the body of this function from tracebacks
        __tracebackhide__ = True
        database_key = str_to_bytes(fully_qualified_name(self.test))
        self.start_time = time.time()
        runner = ConjectureRunner(
            self.evaluate_test_data,
            settings=self.settings,
            random=self.random,
            database_key=database_key,
        )
        runner.run()
        note_engine_for_statistics(runner)
        run_time = time.time() - self.start_time
        timed_out = runner.exit_reason == ExitReason.timeout
        if runner.last_data is None:
            return
        if runner.last_data.status == Status.INTERESTING:
            self.falsifying_example = runner.last_data.buffer
            if self.settings.database is not None:
                self.settings.database.save(database_key,
                                            self.falsifying_example)
        else:
            if timed_out:
                note_deprecation((
                    'Your tests are hitting the settings timeout (%.2fs). '
                    'This functionality will go away in a future release '
                    'and you should not rely on it. Instead, try setting '
                    'max_examples to be some value lower than %d (the number '
                    'of examples your test successfully ran here). Or, if you '
                    'would prefer your tests to run to completion, regardless '
                    'of how long they take, you can set the timeout value to '
                    'hypothesis.unlimited.') % (self.settings.timeout,
                                                runner.valid_examples),
                                 self.settings)
            if runner.valid_examples < min(
                    self.settings.min_satisfying_examples,
                    self.settings.max_examples,
            ) and not (runner.exit_reason == ExitReason.finished
                       and self.at_least_one_success):
                if timed_out:
                    raise Timeout(
                        ('Ran out of time before finding a satisfying '
                         'example for '
                         '%s. Only found %d examples in ' + '%.2fs.') %
                        (get_pretty_function_description(
                            self.test), runner.valid_examples, run_time))
                else:
                    raise Unsatisfiable(
                        ('Unable to satisfy assumptions of hypothesis '
                         '%s. Only %d examples considered '
                         'satisfied assumptions') % (
                             get_pretty_function_description(self.test),
                             runner.valid_examples,
                         ))

        if self.falsifying_example is None:
            return

        assert self.last_exception is not None

        try:
            with self.settings:
                self.test_runner(
                    ConjectureData.for_buffer(self.falsifying_example),
                    reify_and_execute(self.search_strategy,
                                      self.test,
                                      print_example=True,
                                      is_final=True))
        except (UnsatisfiedAssumption, StopTest):
            report(traceback.format_exc())
            raise Flaky('Unreliable assumption: An example which satisfied '
                        'assumptions on the first run now fails it.')

        report(
            'Failed to reproduce exception. Expected: \n' +
            self.last_exception, )

        filter_message = (
            'Unreliable test data: Failed to reproduce a failure '
            'and then when it came to recreating the example in '
            'order to print the test data with a flaky result '
            'the example was filtered out (by e.g. a '
            'call to filter in your strategy) when we didn\'t '
            'expect it to be.')

        try:
            self.test_runner(
                ConjectureData.for_buffer(self.falsifying_example),
                reify_and_execute(self.search_strategy,
                                  test_is_flaky(self.test,
                                                self.repr_for_last_exception),
                                  print_example=True,
                                  is_final=True))
        except (UnsatisfiedAssumption, StopTest):
            raise Flaky(filter_message)
Ejemplo n.º 9
0
    def run(self):
        # Tell pytest to omit the body of this function from tracebacks
        __tracebackhide__ = True
        database_key = str_to_bytes(fully_qualified_name(self.test))
        self.start_time = time.time()
        runner = ConjectureRunner(
            self.evaluate_test_data,
            settings=self.settings,
            random=self.random,
            database_key=database_key,
        )
        runner.run()
        note_engine_for_statistics(runner)
        run_time = time.time() - self.start_time
        timed_out = runner.exit_reason == ExitReason.timeout
        if runner.last_data is None:
            return
        if runner.interesting_examples:
            self.falsifying_examples = sorted(
                [d for d in runner.interesting_examples.values()],
                key=lambda d: sort_key(d.buffer),
                reverse=True)
        else:
            if timed_out:
                note_deprecation((
                    'Your tests are hitting the settings timeout (%.2fs). '
                    'This functionality will go away in a future release '
                    'and you should not rely on it. Instead, try setting '
                    'max_examples to be some value lower than %d (the number '
                    'of examples your test successfully ran here). Or, if you '
                    'would prefer your tests to run to completion, regardless '
                    'of how long they take, you can set the timeout value to '
                    'hypothesis.unlimited.') % (self.settings.timeout,
                                                runner.valid_examples),
                                 self.settings)
            if runner.valid_examples < min(
                    self.settings.min_satisfying_examples,
                    self.settings.max_examples,
            ) and not (runner.exit_reason == ExitReason.finished
                       and self.at_least_one_success):
                if timed_out:
                    raise Timeout(
                        ('Ran out of time before finding a satisfying '
                         'example for '
                         '%s. Only found %d examples in ' + '%.2fs.') %
                        (get_pretty_function_description(
                            self.test), runner.valid_examples, run_time))
                else:
                    raise Unsatisfiable(
                        ('Unable to satisfy assumptions of hypothesis '
                         '%s. Only %d examples considered '
                         'satisfied assumptions') % (
                             get_pretty_function_description(self.test),
                             runner.valid_examples,
                         ))

        if not self.falsifying_examples:
            return

        flaky = 0

        for falsifying_example in self.falsifying_examples:
            self.__was_flaky = False
            raised_exception = False
            try:
                with self.settings:
                    self.test_runner(
                        ConjectureData.for_buffer(falsifying_example.buffer),
                        reify_and_execute(self.search_strategy,
                                          self.test,
                                          print_example=True,
                                          is_final=True))
            except (UnsatisfiedAssumption, StopTest):
                report(traceback.format_exc())
                self.__flaky(
                    'Unreliable assumption: An example which satisfied '
                    'assumptions on the first run now fails it.')
            except:
                if len(self.falsifying_examples) <= 1:
                    raise
                raised_exception = True
                report(traceback.format_exc())

            if not raised_exception:
                report(
                    'Failed to reproduce exception. Expected: \n' +
                    falsifying_example.__expected_exception, )

                filter_message = (
                    'Unreliable test data: Failed to reproduce a failure '
                    'and then when it came to recreating the example in '
                    'order to print the test data with a flaky result '
                    'the example was filtered out (by e.g. a '
                    'call to filter in your strategy) when we didn\'t '
                    'expect it to be.')

                try:
                    self.test_runner(
                        ConjectureData.for_buffer(falsifying_example.buffer),
                        reify_and_execute(self.search_strategy,
                                          test_is_flaky(
                                              self.test,
                                              self.repr_for_last_exception),
                                          print_example=True,
                                          is_final=True))
                except (UnsatisfiedAssumption, StopTest):
                    self.__flaky(filter_message)
                except Flaky as e:
                    if len(self.falsifying_examples) > 1:
                        self.__flaky(e.args[0])
                    else:
                        raise

            if self.__was_flaky:
                flaky += 1

        # If we only have one example then we should have raised an error or
        # flaky prior to this point.
        assert len(self.falsifying_examples) > 1

        if flaky > 0:
            raise Flaky(
                ('Hypothesis found %d distinct failures, but %d of them '
                 'exhibited some sort of flaky behaviour.') %
                (len(self.falsifying_examples), flaky))
        else:
            raise MultipleFailures(('Hypothesis found %d distinct failures.') %
                                   (len(self.falsifying_examples, )))
Ejemplo n.º 10
0
        def wrapped_test(*arguments, **kwargs):
            selfy = None
            # Because we converted all kwargs to given into real args and
            # error if we have neither args nor kwargs, this should always
            # be valid
            assert argspec.args
            selfy = kwargs.get(argspec.args[0])
            if isinstance(selfy, HypothesisProvided):
                selfy = None
            test_runner = executor(selfy)

            for example in getattr(
                wrapped_test, 'hypothesis_explicit_examples', ()
            ):
                if example.args:
                    example_kwargs = dict(zip(
                        argspec.args[-len(example.args):], example.args
                    ))
                else:
                    example_kwargs = dict(example.kwargs)

                for k, v in kwargs.items():
                    if not isinstance(v, HypothesisProvided):
                        example_kwargs[k] = v

                test_runner(
                    lambda: test(*arguments, **example_kwargs)
                )

