Ejemplo n.º 1
0
def analyze(imp, min_area):
    MAXSIZE = 1000000000000
    MINCIRCULARITY = 0.0
    MAXCIRCULARITY = 1.
    
    options = PA.SHOW_MASKS 
    
    temp_results = ResultsTable()
    
    p = PA(options, PA.AREA + PA.MEAN, temp_results, min_area, MAXSIZE, MINCIRCULARITY, MAXCIRCULARITY)
    p.setHideOutputImage(True)

    p.analyze(imp)

    if temp_results.getCounter() == 0:
        areas   = []
        signals = []
    else:
        areas   = list(temp_results.getColumn(0))
        signals = list(temp_results.getColumn(1))
    
    count  = len(areas)
    area   = sum(areas)

    total = 0
    if area > 0:
        total  = sum([a*s for a,s in zip(areas, signals)]) / area
      

    return p.getOutputImage(), count, area, total
Ejemplo n.º 2
0
def particleAnalysis(slicenum, sliceimp, resrt):
  options = PA.SHOW_NONE
  rt = ResultsTable()
  p = PA(options, PA.AREA + PA.CENTROID, rt, MINSIZE, MAXSIZE)
  p.analyze(sliceimp)
  centrosomecounts = rt.getCounter()
  print "-- Region", str(slicenum), "--"
  curCount = resrt.getCounter()
  resrt.setValue("cellID", curCount, slicenum)
  resrt.setValue("counts", curCount, centrosomecounts)
  if centrosomecounts == 0:
    print " .. no centrosome"  
  elif centrosomecounts == 1:
    print " .. Only one centrosome"
#    if rt.getValue("Area", 0) == 1.0:
#    	print " .. Only one centrosome"
#    else:
#    	print " .. one centrosome but Area 1 < : maybe combined"
  elif centrosomecounts == 2:
    print " .. two centrosomes"
    resrt.setValue("c1x", curCount, rt.getValue("X", 0))
    resrt.setValue("c1y", curCount, rt.getValue("Y", 0))
    resrt.setValue("c2x", curCount, rt.getValue("X", 1))
    resrt.setValue("c2y", curCount, rt.getValue("Y", 1))
  else:
    print " .. ", str(centrosomecounts),"centrosomes detected"
def keep_largest_blob(imp):
    """remove all blobs other than the largest by area"""
    rt = ResultsTable()
    mxsz = imp.width * imp.height
    roim = RoiManager(False)
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
                          ParticleAnalyzer.AREA | ParticleAnalyzer.SLICE, rt,
                          0, mxsz)
    pa.setRoiManager(roim)

    for idx in range(1, imp.getImageStackSize() + 1):
        roim.reset()
        rt.reset()
        imp.setPosition(idx)
        pa.analyze(imp)
        rt_areas = rt.getColumn(rt.getColumnIndex("Area")).tolist()
        mx_ind = rt_areas.index(max(rt_areas))
        indices_to_remove = [
            a for a in range(0, len(rt_areas)) if a != mx_ind
        ]
        indices_to_remove.reverse()
        for rem_idx in indices_to_remove:
            roim.select(imp, rem_idx)
            IJ.run(imp, "Set...", "value=0 slice")
    imp.killRoi()
    roim.reset()
    roim.close()
Ejemplo n.º 4
0
def threshold(imPlus, edgeThreshold=2500):
    mask = Duplicator().run(imPlus)
    mask_stk = mask.getStack()

    # First, we threshold based on edges
    IJ.setThreshold(mask, edgeThreshold, 100000, "No Update")
    for i in range(mask.getImageStackSize()):
        mask_stk.getProcessor(i + 1).findEdges()
    IJ.run(mask, "Make Binary", "method=Default background=Default black")

    # Now, we need to clean up the binary images morphologically
    IJ.run(mask, "Dilate", "stack")
    IJ.run(mask, "Fill Holes", "stack")
    IJ.run(mask, "Erode", "stack")
    IJ.run(mask, "Erode", "stack")

    # Finally, remove the small particles
    stk = ImageStack(mask.getWidth(), mask.getHeight())
    p = PA(PA.SHOW_MASKS, 0, None, 200, 100000)
    p.setHideOutputImage(True)
    for i in range(mask_stk.getSize()):
        mask.setSliceWithoutUpdate(i + 1)
        p.analyze(mask)
        mmap = p.getOutputImage()
        stk.addSlice(mmap.getProcessor())

