Ejemplo n.º 1
0
def compute_deviation(solver_name, vfunc_id, iterations, N, fname):
    project = HyppopyProject()
    project.add_hyperparameter(name="axis_00", domain="uniform", data=[0, 1], dtype="float")
    project.add_hyperparameter(name="axis_01", domain="uniform", data=[0, 1], dtype="float")
    project.add_hyperparameter(name="axis_02", domain="uniform", data=[0, 1], dtype="float")
    project.add_hyperparameter(name="axis_03", domain="uniform", data=[0, 1], dtype="float")
    project.add_hyperparameter(name="axis_04", domain="uniform", data=[0, 1], dtype="float")

    vfunc = VirtualFunction()
    vfunc.load_default(vfunc_id)
    minima = vfunc.minima()

    def my_loss_function(data, params):
        return vfunc(**params)

    blackbox = BlackboxFunction(data=[], blackbox_func=my_loss_function)

    results = {}
    results["gt"] = []
    for mini in minima:
        results["gt"].append(np.median(mini[0]))

    for iter in iterations:
        results[iter] = {"minima": {}, "loss": None}
        for i in range(vfunc.dims()):
            results[iter]["minima"]["axis_0{}".format(i)] = []

        project.add_settings(section="solver", name="max_iterations", value=iter)
        project.add_settings(section="custom", name="use_solver", value=solver_name)

        solver = SolverPool.get(project=project)
        solver.blackbox = blackbox

        axis_minima = []
        best_losses = []
        for i in range(vfunc.dims()):
            axis_minima.append([])
        for n in range(N):
            print("\rSolver={} iteration={} round={}".format(solver, iter, n), end="")

            solver.run(print_stats=False)
            df, best = solver.get_results()
            best_row = df['losses'].idxmin()
            best_losses.append(df['losses'][best_row])
            for i in range(vfunc.dims()):
                tmp = df['axis_0{}'.format(i)][best_row]
                axis_minima[i].append(tmp)
        for i in range(vfunc.dims()):
            results[iter]["minima"]["axis_0{}".format(i)] = [np.mean(axis_minima[i]), np.std(axis_minima[i])]
        results[iter]["loss"] = [np.mean(best_losses), np.std(best_losses)]

    file = open(fname, 'wb')
    pickle.dump(results, file)
    file.close()
Ejemplo n.º 2
0
 def test_getGridsearchSolver(self):
     config = {
         "hyperparameter": {
             "value 1": {
                 "domain": "uniform",
                 "data": [0, 20],
                 "type": int,
                 "frequency": 11
             },
             "value 2": {
                 "domain": "normal",
                 "data": [0, 20.0],
                 "type": float,
                 "frequency": 11
             },
             "value 3": {
                 "domain": "loguniform",
                 "data": [1, 10000],
                 "type": float,
                 "frequency": 11
             },
             "categorical": {
                 "domain": "categorical",
                 "data": ["a", "b"],
                 "type": str,
                 "frequency": 1
             }
         }
     }
     res_labels = ['value 1', 'value 2', 'value 3', 'categorical']
     res_values = [[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20],
                   [
                       0.0, 5.467452952462635, 8.663855974622837,
                       9.755510546899107, 9.973002039367397, 10.0,
                       10.026997960632603, 10.244489453100893,
                       11.336144025377163, 14.532547047537365, 20.0
                   ],
                   [
                       1.0, 2.51188643150958, 6.309573444801933,
                       15.848931924611136, 39.810717055349734,
                       100.00000000000004, 251.18864315095806,
                       630.9573444801938, 1584.8931924611143,
                       3981.071705534977, 10000.00000000001
                   ], ['a', 'b']]
     project = HyppopyProject(config)
     solver = SolverPool.get("gridsearch", project)
     self.assertTrue(isinstance(solver, GridsearchSolver))
     searchspace = solver.convert_searchspace(config["hyperparameter"])
     for n in range(len(res_labels)):
         self.assertEqual(res_labels[n], searchspace[0][n])
     for i in range(3):
         self.assertAlmostEqual(res_values[i], searchspace[1][i])
     self.assertEqual(res_values[3], searchspace[1][3])
Ejemplo n.º 3
0
    def test_projectNone(self):
        solver = SolverPool.get("hyperopt")
        solver = SolverPool.get("optunity")
        solver = SolverPool.get("optuna")
        solver = SolverPool.get("randomsearch")
        solver = SolverPool.get("quasirandomsearch")
        solver = SolverPool.get("gridsearch")

        self.assertRaises(AssertionError, SolverPool.get, "foo")
Ejemplo n.º 4
0
    def test_getOptunitySolver(self):
        config = {
            "hyperparameter": {
                "axis_00": {
                    "domain": "uniform",
                    "data": [300, 800],
                    "type": float
                },
                "axis_01": {
                    "domain": "uniform",
                    "data": [-1, 1],
                    "type": float
                },
                "axis_02": {
                    "domain": "uniform",
                    "data": [0, 10],
                    "type": float
                }
            },
            "max_iterations": 100
        }

        project = HyppopyProject(config)
        solver = SolverPool.get("optunity", project)
        self.assertTrue(isinstance(solver, OptunitySolver))
        vfunc = FunctionSimulator()
        vfunc.load_default()
        solver.blackbox = vfunc
        solver.run(print_stats=False)
        df, best = solver.get_results()
        self.assertTrue(300 <= best['axis_00'] <= 800)
        self.assertTrue(-1 <= best['axis_01'] <= 1)
        self.assertTrue(0 <= best['axis_02'] <= 10)

        for status in df['status']:
            self.assertTrue(status)
        for loss in df['losses']:
            self.assertTrue(isinstance(loss, float))
Ejemplo n.º 5
0
# as well as 2 dummy parameter (my_preproc_param, my_dataloader_input) for demonstration purposes.
blackbox = BlackboxFunction(blackbox_func=my_loss_function,
                            dataloader_func=my_dataloader_function,
                            preprocess_func=my_preprocess_function,
                            callback_func=my_callback_function,
                            my_preproc_param=1,
                            my_dataloader_input='could/be/a/path')