            if not any(
                isinstance(x, HypothesisProvided)
                for xs in (arguments, kwargs.values())
                for x in xs
            ):
                # All arguments have been satisfied without needing to invoke
                # hypothesis
                test_runner(lambda: test(*arguments, **kwargs))
                return

            def convert_to_specifier(v):
                if isinstance(v, HypothesisProvided):
                    return strategy(v.value, settings)
                else:
                    return sd.just(v)

            given_specifier = sd.tuples(
                sd.tuples(*map(convert_to_specifier, arguments)),
                sd.fixed_dictionaries(dict(
                    (k, convert_to_specifier(v)) for (k, v) in kwargs.items()))
            )

            search_strategy = strategy(given_specifier, settings)

            if settings.database:
                storage = settings.database.storage(
                    fully_qualified_name(test))
            else:
                storage = None

            last_exception = [None]

            def is_template_example(xs):
                try:
                    test_runner(reify_and_execute(
                        search_strategy, xs, test,
                        always_print=settings.max_shrinks <= 0
                    ))
                    return False
                except UnsatisfiedAssumption as e:
                    raise e
                except Exception as e:
                    if settings.max_shrinks <= 0:
                        raise e
                    last_exception[0] = traceback.format_exc()
                    verbose_report(last_exception[0])
                    return True

            is_template_example.__name__ = test.__name__
            is_template_example.__qualname__ = qualname(test)

            falsifying_template = None
            try:
                falsifying_template = best_satisfying_template(
                    search_strategy, random, is_template_example,
                    settings, storage
                )
            except NoSuchExample:
                return

            assert last_exception[0] is not None

            with settings:
                test_runner(reify_and_execute(
                    search_strategy, falsifying_template, test,
                    print_example=True
                ))

                report(
                    'Failed to reproduce exception. Expected: \n' +
                    last_exception[0],
                )

                test_runner(reify_and_execute(
                    search_strategy, falsifying_template,
                    test_is_flaky(test),
                    print_example=True
                ))
Ejemplo n.º 11
0
    def run(self):
        # Tell pytest to omit the body of this function from tracebacks
        __tracebackhide__ = True
        database_key = str_to_bytes(fully_qualified_name(self.test))
        self.start_time = time.time()
        global in_given
        runner = ConjectureRunner(
            self.evaluate_test_data,
            settings=self.settings, random=self.random,
            database_key=database_key,
        )

        if in_given or self.collector is None:
            runner.run()
        else:  # pragma: no cover
            in_given = True
            original_trace = sys.gettrace()
            try:
                sys.settrace(None)
                runner.run()
            finally:
                in_given = False
                sys.settrace(original_trace)
        note_engine_for_statistics(runner)
        run_time = time.time() - self.start_time
        timed_out = runner.exit_reason == ExitReason.timeout
        if runner.last_data is None:
            return
        if runner.interesting_examples:
            self.falsifying_examples = sorted(
                [d for d in runner.interesting_examples.values()],
                key=lambda d: sort_key(d.buffer), reverse=True
            )
        else:
            if timed_out:
                note_deprecation((
                    'Your tests are hitting the settings timeout (%.2fs). '
                    'This functionality will go away in a future release '
                    'and you should not rely on it. Instead, try setting '
                    'max_examples to be some value lower than %d (the number '
                    'of examples your test successfully ran here). Or, if you '
                    'would prefer your tests to run to completion, regardless '
                    'of how long they take, you can set the timeout value to '
                    'hypothesis.unlimited.'
                ) % (
                    self.settings.timeout, runner.valid_examples),
                    self.settings)
            if runner.valid_examples < min(
                self.settings.min_satisfying_examples,
                self.settings.max_examples,
            ) and not (
                runner.exit_reason == ExitReason.finished and
                self.at_least_one_success
            ):
                if timed_out:
                    raise Timeout((
                        'Ran out of time before finding a satisfying '
                        'example for '
                        '%s. Only found %d examples in ' +
                        '%.2fs.'
                    ) % (
                        get_pretty_function_description(self.test),
                        runner.valid_examples, run_time
                    ))
                else:
                    raise Unsatisfiable((
                        'Unable to satisfy assumptions of hypothesis '
                        '%s. Only %d examples considered '
                        'satisfied assumptions'
                    ) % (
                        get_pretty_function_description(self.test),
                        runner.valid_examples,))

        if not self.falsifying_examples:
            return

        flaky = 0

        self.__in_final_replay = True

        for falsifying_example in self.falsifying_examples:
            self.__was_flaky = False
            raised_exception = False
            try:
                with self.settings:
                    self.test_runner(
                        ConjectureData.for_buffer(falsifying_example.buffer),
                        reify_and_execute(
                            self.search_strategy, self.test,
                            print_example=True, is_final=True
                        ))
            except (UnsatisfiedAssumption, StopTest):
                report(traceback.format_exc())
                self.__flaky(
                    'Unreliable assumption: An example which satisfied '
                    'assumptions on the first run now fails it.'
                )
            except:
                if len(self.falsifying_examples) <= 1:
                    raise
                raised_exception = True
                report(traceback.format_exc())

            if not raised_exception:
                if (
                    isinstance(
                        falsifying_example.__expected_exception,
                        DeadlineExceeded
                    ) and self.__test_runtime is not None
                ):
                    report((
                        'Unreliable test timings! On an initial run, this '
                        'test took %.2fms, which exceeded the deadline of '
                        '%.2fms, but on a subsequent run it took %.2f ms, '
                        'which did not. If you expect this sort of '
                        'variability in your test timings, consider turning '
                        'deadlines off for this test by setting deadline=None.'
                    ) % (
                        falsifying_example.__expected_exception.runtime,
                        self.settings.deadline, self.__test_runtime
                    ))
                else:
                    report(
                        'Failed to reproduce exception. Expected: \n' +
                        falsifying_example.__expected_traceback,
                    )

                filter_message = (
                    'Unreliable test data: Failed to reproduce a failure '
                    'and then when it came to recreating the example in '
                    'order to print the test data with a flaky result '
                    'the example was filtered out (by e.g. a '
                    'call to filter in your strategy) when we didn\'t '
                    'expect it to be.'
                )

                try:
                    self.test_runner(
                        ConjectureData.for_buffer(falsifying_example.buffer),
                        reify_and_execute(
                            self.search_strategy,
                            test_is_flaky(
                                self.test, self.repr_for_last_exception),
                            print_example=True, is_final=True
                        ))
                except (UnsatisfiedAssumption, StopTest):
                    self.__flaky(filter_message)
                except Flaky as e:
                    if len(self.falsifying_examples) > 1:
                        self.__flaky(e.args[0])
                    else:
                        raise

            if self.__was_flaky:
                flaky += 1

        # If we only have one example then we should have raised an error or
        # flaky prior to this point.
        assert len(self.falsifying_examples) > 1

        if flaky > 0:
            raise Flaky((
                'Hypothesis found %d distinct failures, but %d of them '
                'exhibited some sort of flaky behaviour.') % (
                    len(self.falsifying_examples), flaky))
        else:
            raise MultipleFailures((
                'Hypothesis found %d distinct failures.') % (
                    len(self.falsifying_examples,)))
Ejemplo n.º 12
0
    def run(self):
        # Tell pytest to omit the body of this function from tracebacks
        __tracebackhide__ = True
        if global_force_seed is None:
            database_key = str_to_bytes(fully_qualified_name(self.test))
        else:
            database_key = None
        self.start_time = time.time()
        global in_given
        runner = ConjectureRunner(
            self.evaluate_test_data,
            settings=self.settings, random=self.random,
            database_key=database_key,
        )

        if in_given or self.collector is None:
            runner.run()
        else:  # pragma: no cover
            in_given = True
            original_trace = sys.gettrace()
            try:
                sys.settrace(None)
                runner.run()
            finally:
                in_given = False
                sys.settrace(original_trace)
        note_engine_for_statistics(runner)
        run_time = time.time() - self.start_time

        self.used_examples_from_database = runner.used_examples_from_database

        if runner.used_examples_from_database:
            if self.settings.derandomize:
                note_deprecation(
                    'In future derandomize will imply database=None, but your '
                    'test is currently using examples from the database. To '
                    'get the future behaviour, update your settings to '
                    'include database=None.'
                )
            if self.__had_seed:
                note_deprecation(
                    'In future use of @seed will imply database=None in your '
                    'settings, but your test is currently using examples from '
                    'the database. To get the future behaviour, update your '
                    'settings for this test to include database=None.'
                )