    mask.setStack(stk)
    mask.setSliceWithoutUpdate(1)
    mask.setTitle(mask_title(imPlus.getTitle()))
    mask.show()
    return mask
Ejemplo n.º 5
0
def keep_blobs_bigger_than(imp, min_size_pix=100):
    """remove all blobs other than the largest by area"""
    imp.killRoi()
    rt = ResultsTable()
    if "Size_filtered_" in imp.getTitle():
        title_addition = ""
    else:
        title_addition = "Size_filtered_"
    out_imp = IJ.createImage("{}{}".format(title_addition, imp.getTitle()),
                             imp.getWidth(), imp.getHeight(), 1, 8)
    out_imp.show()
    IJ.run(out_imp, "Select All", "")
    IJ.run(out_imp, "Set...", "value=0 slice")
    mxsz = imp.width * imp.height
    roim = RoiManager()
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
                          ParticleAnalyzer.AREA | ParticleAnalyzer.SLICE, rt,
                          min_size_pix, mxsz)
    pa.setRoiManager(roim)
    roim.reset()
    rt.reset()
    pa.analyze(imp)
    rt_areas = rt.getColumn(rt.getColumnIndex("Area")).tolist()
    #	print("Number of cells identified: {}".format(len(rt_areas)));
    for idx in range(len(rt_areas)):
        roim.select(out_imp, idx)
        IJ.run(out_imp, "Set...", "value=255 slice")
    mx_ind = rt_areas.index(max(rt_areas))
    roim.reset()
    roim.close()
    imp.changes = False
    imp.close()
    return out_imp
Ejemplo n.º 6
0
def anaParticles(imp, minSize, maxSize, minCirc, bHeadless=True):
  """anaParticles(imp, minSize, maxSize, minCirc, bHeadless=True)
  Analyze particles using a watershed separation. If headless=True, we cannot
  redirect the intensity measurement to the original immage becuae it is never
  displayed. If we display the original, we can and get the mean gray level. We
  may then compute the particle contrast from the measured Izero value for the image.
  No ability here to draw outlines on the original."""
  strName = imp.getShortTitle()
  imp.setTitle("original")
  ret = imp.duplicate()
  IJ.run(ret, "Enhance Contrast", "saturated=0.35")
  IJ.run(ret, "8-bit", "")
  IJ.run(ret, "Threshold", "method=Default white")
  IJ.run(ret, "Watershed", "")
  rt = ResultsTable()
  # strSetMeas = "area mean modal min center perimeter bounding fit shape feret's redirect='original' decimal=3"
  # N.B. redirect will not work without a displayed image, so we cannot use a gray level image
  if bHeadless == True:
    strSetMeas = "area mean modal min center perimeter bounding fit shape feret's decimal=3"
  else:
    imp.show()
    strSetMeas = "area mean modal min center perimeter bounding fit shape feret's redirect='original' decimal=3"
  IJ.run("Set Measurements...", strSetMeas)
  # note this doies not get passed directly to ParticleAnalyzer, so
  # I did this, saved everything and looked for the measurement value in ~/Library/Preferences/IJ_Prefs.txt
  # measurements=27355
  # meas = Measurements.AREA + Measurements.CIRCULARITY + Measurements.PERIMETER + Measurements.SHAPE_DESCRIPTORS
  # didn't work reliably
  meas = 27355
  pa = ParticleAnalyzer(0, meas, rt, minSize, maxSize, minCirc, 1.0);
  pa.analyze(ret);
  rt.createTableFromImage(ret.getProcessor())
  return [ret, rt]
Ejemplo n.º 7
0
		def resetpressed(event):
			self.__ranges.clear()
			self.__image=IJ.getImage()
			rm = RoiManager.getInstance()
			if (rm==None): rm = RoiManager()
			rm.runCommand("reset")
			self.__image.killRoi()
			IJ.setAutoThreshold(self.__image, "MaxEntropy")
			rt=ResultsTable()
			pa=ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER+ParticleAnalyzer.CLEAR_WORKSHEET , Measurements.AREA+Measurements.ELLIPSE+Measurements.MEAN, rt, 0.00, 10000.00, 0.00, 1.00)
			pa.analyze(self.__image)
			self.__roisArray=[]
			self.__roisArray=rm.getRoisAsArray()
			#rm.runCommand("Show All")
			#rm.runCommand("Select All")
			#rm.runCommand("Set Color", "blue")
			
			IJ.resetThreshold(self.__image)
			
			keys=self.__slidersDict.keys()
			for k in keys:
				if k.endswith("min"): 
					self.__slidersDict[k].setValue(0)
					self.__slidersDict[k].repaint()
				else:
					self.__slidersDict[k].setValue(self.__slidersDict[k].getMaximum())
					self.__slidersDict[k].repaint()
Ejemplo n.º 8
0
def segmentNuc(impc2):
	impdup = Duplicator().run(impc2)
	IJ.run(impdup, "8-bit", "")
	IJ.run(impdup, "Gaussian Blur...", "sigma=1.5 stack")
#	AutoThresholder().getThreshold(AutoThresholder.Method.valuOf('Otsu'), int[] histogram) 
	IJ.setAutoThreshold(impdup, "Otsu dark")
	IJ.run(impdup, "Convert to Mask", "stack")
 	#IJ.setAutoThreshold(impdup, "Otsu dark")
	#opt = PA.SHOW_MASKS + PA.SHOW_RESULTS + PA.EXCLUDE_EDGE_PARTICLES + PA.INCLUDE_HOLES # option for stack missing
	opt = PA.SHOW_MASKS + PA.EXCLUDE_EDGE_PARTICLES + PA.INCLUDE_HOLES # option for stack missing
	##area mean centroid bounding integrated stack redirect=None decimal=4
	meas = Meas.AREA + Meas.MEAN + Meas.CENTROID + Meas.RECT + Meas.INTEGRATED_DENSITY + Meas.STACK_POSITION
	rt = ResultsTable().getResultsTable()
	pa = PA(opt, meas, rt, 10.0, 300000.0, 0, 1.0)
	PA.processStack = True
	pa.setHideOutputImage(True)
	##run("Analyze Particles...", "size=800-Infinity circularity=0.00-1.00 pixel show=Masks display exclude include stack");
	outstack = ImageStack(impdup.getWidth(), impdup.getHeight())
	for i in range(1,impdup.getStackSize()+1):
		impdup.setSlice(i)
		pa.analyze(impdup)
		impbin = pa.getOutputImage()
		outstack.addSlice(impbin.getProcessor())
 	impbin = ImagePlus("out", outstack)
	IJ.run(impbin, "Invert LUT", "")
	#IJ.run(impbin, "Fill Holes", "stack")
	return impbin, rt
Ejemplo n.º 9
0
    def analyzeParticles(imp, minsize, maxsize, mincirc, maxcirc,
                         filename='Test.czi',
                         addROIManager=True,
                         headless=True,
                         exclude=True):

