Ejemplo n.º 1
0
def test_mean_absolute_relative_error():
    a = torch.rand(4)
    b = torch.rand(4)
    c = torch.rand(4)
    d = torch.rand(4)
    ground_truth = torch.rand(4)

    m = MeanAbsoluteRelativeError()

    m.update((a, ground_truth))
    abs_error_a = torch.sum(
        torch.abs(ground_truth - a) / torch.abs(ground_truth))
    num_samples_a = a.size()[0]
    sum_error = abs_error_a
    sum_samples = num_samples_a
    MARE_a = sum_error / sum_samples
    assert m.compute() == approx(MARE_a.item())

    m.update((b, ground_truth))
    abs_error_b = torch.sum(
        torch.abs(ground_truth - b) / torch.abs(ground_truth))
    num_samples_b = b.size()[0]
    sum_error += abs_error_b
    sum_samples += num_samples_b
    MARE_b = sum_error / sum_samples
    assert m.compute() == approx(MARE_b.item())

    m.update((c, ground_truth))
    abs_error_c = torch.sum(
        torch.abs(ground_truth - c) / torch.abs(ground_truth))
    num_samples_c = c.size()[0]
    sum_error += abs_error_c
    sum_samples += num_samples_c
    MARE_c = sum_error / sum_samples
    assert m.compute() == approx(MARE_c.item())

    m.update((d, ground_truth))
    abs_error_d = torch.sum(
        torch.abs(ground_truth - d) / torch.abs(ground_truth))
    num_samples_d = d.size()[0]
    sum_error += abs_error_d
    sum_samples += num_samples_d
    MARE_d = sum_error / sum_samples
    assert m.compute() == approx(MARE_d.item())
Ejemplo n.º 2
0
    def _test(metric_device):
        metric_device = torch.device(metric_device)
        m = MeanAbsoluteRelativeError(device=metric_device)
        torch.manual_seed(10 + rank)

        y_pred = torch.randint(1, 11, size=(10,), device=device).float()
        y = torch.randint(1, 11, size=(10,), device=device).float()

        m.update((y_pred, y))

        # gather y_pred, y
        y_pred = idist.all_gather(y_pred)
        y = idist.all_gather(y)

        np_y_pred = y_pred.cpu().numpy()
        np_y = y.cpu().numpy()

        res = m.compute()

        abs_error = np.sum(abs(np_y - np_y_pred) / abs(np_y))
        num_samples = len(y_pred)
        np_res = abs_error / num_samples

        assert np_res == approx(res)
Ejemplo n.º 3
0
def test_zero_sample():
    m = MeanAbsoluteRelativeError()
    with raises(NotComputableError):
        m.compute()
def test_zero_sample():
    m = MeanAbsoluteRelativeError()
    with raises(
            NotComputableError,
            match=r"MeanAbsoluteRelativeError must have at least one sample"):
        m.compute()