        timed_out = runner.exit_reason == ExitReason.timeout
        if runner.last_data is None:
            return
        if runner.interesting_examples:
            self.falsifying_examples = sorted(
                [d for d in runner.interesting_examples.values()],
                key=lambda d: sort_key(d.buffer), reverse=True
            )
        else:
            if timed_out:
                note_deprecation((
                    'Your tests are hitting the settings timeout (%.2fs). '
                    'This functionality will go away in a future release '
                    'and you should not rely on it. Instead, try setting '
                    'max_examples to be some value lower than %d (the number '
                    'of examples your test successfully ran here). Or, if you '
                    'would prefer your tests to run to completion, regardless '
                    'of how long they take, you can set the timeout value to '
                    'hypothesis.unlimited.'
                ) % (
                    self.settings.timeout, runner.valid_examples),
                    self.settings)
            if runner.valid_examples < min(
                self.settings.min_satisfying_examples,
                self.settings.max_examples,
            ) and not (
                runner.exit_reason == ExitReason.finished and
                self.at_least_one_success
            ):
                if timed_out:
                    raise Timeout((
                        'Ran out of time before finding a satisfying '
                        'example for '
                        '%s. Only found %d examples in ' +
                        '%.2fs.'
                    ) % (
                        get_pretty_function_description(self.test),
                        runner.valid_examples, run_time
                    ))
                else:
                    raise Unsatisfiable((
                        'Unable to satisfy assumptions of hypothesis '
                        '%s. Only %d examples considered '
                        'satisfied assumptions'
                    ) % (
                        get_pretty_function_description(self.test),
                        runner.valid_examples,))

        if not self.falsifying_examples:
            return

        flaky = 0

        for falsifying_example in self.falsifying_examples:
            self.__was_flaky = False
            assert falsifying_example.__expected_exception is not None
            try:
                self.execute(
                    ConjectureData.for_buffer(falsifying_example.buffer),
                    print_example=True, is_final=True,
                    expected_failure=(
                        falsifying_example.__expected_exception,
                        falsifying_example.__expected_traceback,
                    )
                )
            except (UnsatisfiedAssumption, StopTest):
                report(traceback.format_exc())
                self.__flaky(
                    'Unreliable assumption: An example which satisfied '
                    'assumptions on the first run now fails it.'
                )
            except BaseException:
                if len(self.falsifying_examples) <= 1:
                    raise
                report(traceback.format_exc())
            if self.__was_flaky:
                flaky += 1

        # If we only have one example then we should have raised an error or
        # flaky prior to this point.
        assert len(self.falsifying_examples) > 1

        if flaky > 0:
            raise Flaky((
                'Hypothesis found %d distinct failures, but %d of them '
                'exhibited some sort of flaky behaviour.') % (
                    len(self.falsifying_examples), flaky))
        else:
            raise MultipleFailures((
                'Hypothesis found %d distinct failures.') % (
                    len(self.falsifying_examples,)))
Ejemplo n.º 13
0
def test_qualname_of_function_with_none_module_is_name():
    def f():
        pass

    f.__module__ = None
    assert fully_qualified_name(f)[-1] == "f"
Ejemplo n.º 14
0
        def wrapped_test(*arguments, **kwargs):
            settings = wrapped_test._hypothesis_internal_use_settings
            if wrapped_test._hypothesis_internal_use_seed is not None:
                random = Random(
                    wrapped_test._hypothesis_internal_use_seed)
            elif settings.derandomize:
                random = Random(function_digest(test))
            else:
                random = new_random()

            import hypothesis.strategies as sd

            selfy = None
            arguments, kwargs = convert_positional_arguments(
                wrapped_test, arguments, kwargs)

            # If the test function is a method of some kind, the bound object
            # will be the first named argument if there are any, otherwise the
            # first vararg (if any).
            if argspec.args:
                selfy = kwargs.get(argspec.args[0])
            elif arguments:
                selfy = arguments[0]
            test_runner = new_style_executor(selfy)

            for example in reversed(getattr(
                wrapped_test, 'hypothesis_explicit_examples', ()
            )):
                if example.args:
                    if len(example.args) > len(original_argspec.args):
                        raise InvalidArgument(
                            'example has too many arguments for test. '
                            'Expected at most %d but got %d' % (
                                len(original_argspec.args), len(example.args)))
                    example_kwargs = dict(zip(
                        original_argspec.args[-len(example.args):],
                        example.args
                    ))
                else:
                    example_kwargs = example.kwargs
                example_kwargs.update(kwargs)
                # Note: Test may mutate arguments and we can't rerun explicit
                # examples, so we have to calculate the failure message at this
                # point rather than than later.
                message_on_failure = 'Falsifying example: %s(%s)' % (
                    test.__name__, arg_string(test, arguments, example_kwargs)
                )
                try:
                    with BuildContext() as b:
                        test_runner(
                            None,
                            lambda data: test(*arguments, **example_kwargs)
                        )
                except BaseException:
                    report(message_on_failure)
                    for n in b.notes:
                        report(n)
                    raise
            if settings.max_examples <= 0:
                return

            arguments = tuple(arguments)

            given_specifier = sd.tuples(
                sd.just(arguments),
                sd.fixed_dictionaries(generator_kwargs).map(
                    lambda args: dict(args, **kwargs)
                )
            )

            def fail_health_check(message):
                message += (
                    '\nSee http://hypothesis.readthedocs.org/en/latest/health'
                    'checks.html for more information about this.'
                )
                raise FailedHealthCheck(message)

            search_strategy = given_specifier
            search_strategy.validate()

            perform_health_check = settings.perform_health_check
            perform_health_check &= Settings.default.perform_health_check

            from hypothesis.internal.conjecture.data import TestData, Status, \
                StopTest

            if perform_health_check:
                initial_state = getglobalrandomstate()
                health_check_random = Random(random.getrandbits(128))
                # We "pre warm" the health check with one draw to give it some
                # time to calculate any cached data. This prevents the case
                # where the first draw of the health check takes ages because
                # of loading unicode data the first time.
                data = TestData(
                    max_length=settings.buffer_size,
                    draw_bytes=lambda data, n, distribution:
                    distribution(health_check_random, n)
                )
                with Settings(settings, verbosity=Verbosity.quiet):
                    try:
                        test_runner(data, reify_and_execute(
                            search_strategy,
                            lambda *args, **kwargs: None,
                        ))
                    except BaseException:
                        pass
                count = 0
                overruns = 0
                filtered_draws = 0
                start = time.time()
                while (
                    count < 10 and time.time() < start + 1 and
                    filtered_draws < 50 and overruns < 20
                ):
                    try:
                        data = TestData(
                            max_length=settings.buffer_size,
                            draw_bytes=lambda data, n, distribution:
                            distribution(health_check_random, n)
                        )
                        with Settings(settings, verbosity=Verbosity.quiet):
                            test_runner(data, reify_and_execute(
                                search_strategy,
                                lambda *args, **kwargs: None,
                            ))
                        count += 1
                    except UnsatisfiedAssumption:
                        filtered_draws += 1
                    except StopTest:
                        if data.status == Status.INVALID:
                            filtered_draws += 1
                        else:
                            assert data.status == Status.OVERRUN
                            overruns += 1
                    except Exception:
                        report(traceback.format_exc())
                        if test_runner is default_new_style_executor:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                "an error in a function yo've passed to "
                                'it to construct your data.'
                            )
                        else:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                'an error in a function you\'ve passed to '
                                'it to construct your data. Additionally, '
                                'you have a custom executor, which means '
                                'that this could be your executor failing '
                                'to handle a function which returns None. '
                            )
                if overruns >= 20 or (
                    not count and overruns > 0
                ):
                    fail_health_check((
                        'Examples routinely exceeded the max allowable size. '
                        '(%d examples overran while generating %d valid ones)'
                        '. Generating examples this large will usually lead to'
                        ' bad results. You should try setting average_size or '
                        'max_size parameters on your collections and turning '
                        'max_leaves down on recursive() calls.') % (
                        overruns, count
                    ))
                if filtered_draws >= 50 or (
                    not count and filtered_draws > 0
                ):
                    fail_health_check((
                        'It looks like your strategy is filtering out a lot '
                        'of data. Health check found %d filtered examples but '
                        'only %d good ones. This will make your tests much '
                        'slower, and also will probably distort the data '
                        'generation quite a lot. You should adapt your '
                        'strategy to filter less. This can also be caused by '
                        'a low max_leaves parameter in recursive() calls') % (
                        filtered_draws, count
                    ))
                runtime = time.time() - start
                if runtime > 1.0 or count < 10:
                    fail_health_check((
                        'Data generation is extremely slow: Only produced '
                        '%d valid examples in %.2f seconds (%d invalid ones '
                        'and %d exceeded maximum size). Try decreasing '
                        "size of the data you're generating (with e.g."
                        'average_size or max_leaves parameters).'
                    ) % (count, runtime, filtered_draws, overruns))
                if getglobalrandomstate() != initial_state:
                    fail_health_check(
                        'Data generation depends on global random module. '
                        'This makes results impossible to replay, which '
                        'prevents Hypothesis from working correctly. '
                        'If you want to use methods from random, use '
                        'randoms() from hypothesis.strategies to get an '
                        'instance of Random you can use. Alternatively, you '
                        'can use the random_module() strategy to explicitly '
                        'seed the random module.'
                    )
            last_exception = [None]
            repr_for_last_exception = [None]
            performed_random_check = [False]

