Ejemplo n.º 1
0
    def test_2d_registration_train(self):

        import icon_registration.data as data
        import icon_registration.networks as networks
        import icon_registration.network_wrappers as network_wrappers
        import icon_registration.train as train
        import icon_registration.inverseConsistentNet as inverseConsistentNet

        import numpy as np
        import torch
        import random
        import os

        random.seed(1)
        torch.manual_seed(1)
        torch.cuda.manual_seed(1)
        np.random.seed(1)

        batch_size = 128

        d1, d2 = data.get_dataset_triangles("train",
                                            data_size=50,
                                            hollow=False,
                                            batch_size=batch_size)
        d1_t, d2_t = data.get_dataset_triangles("test",
                                                data_size=50,
                                                hollow=False,
                                                batch_size=batch_size)

        lmbda = 2048

        print("=" * 50)
        net = inverseConsistentNet.InverseConsistentNet(
            network_wrappers.FunctionFromVectorField(
                networks.tallUNet2(dimension=2)),
            # Our image similarity metric. The last channel of x and y is whether the value is interpolated or extrapolated,
            # which is used by some metrics but not this one
            lambda x, y: torch.mean((x[:, :1] - y[:, :1])**2),
            lmbda,
        )

        input_shape = next(iter(d1))[0].size()
        network_wrappers.assignIdentityMap(net, input_shape)
        net.cuda()
        optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
        net.train()

        y = np.array(train.train2d(net, optimizer, d1, d2, epochs=50))

        # Test that image similarity is good enough
        self.assertLess(np.mean(y[-5:, 1]), 0.1)

        # Test that folds are rare enough
        self.assertLess(np.mean(np.exp(y[-5:, 3] - 0.1)), 2)
        print(y)
import icon_registration.networks as networks
import icon_registration.network_wrappers as network_wrappers
import icon_registration.data as data
import footsteps

BATCH_SIZE = 32
SCALE = 1  # 1 IS QUARTER RES, 2 IS HALF RES, 4 IS FULL RES
input_shape = [BATCH_SIZE, 1, 40 * SCALE, 96 * SCALE, 96 * SCALE]

GPUS = 4


phi = network_wrappers.FunctionFromVectorField(
    networks.tallUNet(unet=networks.UNet2ChunkyMiddle, dimension=3)
)
psi = network_wrappers.FunctionFromVectorField(networks.tallUNet2(dimension=3))

pretrained_lowres_net = inverseConsistentNet.InverseConsistentNet(
    network_wrappers.DoubleNet(phi, psi),
    lambda x, y: torch.mean((x - y) ** 2),
    100,
)

network_wrappers.assignIdentityMap(pretrained_lowres_net, input_shape)


network_wrappers.adjust_batch_size(pretrained_lowres_net, 12)
trained_weights = torch.load(
    "results/dd_l400_continue_rescalegrad2/knee_aligner_resi_net25500"
)
data_size = 50
d1, d2 = data.get_dataset_triangles("train",
                                    data_size=data_size,
                                    hollow=True,
                                    batch_size=batch_size)
d1_t, d2_t = data.get_dataset_triangles("test",
                                        data_size=data_size,
                                        hollow=True,
                                        batch_size=batch_size)

image_A, image_B = (x[0].cuda() for x in next(zip(d1, d2)))

net = inverseConsistentNet.InverseConsistentNet(
    network_wrappers.DoubleNet(
        network_wrappers.FunctionFromVectorField(
            networks.tallUNet2(dimension=2)),
        network_wrappers.FunctionFromVectorField(
            networks.tallUNet2(dimension=2)),
    ),
    lambda x, y: torch.mean((x - y)**2),
    700,
)

input_shape = next(iter(d1))[0].size()
network_wrappers.assignIdentityMap(net, input_shape)
net.cuda()

import icon_registration.train as train

optim = torch.optim.Adam(net.parameters(), lr=0.0001)
net.train().cuda()