        if addROIManager is True:

            if exclude is False:
                options = PA.SHOW_ROI_MASKS \
                    + PA.SHOW_RESULTS \
                    + PA.DISPLAY_SUMMARY \
                    + PA.ADD_TO_MANAGER \
                    + PA.ADD_TO_OVERLAY \

            if exclude is True:
                options = PA.SHOW_ROI_MASKS \
                    + PA.SHOW_RESULTS \
                    + PA.DISPLAY_SUMMARY \
                    + PA.ADD_TO_MANAGER \
                    + PA.ADD_TO_OVERLAY \
                    + PA.EXCLUDE_EDGE_PARTICLES

        if addROIManager is False:

            if exclude is False:
                options = PA.SHOW_ROI_MASKS \
                    + PA.SHOW_RESULTS \
                    + PA.DISPLAY_SUMMARY \
                    + PA.ADD_TO_OVERLAY \

            if exclude is True:
                options = PA.SHOW_ROI_MASKS \
                    + PA.SHOW_RESULTS \
                    + PA.DISPLAY_SUMMARY \
                    + PA.ADD_TO_OVERLAY \
                    + PA.EXCLUDE_EDGE_PARTICLES

        measurements = PA.STACK_POSITION \
            + PA.LABELS \
            + PA.AREA \
            + PA.RECT \

        results = ResultsTable()
        p = PA(options, measurements, results, minsize, maxsize, mincirc, maxcirc)
        p.setHideOutputImage(True)
        particlestack = ImageStack(imp.getWidth(), imp.getHeight())

        for i in range(imp.getStackSize()):
            imp.setSliceWithoutUpdate(i + 1)
            ip = imp.getProcessor()
            #IJ.run(imp, "Convert to Mask", "")
            p.analyze(imp, ip)
            mmap = p.getOutputImage()
            particlestack.addSlice(mmap.getProcessor())

        return particlestack, results
Ejemplo n.º 10
0
    def measure(self):
        imp = IJ.openImage(self.filename)
        IJ.log("Input file: %s" % self.filename)

        ImageConverter(imp).convertToGray8()

        res = Auto_Threshold().exec(imp, self.myMethod, self.noWhite, self.noBlack, self.doIwhite, self.doIset, self.doIlog, self.doIstackHistogram)

        rt = ResultsTable()
        rt.showRowNumbers(False)
        pa = PA(self.options, PA.AREA + PA.PERIMETER + PA.CIRCULARITY, rt, self.MINSIZE, self.MAXSIZE)
        pa.analyze(imp)
        self.result = self.rtToResult(rt)
        self.mask = imp
def test():
    newImg = ImagePlus("GrayScaled", imp)
    newip = newImg.getProcessor()

    hist = newip.getHistogram()
    lowTH = Auto_Threshold.IsoData(hist)
    newip.setThreshold(lowTH, max(hist), ImageProcessor.BLACK_AND_WHITE_LUT)

    rt = ResultsTable()
    pa = ParticleAnalyzer(ParticleAnalyzer.SHOW_RESULTS | ParticleAnalyzer.SHOW_OVERLAY_OUTLINES, Measurements.AREA |Measurements.MEAN |\
     Measurements.MEDIAN | Measurements.STD_DEV | Measurements.MIN_MAX | Measurements.RECT, rt,50, 200000, 0.5, 1  )
    pa.setResultsTable(rt)
    pa.analyze(newImg)
    rt.show("Results")
def test():
	newImg = ImagePlus("GrayScaled",imp)
	newip = newImg.getProcessor()

	hist = newip.getHistogram()
	lowTH = Auto_Threshold.IsoData(hist)
	newip.setThreshold(lowTH, max(hist),ImageProcessor.BLACK_AND_WHITE_LUT)


	rt = ResultsTable()
	pa = ParticleAnalyzer(ParticleAnalyzer.SHOW_RESULTS | ParticleAnalyzer.SHOW_OVERLAY_OUTLINES, Measurements.AREA |Measurements.MEAN |\
		Measurements.MEDIAN | Measurements.STD_DEV | Measurements.MIN_MAX | Measurements.RECT, rt,50, 200000, 0.5, 1  )
	pa.setResultsTable(rt)
	pa.analyze(newImg)
	rt.show("Results")
Ejemplo n.º 13
0
def generate_cell_rois(seg_binary_imp):
    """generate rois from which cell shape information will be gleaned"""
    seg_binary_imp.killRoi()
    mxsz = seg_binary_imp.width * seg_binary_imp.height
    roim = RoiManager(False)
    pa_options = ParticleAnalyzer.AREA | ParticleAnalyzer.PERIMETER | ParticleAnalyzer.SHAPE_DESCRIPTORS
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, pa_options, None,
                          1000, mxsz)
    pa.setRoiManager(roim)
    roim.reset()
    pa.analyze(seg_binary_imp)
    rois = roim.getRoisAsArray()
    roim.reset()
    roim.close()
    return rois
Ejemplo n.º 14
0
def process(inputpath, outputpath):

    imp = IJ.openImage(inputpath)
    IJ.run(
        imp, "Properties...",
        "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
    )