            def evaluate_test_data(data):
                if perform_health_check and not performed_random_check[0]:
                    initial_state = getglobalrandomstate()
                    performed_random_check[0] = True
                else:
                    initial_state = None
                try:
                    result = test_runner(data, reify_and_execute(
                        search_strategy, test,
                    ))
                    if result is not None and settings.perform_health_check:
                        raise FailedHealthCheck((
                            'Tests run under @given should return None, but '
                            '%s returned %r instead.'
                        ) % (test.__name__, result), settings)
                    return False
                except UnsatisfiedAssumption:
                    data.mark_invalid()
                except (
                    HypothesisDeprecationWarning, FailedHealthCheck,
                    StopTest,
                ):
                    raise
                except Exception:
                    last_exception[0] = traceback.format_exc()
                    verbose_report(last_exception[0])
                    data.mark_interesting()
                finally:
                    if (
                        initial_state is not None and
                        getglobalrandomstate() != initial_state
                    ):
                        fail_health_check(
                            'Your test used the global random module. '
                            'This is unlikely to work correctly. You should '
                            'consider using the randoms() strategy from '
                            'hypothesis.strategies instead. Alternatively, '
                            'you can use the random_module() strategy to '
                            'explicitly seed the random module.')

            from hypothesis.internal.conjecture.engine import TestRunner

            falsifying_example = None
            database_key = str_to_bytes(fully_qualified_name(test))
            start_time = time.time()
            runner = TestRunner(
                evaluate_test_data,
                settings=settings, random=random,
                database_key=database_key,
            )
            runner.run()
            run_time = time.time() - start_time
            timed_out = (
                settings.timeout > 0 and
                run_time >= settings.timeout
            )
            if runner.last_data.status == Status.INTERESTING:
                falsifying_example = runner.last_data.buffer
                if settings.database is not None:
                    settings.database.save(
                        database_key, falsifying_example
                    )
            else:
                if runner.valid_examples < min(
                    settings.min_satisfying_examples,
                    settings.max_examples,
                ):
                    if timed_out:
                        raise Timeout((
                            'Ran out of time before finding a satisfying '
                            'example for '
                            '%s. Only found %d examples in ' +
                            '%.2fs.'
                        ) % (
                            get_pretty_function_description(test),
                            runner.valid_examples, run_time
                        ))
                    else:
                        raise Unsatisfiable((
                            'Unable to satisfy assumptions of hypothesis '
                            '%s. Only %d examples considered '
                            'satisfied assumptions'
                        ) % (
                            get_pretty_function_description(test),
                            runner.valid_examples,))
                return

            assert last_exception[0] is not None

            try:
                with settings:
                    test_runner(
                        TestData.for_buffer(falsifying_example),
                        reify_and_execute(
                            search_strategy, test,
                            print_example=True, is_final=True
                        ))
            except (UnsatisfiedAssumption, StopTest):
                report(traceback.format_exc())
                raise Flaky(
                    'Unreliable assumption: An example which satisfied '
                    'assumptions on the first run now fails it.'
                )

            report(
                'Failed to reproduce exception. Expected: \n' +
                last_exception[0],
            )

            filter_message = (
                'Unreliable test data: Failed to reproduce a failure '
                'and then when it came to recreating the example in '
                'order to print the test data with a flaky result '
                'the example was filtered out (by e.g. a '
                'call to filter in your strategy) when we didn\'t '
                'expect it to be.'
            )

            try:
                test_runner(
                    TestData.for_buffer(falsifying_example),
                    reify_and_execute(
                        search_strategy,
                        test_is_flaky(test, repr_for_last_exception[0]),
                        print_example=True, is_final=True
                    ))
            except (UnsatisfiedAssumption, StopTest):
                raise Flaky(filter_message)
Ejemplo n.º 15
0
        def wrapped_test(*arguments, **kwargs):
            settings = wrapped_test._hypothesis_internal_use_settings
            if wrapped_test._hypothesis_internal_use_seed is not None:
                random = Random(
                    wrapped_test._hypothesis_internal_use_seed)
            elif settings.derandomize:
                random = Random(function_digest(test))
            else:
                random = new_random()

            import hypothesis.strategies as sd

            selfy = None
            arguments, kwargs = convert_positional_arguments(
                wrapped_test, arguments, kwargs)

            # If the test function is a method of some kind, the bound object
            # will be the first named argument if there are any, otherwise the
            # first vararg (if any).
            if argspec.args:
                selfy = kwargs.get(argspec.args[0])
            elif arguments:
                selfy = arguments[0]
            test_runner = new_style_executor(selfy)

            for example in reversed(getattr(
                wrapped_test, 'hypothesis_explicit_examples', ()
            )):
                if example.args:
                    if len(example.args) > len(original_argspec.args):
                        raise InvalidArgument(
                            'example has too many arguments for test. '
                            'Expected at most %d but got %d' % (
                                len(original_argspec.args), len(example.args)))
                    example_kwargs = dict(zip(
                        original_argspec.args[-len(example.args):],
                        example.args
                    ))
                else:
                    example_kwargs = example.kwargs
                if Phase.explicit not in settings.phases:
                    continue
                example_kwargs.update(kwargs)
                # Note: Test may mutate arguments and we can't rerun explicit
                # examples, so we have to calculate the failure message at this
                # point rather than than later.
                message_on_failure = 'Falsifying example: %s(%s)' % (
                    test.__name__, arg_string(test, arguments, example_kwargs)
                )
                try:
                    with BuildContext(None) as b:
                        test_runner(
                            None,
                            lambda data: test(*arguments, **example_kwargs)
                        )
                except BaseException:
                    traceback.print_exc()
                    report(message_on_failure)
                    for n in b.notes:
                        report(n)
                    raise
            if settings.max_examples <= 0:
                return

            arguments = tuple(arguments)

            given_specifier = sd.tuples(
                sd.just(arguments),
                sd.fixed_dictionaries(generator_kwargs).map(
                    lambda args: dict(args, **kwargs)
                )
            )

            def fail_health_check(message, label):
                if label in settings.suppress_health_check:
                    return
                message += (
                    '\nSee https://hypothesis.readthedocs.io/en/latest/health'
                    'checks.html for more information about this. '
                )
                message += (
                    'If you want to disable just this health check, add %s '
                    'to the suppress_health_check settings for this test.'
                ) % (label,)
                raise FailedHealthCheck(message)

            search_strategy = given_specifier
            if selfy is not None:
                search_strategy = WithRunner(search_strategy, selfy)

            search_strategy.validate()

            perform_health_check = settings.perform_health_check
            perform_health_check &= Settings.default.perform_health_check

            from hypothesis.internal.conjecture.data import ConjectureData, \
                Status, StopTest
            if not (
                Phase.reuse in settings.phases or
                Phase.generate in settings.phases
            ):
                return

