Ejemplo n.º 1
0
def search_down():
    global prod
    global prod_row
    global prod_col
    global prod_direction
    global prod_lst
    for j in range(20):
        for i in range(16):
            lst = [mtrx[i + x][j] for x in range(4)]
            m = mul(lst)
            if m > prod:
                prod = m
                prod_row = i
                prod_col = j
                prod_direction = "down"
                prod_lst = lst
Ejemplo n.º 2
0
def search_up_right():
    global prod
    global prod_row
    global prod_col
    global prod_direction
    global prod_lst
    for i in range(16):
        for j in range(3, 20):
            lst = [mtrx[i + x][j - x] for x in range(4)]
            m = mul(lst)
            if m > prod:
                prod = m
                prod_row = i
                prod_col = j
                prod_direction = "up-right"
                prod_lst = lst
Ejemplo n.º 3
0
        return d_totient[n]
    except KeyError:
        ret = n
        if is_prime(n):
            ret = n - 1
        else:
            fact = prime_factors(n)
            for p in fact:
               ret = ret*(p - 1)/p 
        k = 1
        while True:
            d_totient[n**k] = (n**(k - 1))*ret
            k += 1
            if n**k >= 10**6:
                break
        return d_totient[n]

if __name__ == '__main__':
    # read the wiki: http://en.wikipedia.org/wiki/Euler%27s_totient_function
    # in particular the chapter 'Growth of the function'
    lst_primes = [x for x in range(2, 50) if is_prime(x)]
    i = 0
    while True:
        n = mul(lst_primes[:i])
        if n > 10**6:
            n = mul(lst_primes[:(i - 1)])
            break
        i += 1
    print n
    
Ejemplo n.º 4
0
            d_gcd[(n, r)] = gcd(r, n - r*(n/r))
        return d_gcd[(n, r)]

def simplify((a, b)):
    d = gcd(a, b)
    return (a/d, b/d)

def is_curious((a, b)):
    possibilities = [(hdc(a), hdc(b)), (hdc(a), ldc(b)), (ldc(a), hdc(b)), (ldc(a), ldc(b))]
    equalities    = [(ldc(a), ldc(b)), (ldc(a), hdc(b)), (hdc(a), ldc(b)), (hdc(a), hdc(b))]
    for i, frac in enumerate(possibilities):
        if equalities[i][0] == equalities[i][1] and fractions_equal((a, b), frac):
            print "%d/%d = %d/%d" % (a, b, frac[0], frac[1])
            return True
    return False

def find_fractions():
    d = {}
    for a in range(10, 100):
        for b in range(a + 1, 100):
            if is_curious((a, b)):
                try:
                    tmp = d[simplify((a, b))]
                except KeyError:
                    d[simplify((a, b))] = 1
    return d

if __name__ == '__main__':
    f = find_fractions()
    print simplify((mul([x for x, y in f.keys()]), mul([y for x, y in f.keys()])))