    IJ.setThreshold(imp, t1, 255)
    #imp.show()
    #WaitForUserDialog("Title", "Look at image").show()
    IJ.run(imp, "Convert to Mask", "")
    IJ.run(imp, "Watershed", "")

    # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager

    table = ResultsTable()
    roim = RoiManager(True)
    ParticleAnalyzer.setRoiManager(roim)
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA,
                          table, 50, 9999999999999999, 0.2, 1.0)
    pa.setHideOutputImage(True)
    pa.analyze(imp)

    imp.changes = False
    imp.close()

    areas = table.getColumn(0)

    summary = {}

    if areas:

        summary['Image'] = filename
        summary['Nuclei.count'] = len(areas)
        summary['Area.Covered'] = sum(areas)

    fieldnames = list(summary.keys())

    with open(outputpath, 'a') as csvfile:

        writer = csv.DictWriter(csvfile,
                                fieldnames=fieldnames,
                                extrasaction='ignore',
                                lineterminator='\n')
        if os.path.getsize(outputDirectory + "/" + outputname + ".csv") < 1:
            writer.writeheader()
        writer.writerow(summary)
Ejemplo n.º 15
0
def countobjects(imp,
                 rt,
                 subtractBackground=False,
                 watershed=False,
                 dilate=False,
                 threshMethod="Otsu",
                 physicalUnits=True,
                 minSize=0.00,
                 maxSize=float("inf"),
                 minCirc=0.00,
                 maxCirc=1.00):
    """Threshold and count objects in channel 'channelNumber'.
        This function splits an image in the separate channels, and counts the number of objects in the thresholded
        channel.

        Args:
            imp: An ImagePlus with 1 frame, 1 slice.

        Returns:
            A list of filepaths.
        """
    cal = imp.getCalibration()

    if subtractBackground:
        IJ.run(imp, "Subtract Background...", "rolling=50")
    IJ.setAutoThreshold(imp, "{} dark".format(threshMethod))
    IJ.run(imp, "Convert to Mask", "")
    if dilate:
        IJ.run(imp, "Dilate", "")
    if watershed:
        IJ.run(imp, "Watershed", "")
    if physicalUnits:  # Convert physical units to pixels for the current calibration.
        minSize = cal.getRawX(math.sqrt(minSize))**2
        maxSize = cal.getRawX(math.sqrt(maxSize))**2

    pa = ParticleAnalyzer(
        ParticleAnalyzer.SHOW_OVERLAY_OUTLINES
        | ParticleAnalyzer.DISPLAY_SUMMARY,  #int options
        Measurements.AREA | Measurements.SHAPE_DESCRIPTORS | Measurements.MEAN
        | Measurements.CENTROID | Measurements.LABELS,  #int measurements
        rt,  #ResultsTable
        minSize,  #double
        maxSize,  #double
        minCirc,  #double
        maxCirc)  #double
    pa.analyze(imp)
    return imp
Ejemplo n.º 16
0
def get_no_nuclei_fully_enclosed(roi, full_nuclei_imp, overlap_threshold=0.65):
    """for a given cell roi and ImagePlus with binary nuclei, return how many nuclei lie ENTIRELY within the cell"""
    bbox = roi.getBounds()
    full_nuclei_imp.setRoi(roi)
    cropped_nuc_imp = full_nuclei_imp.crop()
    roi.setLocation(0, 0)
    cropped_nuc_imp.setRoi(roi)
    cropped_nuc_imp.killRoi()
    roim = RoiManager(False)
    mxsz = cropped_nuc_imp.getWidth() * cropped_nuc_imp.getHeight()
    pa = ParticleAnalyzer(
        ParticleAnalyzer.ADD_TO_MANAGER, ParticleAnalyzer.AREA
        | ParticleAnalyzer.SLICE | ParticleAnalyzer.CENTROID, None, 0, mxsz)
    pa.setRoiManager(roim)
    pa.analyze(cropped_nuc_imp)
    cell_imp = IJ.createImage("Cell binary", cropped_nuc_imp.getWidth(),
                              cropped_nuc_imp.getHeight(), 1, 8)
    IJ.run(cell_imp, "Select All", "")
    IJ.run(cell_imp, "Set...", "value=0 slice")
    cell_imp.setRoi(roi)
    IJ.run(cell_imp, "Set...", "value=255 slice")
    no_enclosed_nuclei = 0
    for idx, nuc_roi in enumerate(roim.getRoisAsArray()):
        test_imp = Duplicator().run(cell_imp)
        test_imp.setRoi(nuc_roi)
        IJ.run(test_imp, "Set...", "value=255 slice")
        test_imp.killRoi()
        IJ.run(test_imp, "Create Selection", "")
        IJ.run(test_imp, "Make Inverse", "")
        test_roi = test_imp.getRoi()
        test_roi_stats = test_roi.getStatistics()
        cell_roi_stats = roi.getStatistics()
        nuc_roi_stats = nuc_roi.getStatistics()
        if test_roi_stats.area < (
                cell_roi_stats.area +
            (1 - overlap_threshold) * nuc_roi_stats.area
        ):  # i.e. if more than (100*overlap_threshold)% of nucleus is inside cell...
            no_enclosed_nuclei += 1
        test_imp.changes = False
        test_imp.close()
    roi.setLocation(bbox.getX(), bbox.getY())
    cropped_nuc_imp.changes = False
    cropped_nuc_imp.close()
    cell_imp.changes = False
    cell_imp.close()
    return no_enclosed_nuclei
Ejemplo n.º 17
0
def removeSmallCCs(image):