            if perform_health_check:
                health_check_random = Random(random.getrandbits(128))
                # We "pre warm" the health check with one draw to give it some
                # time to calculate any cached data. This prevents the case
                # where the first draw of the health check takes ages because
                # of loading unicode data the first time.
                data = ConjectureData(
                    max_length=settings.buffer_size,
                    draw_bytes=lambda data, n, distribution:
                    distribution(health_check_random, n)
                )
                with Settings(settings, verbosity=Verbosity.quiet):
                    try:
                        test_runner(data, reify_and_execute(
                            search_strategy,
                            lambda *args, **kwargs: None,
                        ))
                    except BaseException:
                        pass
                count = 0
                overruns = 0
                filtered_draws = 0
                start = time.time()
                while (
                    count < 10 and time.time() < start + 1 and
                    filtered_draws < 50 and overruns < 20
                ):
                    try:
                        data = ConjectureData(
                            max_length=settings.buffer_size,
                            draw_bytes=lambda data, n, distribution:
                            distribution(health_check_random, n)
                        )
                        with Settings(settings, verbosity=Verbosity.quiet):
                            test_runner(data, reify_and_execute(
                                search_strategy,
                                lambda *args, **kwargs: None,
                            ))
                        count += 1
                    except UnsatisfiedAssumption:
                        filtered_draws += 1
                    except StopTest:
                        if data.status == Status.INVALID:
                            filtered_draws += 1
                        else:
                            assert data.status == Status.OVERRUN
                            overruns += 1
                    except InvalidArgument:
                        raise
                    except Exception:
                        if (
                            HealthCheck.exception_in_generation in
                            settings.suppress_health_check
                        ):
                            raise
                        report(traceback.format_exc())
                        if test_runner is default_new_style_executor:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                "an error in a function you've passed to "
                                'it to construct your data.',
                                HealthCheck.exception_in_generation,
                            )
                        else:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                'an error in a function you\'ve passed to '
                                'it to construct your data. Additionally, '
                                'you have a custom executor, which means '
                                'that this could be your executor failing '
                                'to handle a function which returns None. ',
                                HealthCheck.exception_in_generation,
                            )
                if overruns >= 20 or (
                    not count and overruns > 0
                ):
                    fail_health_check((
                        'Examples routinely exceeded the max allowable size. '
                        '(%d examples overran while generating %d valid ones)'
                        '. Generating examples this large will usually lead to'
                        ' bad results. You should try setting average_size or '
                        'max_size parameters on your collections and turning '
                        'max_leaves down on recursive() calls.') % (
                        overruns, count
                    ), HealthCheck.data_too_large)
                if filtered_draws >= 50 or (
                    not count and filtered_draws > 0
                ):
                    fail_health_check((
                        'It looks like your strategy is filtering out a lot '
                        'of data. Health check found %d filtered examples but '
                        'only %d good ones. This will make your tests much '
                        'slower, and also will probably distort the data '
                        'generation quite a lot. You should adapt your '
                        'strategy to filter less. This can also be caused by '
                        'a low max_leaves parameter in recursive() calls') % (
                        filtered_draws, count
                    ), HealthCheck.filter_too_much)
                runtime = time.time() - start
                if runtime > 1.0 or count < 10:
                    fail_health_check((
                        'Data generation is extremely slow: Only produced '
                        '%d valid examples in %.2f seconds (%d invalid ones '
                        'and %d exceeded maximum size). Try decreasing '
                        "size of the data you're generating (with e.g."
                        'average_size or max_leaves parameters).'
                    ) % (count, runtime, filtered_draws, overruns),
                        HealthCheck.too_slow,
                    )
            last_exception = [None]
            repr_for_last_exception = [None]

            def evaluate_test_data(data):
                try:
                    result = test_runner(data, reify_and_execute(
                        search_strategy, test,
                    ))
                    if result is not None and settings.perform_health_check:
                        fail_health_check((
                            'Tests run under @given should return None, but '
                            '%s returned %r instead.'
                        ) % (test.__name__, result), HealthCheck.return_value)
                    return False
                except UnsatisfiedAssumption:
                    data.mark_invalid()
                except (
                    HypothesisDeprecationWarning, FailedHealthCheck,
                    StopTest,
                ):
                    raise
                except Exception:
                    last_exception[0] = traceback.format_exc()
                    verbose_report(last_exception[0])
                    data.mark_interesting()

            from hypothesis.internal.conjecture.engine import ConjectureRunner

            falsifying_example = None
            database_key = str_to_bytes(fully_qualified_name(test))
            start_time = time.time()
            runner = ConjectureRunner(
                evaluate_test_data,
                settings=settings, random=random,
                database_key=database_key,
            )
            runner.run()
            note_engine_for_statistics(runner)
            run_time = time.time() - start_time
            timed_out = (
                settings.timeout > 0 and
                run_time >= settings.timeout
            )
            if runner.last_data is None:
                return
            if runner.last_data.status == Status.INTERESTING:
                falsifying_example = runner.last_data.buffer
                if settings.database is not None:
                    settings.database.save(
                        database_key, falsifying_example
                    )
            else:
                if runner.valid_examples < min(
                    settings.min_satisfying_examples,
                    settings.max_examples,
                ):
                    if timed_out:
                        raise Timeout((
                            'Ran out of time before finding a satisfying '
                            'example for '
                            '%s. Only found %d examples in ' +
                            '%.2fs.'
                        ) % (
                            get_pretty_function_description(test),
                            runner.valid_examples, run_time
                        ))
                    else:
                        raise Unsatisfiable((
                            'Unable to satisfy assumptions of hypothesis '
                            '%s. Only %d examples considered '
                            'satisfied assumptions'
                        ) % (
                            get_pretty_function_description(test),
                            runner.valid_examples,))
                return

            assert last_exception[0] is not None

            try:
                with settings:
                    test_runner(
                        ConjectureData.for_buffer(falsifying_example),
                        reify_and_execute(
                            search_strategy, test,
                            print_example=True, is_final=True
                        ))
            except (UnsatisfiedAssumption, StopTest):
                report(traceback.format_exc())
                raise Flaky(
                    'Unreliable assumption: An example which satisfied '
                    'assumptions on the first run now fails it.'
                )

            report(
                'Failed to reproduce exception. Expected: \n' +
                last_exception[0],
            )

            filter_message = (
                'Unreliable test data: Failed to reproduce a failure '
                'and then when it came to recreating the example in '
                'order to print the test data with a flaky result '
                'the example was filtered out (by e.g. a '
                'call to filter in your strategy) when we didn\'t '
                'expect it to be.'
            )

            try:
                test_runner(
                    ConjectureData.for_buffer(falsifying_example),
                    reify_and_execute(
                        search_strategy,
                        test_is_flaky(test, repr_for_last_exception[0]),
                        print_example=True, is_final=True
                    ))
            except (UnsatisfiedAssumption, StopTest):
                raise Flaky(filter_message)
Ejemplo n.º 16
0
        def wrapped_test(*arguments, **kwargs):
            selfy = None
            # Because we converted all kwargs to given into real args and
            # error if we have neither args nor kwargs, this should always
            # be valid
            assert argspec.args
            selfy = kwargs.get(argspec.args[0])
            if isinstance(selfy, HypothesisProvided):
                selfy = None
            test_runner = executor(selfy)

            for example in getattr(
                wrapped_test, 'hypothesis_explicit_examples', ()
            ):
                if example.args:
                    example_kwargs = dict(zip(
                        argspec.args[-len(example.args):], example.args
                    ))
                else:
                    example_kwargs = dict(example.kwargs)

                for k, v in kwargs.items():
                    if not isinstance(v, HypothesisProvided):
                        example_kwargs[k] = v

                test_runner(
                    lambda: test(*arguments, **example_kwargs)
                )

            if not any(
                isinstance(x, HypothesisProvided)
                for xs in (arguments, kwargs.values())
                for x in xs
            ):
                # All arguments have been satisfied without needing to invoke
                # hypothesis
                test_runner(lambda: test(*arguments, **kwargs))
                return

            def convert_to_specifier(v):
                if isinstance(v, HypothesisProvided):
                    return strategy(v.value, settings)
                else:
                    return sd.just(v)

            given_specifier = sd.tuples(
                sd.tuples(*map(convert_to_specifier, arguments)),
                sd.fixed_dictionaries({
                    k: convert_to_specifier(v) for k, v in kwargs.items()})
            )

            search_strategy = strategy(given_specifier, settings)

