Ejemplo n.º 1
0
class TestsEphysAlignment(unittest.TestCase):
    def setUp(self):
        self.ephysalign = EphysAlignment(xyz_picks)
        self.feature = self.ephysalign.feature_init
        self.track = self.ephysalign.track_init

    def test_no_scaling(self):
        xyz_channels = self.ephysalign.get_channel_locations(self.feature,
                                                             self.track,
                                                             depths=depths)
        coords = np.r_[[xyz_picks[-1, :]], [xyz_channels[0, :]]]
        dist_to_fist_electrode = np.around(_cumulative_distance(coords)[-1], 5)
        assert np.isclose(dist_to_fist_electrode, (TIP_SIZE_UM + 20) / 1e6)

    def test_offset(self):
        feature_val = 500 / 1e6
        track_val = 1000 / 1e6

        tracks = np.sort(np.r_[self.track[[0, -1]], track_val])
        track_new = self.ephysalign.feature2track(tracks, self.feature,
                                                  self.track)
        feature_new = np.sort(np.r_[self.feature[[0, -1]], feature_val])
        track_new = self.ephysalign.adjust_extremes_uniform(
            feature_new, track_new)

        xyz_channels = self.ephysalign.get_channel_locations(feature_new,
                                                             track_new,
                                                             depths=depths)
        coords = np.r_[[xyz_picks[-1, :]], [xyz_channels[0, :]]]
        dist_to_fist_electrode = np.around(_cumulative_distance(coords)[-1], 5)
        assert np.isclose(dist_to_fist_electrode,
                          ((TIP_SIZE_UM + 20) / 1e6 + feature_val))
        track_val = self.ephysalign.track2feature(track_val, feature_new,
                                                  track_new)
        self.assertTrue(np.all(np.isclose(track_val, feature_val)))

        region_new, _ = self.ephysalign.scale_histology_regions(
            feature_new, track_new)
        _, scale_factor = self.ephysalign.get_scale_factor(region_new)
        self.assertTrue(np.all(np.isclose(scale_factor, 1)))

    def test_uniform_scaling(self):
        feature_val = np.array([500, 700, 2000]) / 1e6
        track_val = np.array([1000, 1300, 2700]) / 1e6

        tracks = np.sort(np.r_[self.track[[0, -1]], track_val])
        track_new = self.ephysalign.feature2track(tracks, self.feature,
                                                  self.track)
        feature_new = np.sort(np.r_[self.feature[[0, -1]], feature_val])
        track_new = self.ephysalign.adjust_extremes_uniform(
            feature_new, track_new)

        region_new, _ = self.ephysalign.scale_histology_regions(
            feature_new, track_new)
        _, scale_factor = self.ephysalign.get_scale_factor(region_new)
        self.assertTrue(np.isclose(scale_factor[0], 1))
        self.assertTrue(np.isclose(scale_factor[-1], 1))

    def test_linear_scaling(self):
        feature_val = np.array([500, 700, 2000]) / 1e6
        track_val = np.array([1000, 1300, 2700]) / 1e6

        tracks = np.sort(np.r_[self.track[[0, -1]], track_val])
        track_new = self.ephysalign.feature2track(tracks, self.feature,
                                                  self.track)
        feature_new = np.sort(np.r_[self.feature[[0, -1]], feature_val])

        fit = np.polyfit(feature_new[1:-1], track_new[1:-1], 1)
        linear_fit = np.around(1 / fit[0], 3)

        feature_new, track_new = self.ephysalign.adjust_extremes_linear(
            feature_new, track_new, extend_feature=1)

        region_new, _ = self.ephysalign.scale_histology_regions(
            feature_new, track_new)
        _, scale_factor = self.ephysalign.get_scale_factor(region_new)

        self.assertTrue(np.isclose(np.around(scale_factor[0], 3), linear_fit))
        self.assertTrue(np.isclose(np.around(scale_factor[-1], 3), linear_fit))
Ejemplo n.º 2
0
    # Find brain region that each channel is located in
    brain_regions = ephysalign.get_brain_locations(xyz_channels)
    # Add extra keys to store all useful information as one bunch object
    brain_regions['xyz'] = xyz_channels
    brain_regions['lateral'] = chn_coords[:, 0]
    brain_regions['axial'] = chn_coords[:, 1]

    # Store brain regions result in channels dict with same key as in alignment
    channel_info = {key: brain_regions}
    channels.update(channel_info)

    # For plotting -> extract the boundaries of the brain regions, as well as CCF label and colour
    region, region_label, region_colour, _ = ephysalign.get_histology_regions(
        xyz_channels, depths)

    channel_depths_track = (ephysalign.feature2track(depths, feature, track) -
                            ephysalign.track_extent[0])

    # Make plot that shows the brain regions that channels pass through
    ax_regions = fig.axes[iK * 2]
    for reg, col in zip(region, region_colour):
        height = np.abs(reg[1] - reg[0])
        bottom = reg[0]
        color = col / 255
        ax_regions.bar(x=0.5,
                       height=height,
                       width=1,
                       color=color,
                       bottom=reg[0],
                       edgecolor='w')
    ax_regions.set_yticks(region_label[:, 0].astype(int))