	MINSIZE = 1000
	MAXSIZE = 1000000

	options = PA.SHOW_ROI_MASKS 
			
	
	results = ResultsTable()
	
	p = PA(options, PA.STACK_POSITION + PA.LABELS + PA.AREA + PA.PERIMETER + PA.CIRCULARITY, results, MINSIZE, MAXSIZE)
	p.setHideOutputImage(True)
	p.analyze(image)
	mmap = p.getOutputImage()
	mip = mmap.getProcessor() 
	mip.threshold(0)
	img = ImagePlus("rods_processed", mip)
	IJ.run(img, "8-bit", "") 
	IJ.run(img, "Make Binary", "method=Default background=Dark black")
	

	return img
Ejemplo n.º 18
0
def AnalyzeParticle(IMP):
    rm = RoiManager().getInstance2()
    rt = ResultsTable()

    #再現性確保のために最終的には実装
    #IJ.run("Set Measurements...","area  centroid fit redirect=None decimal=3")

    #https://imagej.nih.gov/ij/developer/api/constant-values.html#ij.plugin.filter.ParticleAnalyzer.SHOW_RESULTS
    #表示オプション無し、resultは全部選択
    PA = ParticleAnalyzer(0 , 1043199 , rt, 10000, 300000, 0.2, 1.0)
    PA.setRoiManager(rm)
    PA.analyze(IMP)

    #IJ.run(IMP, "Analyze Particles...", "display clear include add")
    rm.runCommand("Save", "C:/Users/For  Programming/Documents/Python Scripts/OutletHDD/aaa.zip")
    rt.saveAs("C:/Users/For  Programming/Documents/Python Scripts/OutletHDD/aaa.csv")


    #最後に全ての結果をCloseする。
    #写真を先に消さないとバグる。
    IMP.close()
    rm.close()
    rt.reset()
def anaParticles(imp, minSize, maxSize, minCirc):
  strName = imp.getShortTitle()
  imp.setTitle("original")
  ret = imp.duplicate()
  IJ.run(ret, "Enhance Contrast", "saturated=0.35")
  IJ.run(ret, "8-bit", "")
  IJ.run(ret, "Threshold", "method=Default white")
  IJ.run(ret, "Watershed", "")
  rt = ResultsTable()
  # strSetMeas = "area mean modal min center perimeter bounding fit shape feret's redirect='original' decimal=3"
  # N.B. redirect will not work without a displayed image, so we cannot use a gray level image
  strSetMeas = "area mean modal min center perimeter bounding fit shape feret's decimal=3"
  IJ.run("Set Measurements...", strSetMeas)
  # note this doies not get passed directly to ParticleAnalyzer, so
  # I did this, saved everything and looked for the measurement value in ~/Library/Preferences/IJ_Prefs.txt
  # measurements=27355
  # meas = Measurements.AREA + Measurements.CIRCULARITY + Measurements.PERIMETER + Measurements.SHAPE_DESCRIPTORS
  # didn't work reliably
  meas = 27355
  pa = ParticleAnalyzer(0, meas, rt, minSize, maxSize, minCirc, 1.0);
  pa.analyze(ret);
  rt.createTableFromImage(ret.getProcessor())
  return [ret, rt]
Ejemplo n.º 20
0
def ana_particles(imp, minSize, maxSize, minCirc, bHeadless=True):
    """ana_particles(imp, minSize, maxSize, minCirc, bHeadless=True)
	Analyze particles using a watershed separation. If headless=True, we cannot
	redirect the intensity measurement to the original image because it is never
	displayed. If we display the original, we can and get the mean gray level. We
	may then compute the particle contrast from the measured Izero value for the image.
	No ability here to draw outlines on the original.
	"""
    strName = imp.getShortTitle()
    imp.setTitle("original")
    ret = imp.duplicate()
    ret.setTitle("work")
    IJ.run(ret, "Enhance Contrast", "saturated=0.35")
    IJ.run(ret, "8-bit", "")
    IJ.run(ret, "Threshold", "method=Default white")
    IJ.run(ret, "Watershed", "")
    rt = ResultsTable()
    # strSetMeas = "area mean modal min center perimeter bounding fit shape feret's redirect='original' decimal=3"
    # N.B. redirect will not work without a displayed image, so we cannot use a gray level image
    if bHeadless == True:
        strSetMeas = "area mean modal min center perimeter bounding fit shape feret's decimal=3"
    else:
        imp.show()
        strSetMeas = "area mean modal min center perimeter bounding fit shape feret's redirect='original' decimal=3"