# Last step, is we use our SolverPool which automatically returns the correct solver.
# There are multiple ways to get the desired solver from the solver pool.
# 1. solver = SolverPool.get('hyperopt')
#    solver.project = project
# 2. solver = SolverPool.get('hyperopt', project)
# 3. The SolverPool will look for the field 'use_solver' in the project instance, if
# it is present it will be used to specify the solver so that in this case it is enough
# to pass the project instance.
solver = SolverPool.get(project=project)

# Give the solver your blackbox and run it. After execution we can get the result
# via get_result() which returns a pandas dataframe containing the complete history
# The dict best contains the best parameter set.
solver.blackbox = blackbox
#solver.start_viewer()
solver.run()
df, best = solver.get_results()

print("\n")
print("*" * 100)
print("Best Parameter Set:\n{}".format(best))
print("*" * 100)
Ejemplo n.º 6
0
            "type": float,
            "frequency": 10
        }
    },
    "max_iterations": 500,
    "solver": "optunity"
}

project = HyppopyProject(config=config)


# The user defined loss function
def my_loss_function_params(params):
    x = params['x']
    y = params['y']
    return x**2 + y**3


solver = MPISolverWrapper(solver=SolverPool.get(project=project))
solver.blackbox = my_loss_function_params

solver.run()

df, best = solver.get_results()

if solver.is_master() is True:
    print("\n")
    print("*" * 100)
    print("Best Parameter Set:\n{}".format(best))
    print("*" * 100)
Ejemplo n.º 7
0
def compute_deviation(solver_name, vfunc_id, iterations, N, fname):
    project = HyppopyProject()
    project.add_hyperparameter(name="axis_00",
                               domain="uniform",
                               data=[0, 1],
                               type=float)
    project.add_hyperparameter(name="axis_01",
                               domain="uniform",
                               data=[0, 1],
                               type=float)
    project.add_hyperparameter(name="axis_02",
                               domain="uniform",
                               data=[0, 1],
                               type=float)
    project.add_hyperparameter(name="axis_03",
                               domain="uniform",
                               data=[0, 1],
                               type=float)
    project.add_hyperparameter(name="axis_04",
                               domain="uniform",
                               data=[0, 1],
                               type=float)

    vfunc = FunctionSimulator()
    vfunc.load_default(vfunc_id)
    minima = vfunc.minima()

    def my_loss_function(data, params):
        return vfunc(**params)

    blackbox = BlackboxFunction(data=[], blackbox_func=my_loss_function)

    results = {}
    results["gt"] = []
    for mini in minima:
        results["gt"].append(np.median(mini[0]))

    for iter in iterations:
        results[iter] = {
            "minima": {},
            "distance": {},
            "duration": None,
            "set_difference": None,
            "loss": None,
            "loss_history": {}
        }
        for i in range(vfunc.dims()):
            results[iter]["minima"]["axis_0{}".format(i)] = []
            results[iter]["distance"]["axis_0{}".format(i)] = []

        project.add_setting("max_iterations", iter)
        project.add_setting("solver", solver_name)

        solver = SolverPool.get(project=project)
        solver.blackbox = blackbox

        axis_minima = []
        best_losses = []
        best_sets_diff = []
        for i in range(vfunc.dims()):
            axis_minima.append([])

        loss_history = []
        durations = []
        for n in range(N):
            print("\rSolver={} iteration={} round={}".format(solver, iter, n),
                  end="")

            start = time.time()
            solver.run(print_stats=False)
            end = time.time()
            durations.append(end - start)

            df, best = solver.get_results()

            loss_history.append(np.flip(np.sort(df['losses'].values)))
            best_row = df['losses'].idxmin()
            best_losses.append(df['losses'][best_row])
            best_sets_diff.append(
                abs(df['axis_00'][best_row] - best['axis_00']) +
                abs(df['axis_01'][best_row] - best['axis_01']) +
                abs(df['axis_02'][best_row] - best['axis_02']) +
                abs(df['axis_03'][best_row] - best['axis_03']) +
                abs(df['axis_04'][best_row] - best['axis_04']))
            for i in range(vfunc.dims()):
                tmp = df['axis_0{}'.format(i)][best_row]
                axis_minima[i].append(tmp)

        results[iter]["loss_history"] = loss_history
        for i in range(vfunc.dims()):
            results[iter]["minima"]["axis_0{}".format(i)] = [
                np.mean(axis_minima[i]),
                np.std(axis_minima[i])
            ]
            dist = np.sqrt((axis_minima[i] - results["gt"][i])**2)
            results[iter]["distance"]["axis_0{}".format(i)] = [
                np.mean(dist), np.std(dist)
            ]
        results[iter]["loss"] = [np.mean(best_losses), np.std(best_losses)]
        results[iter]["set_difference"] = sum(best_sets_diff)
        results[iter]["duration"] = np.mean(durations)

    file = open(fname, 'wb')
    pickle.dump(results, file)
    file.close()