            if settings.database:
                storage = settings.database.storage(
                    fully_qualified_name(test))
            else:
                storage = None

            def is_template_example(xs):
                try:
                    test_runner(reify_and_execute(
                        search_strategy, xs, test,
                        always_print=settings.max_shrinks <= 0
                    ))
                    return False
                except UnsatisfiedAssumption as e:
                    raise e
                except Exception as e:
                    if settings.max_shrinks <= 0:
                        raise e
                    verbose_report(traceback.format_exc)
                    return True

            is_template_example.__name__ = test.__name__
            is_template_example.__qualname__ = qualname(test)

            falsifying_template = None
            try:
                falsifying_template = best_satisfying_template(
                    search_strategy, random, is_template_example,
                    settings, storage
                )
            except NoSuchExample:
                return

            with settings:
                test_runner(reify_and_execute(
                    search_strategy, falsifying_template, test,
                    print_example=True
                ))

                test_runner(reify_and_execute(
                    search_strategy, falsifying_template, test_is_flaky(test),
                    print_example=True
                ))
Ejemplo n.º 17
0
def test_qualname_of_function_with_none_module_is_name():
    def f():
        pass
    f.__module__ = None
    assert fully_qualified_name(f)[-1] == 'f'
Ejemplo n.º 18
0
        def wrapped_test(*arguments, **kwargs):
            selfy = None
            arguments, kwargs = convert_positional_arguments(
                wrapped_test, arguments, kwargs)
            # Anything in unused_kwargs hasn't been injected through
            # argspec.defaults, so we need to add them.
            for k in unused_kwargs:
                if k not in kwargs:
                    kwargs[k] = unused_kwargs[k]
            # If the test function is a method of some kind, the bound object
            # will be the first named argument if there are any, otherwise the
            # first vararg (if any).
            if argspec.args:
                selfy = kwargs.get(argspec.args[0])
            elif arguments:
                selfy = arguments[0]
            if isinstance(selfy, HypothesisProvided):
                selfy = None
            test_runner = executor(selfy)

            for example in getattr(
                wrapped_test, 'hypothesis_explicit_examples', ()
            ):
                if example.args:
                    example_kwargs = dict(zip(
                        argspec.args[-len(example.args):], example.args
                    ))
                else:
                    example_kwargs = dict(example.kwargs)

                for k, v in kwargs.items():
                    if not isinstance(v, HypothesisProvided):
                        example_kwargs[k] = v
                # Note: Test may mutate arguments and we can't rerun explicit
                # examples, so we have to calculate the failure message at this
                # point rather than than later.
                message_on_failure = 'Falsifying example: %s(%s)' % (
                    test.__name__, arg_string(test, arguments, example_kwargs)
                )
                try:
                    test_runner(
                        lambda: test(*arguments, **example_kwargs)
                    )
                except BaseException:
                    report(message_on_failure)
                    raise

            if not any(
                isinstance(x, HypothesisProvided)
                for xs in (arguments, kwargs.values())
                for x in xs
            ):
                # All arguments have been satisfied without needing to invoke
                # hypothesis
                test_runner(lambda: test(*arguments, **kwargs))
                return

            def convert_to_specifier(v):
                if isinstance(v, HypothesisProvided):
                    return strategy(v.value, settings)
                else:
                    return sd.just(v)

            given_specifier = sd.tuples(
                sd.tuples(*map(convert_to_specifier, arguments)),
                sd.fixed_dictionaries(dict(
                    (k, convert_to_specifier(v)) for (k, v) in kwargs.items()))
            )

            search_strategy = strategy(given_specifier, settings)

            if settings.database:
                storage = settings.database.storage(
                    fully_qualified_name(test))
            else:
                storage = None

            last_exception = [None]
            repr_for_last_exception = [None]

            def is_template_example(xs):
                record_repr = [None]
                try:
                    test_runner(reify_and_execute(
                        search_strategy, xs, test,
                        always_print=settings.max_shrinks <= 0,
                        record_repr=record_repr,
                    ))
                    return False
                except UnsatisfiedAssumption as e:
                    raise e
                except Exception as e:
                    if settings.max_shrinks <= 0:
                        raise e
                    last_exception[0] = traceback.format_exc()
                    repr_for_last_exception[0] = record_repr[0]
                    verbose_report(last_exception[0])
                    return True

            is_template_example.__name__ = test.__name__
            is_template_example.__qualname__ = qualname(test)

            falsifying_template = None
            try:
                falsifying_template = best_satisfying_template(
                    search_strategy, random, is_template_example,
                    settings, storage
                )
            except NoSuchExample:
                return

            assert last_exception[0] is not None

            with settings:
                test_runner(reify_and_execute(
                    search_strategy, falsifying_template, test,
                    print_example=True
                ))

                report(
                    'Failed to reproduce exception. Expected: \n' +
                    last_exception[0],
                )

                test_runner(reify_and_execute(
                    search_strategy, falsifying_template,
                    test_is_flaky(test, repr_for_last_exception[0]),
                    print_example=True
                ))
Ejemplo n.º 19
0
    def run(self):
        # Tell pytest to omit the body of this function from tracebacks
        __tracebackhide__ = True
        if global_force_seed is None:
            database_key = str_to_bytes(fully_qualified_name(self.test))
        else:
            database_key = None
        self.start_time = benchmark_time()
        runner = ConjectureRunner(
            self.evaluate_test_data,
            settings=self.settings, random=self.random,
            database_key=database_key,
        )
        try:
            runner.run()
        finally:
            self.used_examples_from_database = \
                runner.used_examples_from_database
        note_engine_for_statistics(runner)
        run_time = benchmark_time() - self.start_time

        self.used_examples_from_database = runner.used_examples_from_database

        if runner.used_examples_from_database:
            if self.settings.derandomize:
                note_deprecation((
                    'In future derandomize will imply database=None, but your '
                    'test: %s is currently using examples from the database. '
                    'To get the future behaviour, update your settings to '
                    'include database=None.') % (self.test.__name__, )
                )
            if self.__had_seed:
                note_deprecation((
                    'In future use of @seed will imply database=None in your '
                    'settings, but your test: %s is currently using examples '
                    'from the database. To get the future behaviour, update '
                    'your settings for this test to include database=None.')
                    % (self.test.__name__,)
                )

        timed_out = runner.exit_reason == ExitReason.timeout
        if runner.call_count == 0:
            return
        if runner.interesting_examples:
            self.falsifying_examples = sorted(
                [d for d in runner.interesting_examples.values()],
                key=lambda d: sort_key(d.buffer), reverse=True
            )
        else:
            if runner.valid_examples == 0:
                if timed_out:
                    raise Timeout((
                        'Ran out of time before finding a satisfying '
                        'example for %s. Only found %d examples in %.2fs.'
                    ) % (
                        get_pretty_function_description(self.test),
                        runner.valid_examples, run_time
                    ))
                else:
                    raise Unsatisfiable(
                        'Unable to satisfy assumptions of hypothesis %s.' %
                        (get_pretty_function_description(self.test),)
                    )

        if not self.falsifying_examples:
            return

        self.failed_normally = True

        flaky = 0

        for falsifying_example in self.falsifying_examples:
            ran_example = ConjectureData.for_buffer(falsifying_example.buffer)
            self.__was_flaky = False
            assert falsifying_example.__expected_exception is not None
            try:
                self.execute(
                    ran_example,
                    print_example=True, is_final=True,
                    expected_failure=(
                        falsifying_example.__expected_exception,
                        falsifying_example.__expected_traceback,
                    )
                )
            except (UnsatisfiedAssumption, StopTest):
                report(traceback.format_exc())
                self.__flaky(
                    'Unreliable assumption: An example which satisfied '
                    'assumptions on the first run now fails it.'
                )
            except BaseException:
                if len(self.falsifying_examples) <= 1:
                    raise
                report(traceback.format_exc())
            finally:  # pragma: no cover
                # This section is in fact entirely covered by the tests in
                # test_reproduce_failure, but it seems to trigger a lovely set
                # of coverage bugs: The branches show up as uncovered (despite
                # definitely being covered - you can add an assert False else
                # branch to verify this and see it fail - and additionally the
                # second branch still complains about lack of coverage even if
                # you add a pragma: no cover to it!
                # See https://bitbucket.org/ned/coveragepy/issues/623/
                if self.settings.print_blob is not PrintSettings.NEVER:
                    failure_blob = encode_failure(falsifying_example.buffer)
                    # Have to use the example we actually ran, not the original
                    # falsifying example! Otherwise we won't catch problems
                    # where the repr of the generated example doesn't parse.
                    can_use_repr = ran_example.can_reproduce_example_from_repr
                    if (
                        self.settings.print_blob is PrintSettings.ALWAYS or (
                            self.settings.print_blob is PrintSettings.INFER and
                            self.settings.verbosity >= Verbosity.normal and
                            not can_use_repr and
                            len(failure_blob) < 200
                        )
                    ):
                        report((
                            '\n'
                            'You can reproduce this example by temporarily '
                            'adding @reproduce_failure(%r, %r) as a decorator '
                            'on your test case') % (
                                __version__, failure_blob,))
            if self.__was_flaky:
                flaky += 1

