def __init__(self, command: str, **cli_args): logger.info(f"Entered CLI args: {cli_args}") logger.info(f"Chosen command: {command}") self.data_path: str = cli_args.get('data_path') # path to the dataset if command == "fit": self.yml_path = cli_args.get('yaml_path') self.yaml_configs = read_yaml(self.yml_path) logger.info(f"your chosen configuration: {self.yaml_configs}") # dataset options given by the user self.dataset_props: dict = self.yaml_configs.get('dataset', self.default_dataset_props) # model options given by the user self.model_props: dict = self.yaml_configs.get('model', self.default_model_props) # list of target(s) to predict self.target: list = self.yaml_configs.get('target') self.model_type = self.model_props.get('type') logger.info(f"dataset_props: {self.dataset_props} \n" f"model_props: {self.model_props} \n " f"target: {self.target} \n") else: self.model_path = cli_args.get('model_path', self.default_model_path) logger.info(f"path of the pre-fitted model => {self.model_path}") with open(self.description_file, 'r') as f: dic = json.load(f) self.target: list = dic.get("target") # target to predict as a list self.model_type: str = dic.get("type") # type of the model -> regression or classification
def __init__(self, **cli_args): self.cmd: str = cli_args.get("cmd") self.data_path: str = cli_args.get("data_path") self.config_path: str = cli_args.get("yaml_path") self.task = cli_args.get("task") logger.info(f"Executing command: {self.cmd}") logger.info(f"Reading data from: {self.data_path}") logger.info(f"Reading yaml configs from: {self.config_path}") if self.cmd == "train": if not self.config_path: self.model_type = self.task else: self.file_ext: str = self.config_path.split(".")[1] if self.file_ext not in ["yaml", "yml", "json"]: raise Exception( "Configuration file can be a yaml or a json file!" ) self.configs: dict = ( read_json(self.config_path) if self.file_ext == "json" else read_yaml(self.config_path) ) self.dataset_props: dict = self.configs.get( "dataset", self.defaults.dataset_props ) self.model_props: dict = self.configs.get( "model", self.defaults.model_props ) self.training_args: dict = self.configs.get( "training", self.defaults.training_args ) self.model_args = self.model_props.get("arguments") self.model_type = self.task or self.model_props.get("type") else: self.model_path = cli_args.get( "model_path", self.defaults.model_path ) logger.info(f"path of the pre-fitted model => {self.model_path}") self.prediction_file = cli_args.get( "prediction_file", self.defaults.prediction_file ) # set description.json if provided: self.description_file = cli_args.get( "description_file", self.defaults.description_file ) # load description file to read stored training parameters with open(self.description_file) as f: dic = json.load(f) self.model_type: str = dic.get("task") # type of the model self.dataset_props: dict = dic.get( "dataset_props" ) # dataset props entered while fitting getattr(self, self.cmd)()
def __init__(self, **cli_args): logger.info(f"Entered CLI args: {cli_args}") logger.info(f"Executing command: {cli_args.get('cmd')} ...") self.data_path: str = cli_args.get('data_path') # path to the dataset logger.info(f"reading data from {self.data_path}") self.command = cli_args.get('cmd', None) if not self.command or self.command not in self.available_commands: raise Exception(f"You must enter a valid command.\n" f"available commands: {self.available_commands}") if self.command == "fit": self.yml_path = cli_args.get('yaml_path') file_ext = self.yml_path.split('.')[-1] logger.info(f"You passed the configurations as a {file_ext} file.") self.yaml_configs = read_yaml(self.yml_path) if file_ext == 'yaml' else read_json(self.yml_path) logger.info(f"your chosen configuration: {self.yaml_configs}") # dataset options given by the user self.dataset_props: dict = self.yaml_configs.get('dataset', self.default_dataset_props) # model options given by the user self.model_props: dict = self.yaml_configs.get('model', self.default_model_props) # list of target(s) to predict self.target: list = self.yaml_configs.get('target') self.model_type: str = self.model_props.get('type') logger.info(f"dataset_props: {self.dataset_props} \n" f"model_props: {self.model_props} \n " f"target: {self.target} \n") # handle random numbers generation random_num_options = self.dataset_props.get('random_numbers', None) if random_num_options: generate_reproducible = random_num_options.get('generate_reproducible', None) if generate_reproducible: logger.info("You provided the generate reproducible results option.") seed = random_num_options.get('seed', 42) np.random.seed(seed) logger.info(f"Setting a seed = {seed} to generate same random numbers on each experiment..") # if entered command is evaluate or predict, then the pre-fitted model needs to be loaded and used else: self.model_path = cli_args.get('model_path', self.default_model_path) logger.info(f"path of the pre-fitted model => {self.model_path}") # load description file to read stored training parameters with open(self.description_file, 'r') as f: dic = json.load(f) self.target: list = dic.get("target") # target to predict as a list self.model_type: str = dic.get("type") # type of the model -> regression, classification or clustering self.dataset_props: dict = dic.get('dataset_props') # dataset props entered while fitting getattr(self, self.command)()
def __init__(self, **cli_args): logger.info(f"Entered CLI args: {cli_args}") logger.info(f"Executing command: {cli_args.get('cmd')} ...") self.data_path: str = cli_args.get('data_path') # path to the dataset logger.info(f"reading data from {self.data_path}") self.command = cli_args.get('cmd', None) if not self.command or self.command not in self.available_commands: raise Exception(f"You must enter a valid command.\n" f"available commands: {self.available_commands}") if self.command == "fit": self.yml_path = cli_args.get('yaml_path') self.yaml_configs = read_yaml(self.yml_path) logger.debug(f"your chosen configuration: {self.yaml_configs}") # dataset options given by the user self.dataset_props: dict = self.yaml_configs.get( 'dataset', self.default_dataset_props) # model options given by the user self.model_props: dict = self.yaml_configs.get( 'model', self.default_model_props) # list of target(s) to predict self.target: list = self.yaml_configs.get('target') self.model_type: str = self.model_props.get('type') logger.info(f"dataset_props: {self.dataset_props} \n" f"model_props: {self.model_props} \n " f"target: {self.target} \n") # if entered command is evaluate or predict, then the pre-fitted model needs to be loaded and used else: self.model_path = cli_args.get('model_path', self.default_model_path) logger.info(f"path of the pre-fitted model => {self.model_path}") # load description file to read stored training parameters with open(self.description_file, 'r') as f: dic = json.load(f) self.target: list = dic.get( "target") # target to predict as a list self.model_type: str = dic.get( "type" ) # type of the model -> regression or classification self.dataset_props: dict = dic.get( 'dataset_props') # dataset props entered while fitting getattr(self, self.command)()