    IJ.run("Set Measurements...", strSetMeas)
    # note this does not get passed directly to ParticleAnalyzer, so
    # I did this, saved everything and looked for the measurement value in ~/Library/Preferences/IJ_Prefs.txt
    # measurements=27355
    # meas = Measurements.AREA + Measurements.CIRCULARITY + Measurements.PERIMETER + Measurements.SHAPE_DESCRIPTORS
    # didn't work reliably
    meas = 27355
    pa = ParticleAnalyzer(0, meas, rt, minSize, maxSize, minCirc, 1.0)
    pa.analyze(ret)
    rt.createTableFromImage(ret.getProcessor())
    return [ret, rt]
Ejemplo n.º 21
0
def countParticles(imp, roim, minSize, maxSize, minCircularity,
                   maxCircularity):
    # Create a table to store the results
    table = ResultsTable()

    # Create the particle analyzer
    pa = ParticleAnalyzer(
        ParticleAnalyzer.ADD_TO_MANAGER,
        Measurements.AREA | Measurements.MEAN | Measurements.ELLIPSE, table,
        minSize, maxSize, minCircularity, maxCircularity)
    pa.setRoiManager(roim)
    pa.setHideOutputImage(True)

    if pa.analyze(imp):
        print "All ok"
    else:
        print "There was a problem in analyzing", blobs

    areas = table.getColumn(0)
    intensities = table.getColumn(1)
    majors = table.getColumn(2)
def countParticles(imp, roim, minSize, maxSize, minCircularity, maxCircularity):
	# Create a table to store the results
	table = ResultsTable()
	
	# Create the particle analyzer
	pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA|Measurements.MEAN, table, minSize, maxSize, minCircularity, maxCircularity)
	#pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA|Measurements.MEAN, table, 10, Double.POSITIVE_INFINITY, 0.5, 1.0)
	#pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA|Measurements.MEAN, table, 5, 6, 0.5, 1.0)
	pa.setRoiManager(roim)
	pa.setHideOutputImage(True)

	if pa.analyze(imp):
		print "All ok"
	else:
 		print "There was a problem in analyzing", blobs

 	areas = table.getColumn(0)
	intensities = table.getColumn(1)

	if ( (areas!=None) and (intensities!=None)):
 		for area, intensity in zip(areas,intensities): print str(area)+": "+str(intensity)
Ejemplo n.º 23
0
def getParticleCenters(imp):
    # Create a table to store the results
    rt = ResultsTable()
    paOpts = PA.SHOW_OUTLINES \
            + PA.INCLUDE_HOLES \
            + PA.EXCLUDE_EDGE_PARTICLES
    measurements = PA.CENTROID + PA.CENTER_OF_MASS
    MINSIZE = 1000
    MAXSIZE = Double.POSITIVE_INFINITY
    pa = PA(paOpts,measurements, rt, MINSIZE, MAXSIZE)
    pa.setHideOutputImage(True)
     
    if not pa.analyze(imp):
        print "There was a problem in analyzing", imp

    # The measured centroids are listed in the first column of the results table, as a float array:
    centroids_x = rt.getColumn(rt.X_CENTROID)
    centroids_y = rt.getColumn(rt.Y_CENTROID)
    coms_x = rt.getColumn(rt.X_CENTER_OF_MASS)
    coms_y = rt.getColumn(rt.Y_CENTER_OF_MASS)

    return (centroids_x,centroids_y, coms_x, coms_y)
Ejemplo n.º 24
0
    def process(self,imp):
        # extract nucleus channel, 8-bit and twice binned
        imp.setC(self.nucleusChannel)
        ip = imp.getChannelProcessor().duplicate()
        ip = ip.convertToByteProcessor()
        ip = ip.bin(4)
        nucleus = ImagePlus("nucleus_channel", ip)

        # threshold image and separate clumped nuclei
        IJ.run(nucleus, "Auto Threshold", "method=Otsu white setthreshold show");
        IJ.run(nucleus, "Make Binary", "thresholded remaining black");
        IJ.run(nucleus, "Watershed", "");

        directory = imp.getTitle()
        directory = directory.replace(" ", "_")\
            .replace(",", "_")\
            .replace("#", "_series")\
            .replace("...", "")\
            .replace(".","_")
        directory = os.path.join(self.exportDir, directory)
        sliceDirectory = os.path.join(directory, "slices")
        print directory
        print sliceDirectory
        if not os.path.exists(sliceDirectory):
            os.makedirs(sliceDirectory)

        # Create a table to store the results
        table = ResultsTable()

        # Create a hidden ROI manager, to store a ROI for each blob or cell
        #roim = RoiManager(True)

        # remove small particles and border particles
        pa = ParticleAnalyzer(\
            ParticleAnalyzer.ADD_TO_MANAGER | ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES,\
            Measurements.CENTER_OF_MASS,\
            table,\
            self.minArea, self.maxArea,\
            0.0,1.0)

        if pa.analyze(nucleus):
            print "All ok, number of particles: ", table.size()
        else:
            print "There was a problem in analyzing", imp, nucleus
        table.save(os.path.join(directory, "rt.csv"))