        # If we only have one example then we should have raised an error or
        # flaky prior to this point.
        assert len(self.falsifying_examples) > 1

        if flaky > 0:
            raise Flaky((
                'Hypothesis found %d distinct failures, but %d of them '
                'exhibited some sort of flaky behaviour.') % (
                    len(self.falsifying_examples), flaky))
        else:
            raise MultipleFailures((
                'Hypothesis found %d distinct failures.') % (
                    len(self.falsifying_examples,)))
Ejemplo n.º 20
0
        def wrapped_test(*arguments, **kwargs):
            settings = wrapped_test._hypothesis_internal_use_settings
            if wrapped_test._hypothesis_internal_use_seed is not None:
                random = Random(wrapped_test._hypothesis_internal_use_seed)
            elif settings.derandomize:
                random = Random(function_digest(test))
            else:
                random = new_random()

            import hypothesis.strategies as sd

            selfy = None
            arguments, kwargs = convert_positional_arguments(
                wrapped_test, arguments, kwargs)

            # If the test function is a method of some kind, the bound object
            # will be the first named argument if there are any, otherwise the
            # first vararg (if any).
            if argspec.args:
                selfy = kwargs.get(argspec.args[0])
            elif arguments:
                selfy = arguments[0]
            test_runner = executor(selfy)

            for example in reversed(
                    getattr(wrapped_test, 'hypothesis_explicit_examples', ())):
                if example.args:
                    example_kwargs = dict(
                        zip(original_argspec.args[-len(example.args):],
                            example.args))
                else:
                    example_kwargs = example.kwargs
                example_kwargs.update(kwargs)
                # Note: Test may mutate arguments and we can't rerun explicit
                # examples, so we have to calculate the failure message at this
                # point rather than than later.
                message_on_failure = 'Falsifying example: %s(%s)' % (
                    test.__name__, arg_string(test, arguments, example_kwargs))
                try:
                    with BuildContext() as b:
                        test_runner(lambda: test(*arguments, **example_kwargs))
                except BaseException:
                    report(message_on_failure)
                    for n in b.notes:
                        report(n)
                    raise

            arguments = tuple(arguments)

            given_specifier = sd.tuples(
                sd.just(arguments),
                sd.fixed_dictionaries(generator_kwargs).map(
                    lambda args: dict(args, **kwargs)))

            def fail_health_check(message):
                message += (
                    '\nSee http://hypothesis.readthedocs.org/en/latest/health'
                    'checks.html for more information about this.')
                if settings.strict:
                    raise FailedHealthCheck(message)
                else:
                    warnings.warn(FailedHealthCheck(message))

            search_strategy = given_specifier
            search_strategy.validate()

            if settings.database:
                storage = settings.database.storage(fully_qualified_name(test))
            else:
                storage = None

            start = time.time()
            warned_random = [False]
            perform_health_check = settings.perform_health_check
            if Settings.default is not None:
                perform_health_check &= Settings.default.perform_health_check

            if perform_health_check:
                initial_state = getglobalrandomstate()
                health_check_random = Random(random.getrandbits(128))
                count = 0
                bad_draws = 0
                filtered_draws = 0
                errors = 0
                while (count < 10 and time.time() < start + 1
                       and filtered_draws < 50 and bad_draws < 50):
                    try:
                        with Settings(settings, verbosity=Verbosity.quiet):
                            test_runner(
                                reify_and_execute(
                                    search_strategy,
                                    search_strategy.draw_template(
                                        health_check_random,
                                        search_strategy.draw_parameter(
                                            health_check_random, )),
                                    lambda *args, **kwargs: None,
                                ))
                        count += 1
                    except BadTemplateDraw:
                        bad_draws += 1
                    except UnsatisfiedAssumption:
                        filtered_draws += 1
                    except Exception:
                        if errors == 0:
                            report(traceback.format_exc())
                        errors += 1
                        if test_runner is default_executor:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                "an error in a function yo've passed to "
                                'it to construct your data.')
                        else:
                            fail_health_check(
                                'An exception occurred during data '
                                'generation in initial health check. '
                                'This indicates a bug in the strategy. '
                                'This could either be a Hypothesis bug or '
                                'an error in a function you\'ve passed to '
                                'it to construct your data. Additionally, '
                                'you have a custom executor, which means '
                                'that this could be your executor failing '
                                'to handle a function which returns None. ')
                if filtered_draws >= 50:
                    fail_health_check((
                        'It looks like your strategy is filtering out a lot '
                        'of data. Health check found %d filtered examples but '
                        'only %d good ones. This will make your tests much '
                        'slower, and also will probably distort the data '
                        'generation quite a lot. You should adapt your '
                        'strategy to filter less.') % (filtered_draws, count))
                if bad_draws >= 50:
                    fail_health_check(
                        'Hypothesis is struggling to generate examples. '
                        'This is often a sign of a recursive strategy which '
                        'fans out too broadly. If you\'re using recursive, '
                        'try to reduce the size of the recursive step or '
                        'increase the maximum permitted number of leaves.')
                runtime = time.time() - start
                if runtime > 1.0 or count < 10:
                    fail_health_check(
                        ('Data generation is extremely slow: Only produced '
                         '%d valid examples in %.2f seconds. Try decreasing '
                         "size of the data yo're generating (with e.g."
                         'average_size or max_leaves parameters).') %
                        (count, runtime))
                if getglobalrandomstate() != initial_state:
                    warned_random[0] = True
                    fail_health_check(
                        'Data generation depends on global random module. '
                        'This makes results impossible to replay, which '
                        'prevents Hypothesis from working correctly. '
                        'If you want to use methods from random, use '
                        'randoms() from hypothesis.strategies to get an '
                        'instance of Random you can use. Alternatively, you '
                        'can use the random_module() strategy to explicitly '
                        'seed the random module.')

            last_exception = [None]
            repr_for_last_exception = [None]

            def is_template_example(xs):
                if perform_health_check and not warned_random[0]:
                    initial_state = getglobalrandomstate()
                record_repr = [None]
                try:
                    result = test_runner(
                        reify_and_execute(
                            search_strategy,
                            xs,
                            test,
                            record_repr=record_repr,
                        ))
                    if result is not None and settings.perform_health_check:
                        raise FailedHealthCheck(
                            ('Tests run under @given should return None, but '
                             '%s returned %r instead.') %
                            (test.__name__, result), settings)
                    return False
                except (HypothesisDeprecationWarning, FailedHealthCheck,
                        UnsatisfiedAssumption):
                    raise
                except Exception:
                    last_exception[0] = traceback.format_exc()
                    repr_for_last_exception[0] = record_repr[0]
                    verbose_report(last_exception[0])
                    return True
                finally:
                    if (not warned_random[0] and perform_health_check
                            and getglobalrandomstate() != initial_state):
                        warned_random[0] = True
                        fail_health_check(
                            'Your test used the global random module. '
                            'This is unlikely to work correctly. You should '
                            'consider using the randoms() strategy from '
                            'hypothesis.strategies instead. Alternatively, '
                            'you can use the random_module() strategy to '
                            'explicitly seed the random module.')

            is_template_example.__name__ = test.__name__
            is_template_example.__qualname__ = qualname(test)

            with settings:
                falsifying_template = None
                try:
                    falsifying_template = best_satisfying_template(
                        search_strategy,
                        random,
                        is_template_example,
                        settings,
                        storage,
                        start_time=start,
                    )
                except NoSuchExample:
                    return

                assert last_exception[0] is not None

                try:
                    test_runner(
                        reify_and_execute(search_strategy,
                                          falsifying_template,
                                          test,
                                          print_example=True,
                                          is_final=True))
                except UnsatisfiedAssumption:
                    report(traceback.format_exc())
                    raise Flaky(
                        'Unreliable assumption: An example which satisfied '
                        'assumptions on the first run now fails it.')

                report(
                    'Failed to reproduce exception. Expected: \n' +
                    last_exception[0], )

                try:
                    test_runner(
                        reify_and_execute(search_strategy,
                                          falsifying_template,
                                          test_is_flaky(
                                              test,
                                              repr_for_last_exception[0]),
                                          print_example=True,
                                          is_final=True))
                except UnsatisfiedAssumption:
                    raise Flaky(
                        'Unreliable test data: Failed to reproduce a failure '
                        'and then when it came to recreating the example in '
                        'order to print the test data with a flaky result '
                        'the example was filtered out (by e.g. a '
                        'call to filter in your strategy) when we didn\'t '
                        'expect it to be.')
Ejemplo n.º 21
0
        def wrapped_test(*arguments, **kwargs):
            import hypothesis.strategies as sd
            from hypothesis.internal.strategymethod import strategy

            selfy = None
            arguments, kwargs = convert_positional_arguments(
                wrapped_test, arguments, kwargs)
            # Anything in unused_kwargs hasn't been injected through
            # argspec.defaults, so we need to add them.
            for k in unused_kwargs:
                if k not in kwargs:
                    kwargs[k] = unused_kwargs[k]
            # If the test function is a method of some kind, the bound object
            # will be the first named argument if there are any, otherwise the
            # first vararg (if any).
            if argspec.args:
                selfy = kwargs.get(argspec.args[0])
            elif arguments:
                selfy = arguments[0]
            if isinstance(selfy, HypothesisProvided):
                selfy = None
            test_runner = executor(selfy)

            for example in getattr(
                wrapped_test, u'hypothesis_explicit_examples', ()
            ):
                if example.args:
                    example_kwargs = dict(zip(
                        argspec.args[-len(example.args):], example.args
                    ))
                else:
                    example_kwargs = dict(example.kwargs)

                for k, v in kwargs.items():
                    if not isinstance(v, HypothesisProvided):
                        example_kwargs[k] = v
                # Note: Test may mutate arguments and we can't rerun explicit
                # examples, so we have to calculate the failure message at this
                # point rather than than later.
                message_on_failure = u'Falsifying example: %s(%s)' % (
                    test.__name__, arg_string(test, arguments, example_kwargs)
                )
                try:
                    test_runner(
                        lambda: test(*arguments, **example_kwargs)
                    )
                except BaseException:
                    report(message_on_failure)
                    raise

            if not any(
                isinstance(x, HypothesisProvided)
                for xs in (arguments, kwargs.values())
                for x in xs
            ):
                # All arguments have been satisfied without needing to invoke
                # hypothesis
                test_runner(lambda: test(*arguments, **kwargs))
                return

            def convert_to_specifier(v):
                if isinstance(v, HypothesisProvided):
                    return strategy(v.value, settings)
                else:
                    return sd.just(v)

            given_specifier = sd.tuples(
                sd.tuples(*map(convert_to_specifier, arguments)),
                sd.fixed_dictionaries(dict(
                    (k, convert_to_specifier(v)) for (k, v) in kwargs.items()))
            )

            search_strategy = strategy(given_specifier, settings)

            if settings.database:
                storage = settings.database.storage(
                    fully_qualified_name(test))
            else:
                storage = None

            last_exception = [None]
            repr_for_last_exception = [None]

            def is_template_example(xs):
                record_repr = [None]
                try:
                    test_runner(reify_and_execute(
                        search_strategy, xs, test,
                        always_print=settings.max_shrinks <= 0,
                        record_repr=record_repr,
                    ))
                    return False
                except UnsatisfiedAssumption as e:
                    raise e
                except Exception as e:
                    if settings.max_shrinks <= 0:
                        raise e
                    last_exception[0] = traceback.format_exc()
                    repr_for_last_exception[0] = record_repr[0]
                    verbose_report(last_exception[0])
                    return True

            is_template_example.__name__ = test.__name__
            is_template_example.__qualname__ = qualname(test)

            falsifying_template = None
            try:
                falsifying_template = best_satisfying_template(
                    search_strategy, random, is_template_example,
                    settings, storage
                )
            except NoSuchExample:
                return

            assert last_exception[0] is not None

            with settings:
                test_runner(reify_and_execute(
                    search_strategy, falsifying_template, test,
                    print_example=True, is_final=True
                ))

                report(
                    u'Failed to reproduce exception. Expected: \n' +
                    last_exception[0],
                )

                test_runner(reify_and_execute(
                    search_strategy, falsifying_template,
                    test_is_flaky(test, repr_for_last_exception[0]),
                    print_example=True, is_final=True
                ))
Ejemplo n.º 22
0
        def wrapped_test(*arguments, **kwargs):
            selfy = None
            arguments, kwargs = convert_positional_arguments(wrapped_test, arguments, kwargs)
            # Because we converted all kwargs to given into real args and
            # error if we have neither args nor kwargs, this should always
            # be valid
            assert argspec.args
            selfy = kwargs.get(argspec.args[0])
            if isinstance(selfy, HypothesisProvided):
                selfy = None
            test_runner = executor(selfy)

            for example in getattr(wrapped_test, "hypothesis_explicit_examples", ()):
                if example.args:
                    example_kwargs = dict(zip(argspec.args[-len(example.args) :], example.args))
                else:
                    example_kwargs = dict(example.kwargs)

                for k, v in kwargs.items():
                    if not isinstance(v, HypothesisProvided):
                        example_kwargs[k] = v
                # Note: Test may mutate arguments and we can't rerun explicit
                # examples, so we have to calculate the failure message at this
                # point rather than than later.
                message_on_failure = "Falsifying example: %s(%s)" % (
                    test.__name__,
                    arg_string(test, arguments, example_kwargs),
                )
                try:
                    test_runner(lambda: test(*arguments, **example_kwargs))
                except BaseException:
                    report(message_on_failure)
                    raise

            if not any(isinstance(x, HypothesisProvided) for xs in (arguments, kwargs.values()) for x in xs):
                # All arguments have been satisfied without needing to invoke
                # hypothesis
                test_runner(lambda: test(*arguments, **kwargs))
                return

            def convert_to_specifier(v):
                if isinstance(v, HypothesisProvided):
                    return strategy(v.value, settings)
                else:
                    return sd.just(v)

            given_specifier = sd.tuples(
                sd.tuples(*map(convert_to_specifier, arguments)),
                sd.fixed_dictionaries(dict((k, convert_to_specifier(v)) for (k, v) in kwargs.items())),
            )

            search_strategy = strategy(given_specifier, settings)

            if settings.database:
                storage = settings.database.storage(fully_qualified_name(test))
            else:
                storage = None

            last_exception = [None]
            repr_for_last_exception = [None]

            def is_template_example(xs):
                record_repr = [None]
                try:
                    test_runner(
                        reify_and_execute(
                            search_strategy, xs, test, always_print=settings.max_shrinks <= 0, record_repr=record_repr
                        )
                    )
                    return False
                except UnsatisfiedAssumption as e:
                    raise e
                except Exception as e:
                    if settings.max_shrinks <= 0:
                        raise e
                    last_exception[0] = traceback.format_exc()
                    repr_for_last_exception[0] = record_repr[0]
                    verbose_report(last_exception[0])
                    return True

            is_template_example.__name__ = test.__name__
            is_template_example.__qualname__ = qualname(test)

            falsifying_template = None
            try:
                falsifying_template = best_satisfying_template(
                    search_strategy, random, is_template_example, settings, storage
                )
            except NoSuchExample:
                return

            assert last_exception[0] is not None

            with settings:
                test_runner(reify_and_execute(search_strategy, falsifying_template, test, print_example=True))

                report("Failed to reproduce exception. Expected: \n" + last_exception[0])

                test_runner(
                    reify_and_execute(
                        search_strategy,
                        falsifying_template,
                        test_is_flaky(test, repr_for_last_exception[0]),
                        print_example=True,
                    )
                )