        # read the center of mass coordinates
        cmx = table.getColumn(0)
        cmy = table.getColumn(1)

        if self.debug:
            imp.show()

        i=0
        for i in range(0, min(self.nCells,table.size())):
            # ROI around the cell
            cmx = table.getValue("XM",i)
            cmy = table.getValue("YM",i)
            x = 4 * cmx - (self.boxSize - 1) / 2
            y = 4 * cmy - (self.boxSize - 1) / 2
            if (x < self.edge or y < self.edge or x > imp.getWidth() - self.edge or y > imp.getHeight() - self.edge):
                continue
            roi = Roi(x,y,self.boxSize,self.boxSize)
            imp.setRoi(roi, False)

            cellStack = ImageStack(self.boxSize, self.boxSize)

            for z in range(1, imp.getNSlices() + 1):
                imp.setSlice(z)
                for c in range(1, imp.getNChannels() + 1):
                    imp.setC(c)
                    # copy ROI to stack
                    imp.copy()
                    impSlice = imp.getClipboard()
                    cellStack.addSlice(impSlice.getProcessor())
                    if self.slices:
                        sliceTitle = "cell_%s_z%s_c%s" % (str(i).zfill(4), str(z).zfill(3), str(c))
                        print sliceTitle
                        IJ.saveAsTiff(impSlice, os.path.join(sliceDirectory, sliceTitle))
                    impSlice.close()

            title = "cell_" + str(i).zfill(4)
            cell = ImagePlus(title, cellStack)

            # save ROI image
            IJ.saveAsTiff(cell, os.path.join(directory, title))
            cell.close()

            if self.debug:
                imp.updateAndDraw()
                wait = Wait("particle done")
                wait.show()
Ejemplo n.º 25
0
def process(subFolder, outputDirectory, filename):
    #IJ.close()
    imp = IJ.openImage(inputDirectory + subFolder + '/' +
                       rreplace(filename, "_ch00.tif", ".tif"))
    imp.show()

    # Get the pixel values from the xml file
    for file in os.listdir(inputDirectory + subFolder):
        if file.endswith('.xml'):
            xml = os.path.join(inputDirectory + subFolder, file)
            xml = "C:/Users/Harris/Desktop/test_xml_for_parsing_pixel.xml"
            element_tree = ET.parse(xml)
            root = element_tree.getroot()
            for dimensions in root.iter('DimensionDescription'):
                num_pixels = int(dimensions.attrib['NumberOfElements'])
                if dimensions.attrib['Unit'] == "m":
                    length = float(dimensions.attrib['Length']) * 1000000
                else:
                    length = float(dimensions.attrib['Length'])
            pixel_length = length / num_pixels
        else:
            pixel_length = 0.8777017

    IJ.run(
        imp, "Properties...",
        "channels=1 slices=1 frames=1 unit=um pixel_width=" +
        str(pixel_length) + " pixel_height=" + str(pixel_length) +
        " voxel_depth=25400.0508001")
    ic = ImageConverter(imp)
    ic.convertToGray8()
    #IJ.setThreshold(imp, 2, 255)

    #Automatically selects the area of the organoid based on automated thresholding and creates a mask to be applied on
    #all other images

    IJ.setAutoThreshold(imp, "Mean dark no-reset")
    IJ.run(imp, "Convert to Mask", "")
    IJ.run(imp, "Analyze Particles...", "size=100000-Infinity add select")
    rm = RoiManager.getInstance()
    num_roi = rm.getCount()

    for i in num_roi:

        imp = getCurrentImage()
        rm.select(imp, i)
        IJ.setBackgroundColor(0, 0, 0)
        IJ.run(imp, "Clear Outside", "")

        IJ.run(imp, "Convert to Mask", "")
        IJ.run(imp, "Remove Outliers...",
               "radius=5" + " threshold=50" + " which=Dark")
        IJ.run(imp, "Remove Outliers...",
               "radius=5" + " threshold=50" + " which=Bright")

        # Save the mask and open it
        IJ.saveAs("tiff", inputDirectory + '/mask' + i)
        mask = IJ.openImage(inputDirectory + '/mask' + i + '.tif')

        if not displayImages:
            imp.changes = False
            imp.close()

        images = [None] * 5
        intensities = [None] * 5
        blobsarea = [None] * 5
        blobsnuclei = [None] * 5
        bigAreas = [None] * 5

        imp.close()

        # Loop to open all the channel images
        for chan in channels:
            v, x = chan
            images[x] = IJ.openImage(inputDirectory + subFolder + '/' +
                                     rreplace(filename, "_ch00.tif", "_ch0" +
                                              str(x) + ".tif"))

            # Apply Mask on all the images and save them into an array
            apply_mask = ImageCalculator()
            images[x] = apply_mask.run("Multiply create 32 bit", mask,
                                       images[x])
            ic = ImageConverter(images[x])
            ic.convertToGray8()
            imp = images[x]

            # Calculate the intensities for each channel as well as the organoid area
            for roi in rm.getRoisAsArray():
                imp.setRoi(roi)
                stats_i = imp.getStatistics(Measurements.MEAN
                                            | Measurements.AREA)
                intensities[x] = stats_i.mean
                bigAreas[x] = stats_i.area

        rm.close()

        # Opens the ch00 image and sets default properties

        #Get the pixel values from the xml file
        for file in os.listdir(subFolder):
            if file.endswith('.xml'):
                xml = os.path.join(inputDirectory + subFolder, file)
                xml = "C:/Users/Harris/Desktop/test_xml_for_parsing_pixel.xml"
                element_tree = ET.parse(xml)
                root = element_tree.getroot()
                for dimensions in root.iter('DimensionDescription'):
                    num_pixels = int(dimensions.attrib['NumberOfElements'])
                    if dimensions.attrib['Unit'] == "m":
                        length = float(dimensions.attrib['Length']) * 1000000
                    else:
                        length = float(dimensions.attrib['Length'])
                pixel_length = length / num_pixels
            else:
                pixel_length = 0.8777017

        imp = IJ.openImage(inputDirectory + subFolder + '/' + filename)
        imp = apply_mask.run("Multiply create 32 bit", mask, imp)
        IJ.run(
            imp, "Properties...",
            "channels=1 slices=1 frames=1 unit=um pixel_width=" +
            str(pixel_length) + "pixel_height=" + str(pixel_length) +
            "voxel_depth=25400.0508001")

        # Sets the threshold and watersheds. for more details on image processing, see https://imagej.nih.gov/ij/developer/api/ij/process/ImageProcessor.html

        ic = ImageConverter(imp)
        ic.convertToGray8()

        IJ.run(imp, "Remove Outliers...",
               "radius=2" + " threshold=50" + " which=Dark")

        IJ.run(imp, "Gaussian Blur...", "sigma=" + str(blur))

        IJ.setThreshold(imp, lowerBounds[0], 255)

        if displayImages:
            imp.show()
        IJ.run(imp, "Convert to Mask", "")
        IJ.run(imp, "Watershed", "")

        if not displayImages:
            imp.changes = False
            imp.close()

        # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager

        table = ResultsTable()
        roim = RoiManager(True)
        ParticleAnalyzer.setRoiManager(roim)
        pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
                              Measurements.AREA, table, 15, 9999999999999999,
                              0.2, 1.0)
        pa.setHideOutputImage(True)
        # imp = impM

        # imp.getProcessor().invert()
        pa.analyze(imp)

        areas = table.getColumn(0)

        # This loop goes through the remaining channels for the other markers, by replacing the ch00 at the end with its corresponding channel
        # It will save all the area fractions into a 2d array called areaFractionsArray

        areaFractionsArray = [None] * 5
        for chan in channels:
            v, x = chan
            # Opens each image and thresholds

            imp = images[x]
            IJ.run(
                imp, "Properties...",
                "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
            )

            ic = ImageConverter(imp)
            ic.convertToGray8()
            IJ.setThreshold(imp, lowerBounds[x], 255)

            if displayImages:
                imp.show()
                WaitForUserDialog("Title",
                                  "Adjust Threshold for Marker " + v).show()

            IJ.run(imp, "Convert to Mask", "")

            # Measures the area fraction of the new image for each ROI from the ROI manager.
            areaFractions = []
            for roi in roim.getRoisAsArray():
                imp.setRoi(roi)
                stats = imp.getStatistics(Measurements.AREA_FRACTION)
                areaFractions.append(stats.areaFraction)

            # Saves the results in areaFractionArray

            areaFractionsArray[x] = areaFractions

        roim.close()

        for chan in channels:
            v, x = chan

            imp = images[x]
            imp.deleteRoi()
            roim = RoiManager(True)
            ParticleAnalyzer.setRoiManager(roim)
            pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
                                  Measurements.AREA, table, 15,
                                  9999999999999999, 0.2, 1.0)
            pa.analyze(imp)

            blobs = []
            for roi in roim.getRoisAsArray():
                imp.setRoi(roi)
                stats = imp.getStatistics(Measurements.AREA)
                blobs.append(stats.area)

            blobsarea[x] = sum(
                blobs
            )  #take this out and use intial mask tissue area from the beginning
            blobsnuclei[x] = len(blobs)

            if not displayImages:
                imp.changes = False
                imp.close()
            roim.reset()
            roim.close()

            imp.close()

    # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column

    summary = {}

    summary['Image'] = filename
    summary['Directory'] = subFolder

    # Adds usual columns

    summary['size-average'] = 0
    summary['#nuclei'] = 0
    summary['all-negative'] = 0

    summary['too-big-(>' + str(tooBigThreshold) + ')'] = 0
    summary['too-small-(<' + str(tooSmallThreshold) + ')'] = 0

    # Creates the fieldnames variable needed to create the csv file at the end.

    fieldnames = [
        'Name', 'Directory', 'Image', 'size-average',
        'too-big-(>' + str(tooBigThreshold) + ')',
        'too-small-(<' + str(tooSmallThreshold) + ')', '#nuclei',
        'all-negative'
    ]

    # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei)

    summary["organoid-area"] = bigAreas[x]
    fieldnames.append("organoid-area")

    for chan in channels:
        v, x = chan
        summary[v + "-positive"] = 0
        fieldnames.append(v + "-positive")

        summary[v + "-intensity"] = intensities[x]
        fieldnames.append(v + "-intensity")

        summary[v + "-blobsarea"] = blobsarea[x]
        fieldnames.append(v + "-blobsarea")

        summary[v + "-blobsnuclei"] = blobsnuclei[x]
        fieldnames.append(v + "-blobsnuclei")

    # Adds the column for colocalization between first and second marker

    if len(channels) > 2:
        summary[channels[1][0] + '-' + channels[2][0] + '-positive'] = 0
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-positive')

    # Adds the columns for colocalization between all three markers

    if len(channels) > 3:
        summary[channels[1][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[2][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] +
                '-positive'] = 0

        fieldnames.append(channels[1][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[2][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-' +
                          channels[3][0] + '-positive')

    # Loops through each particle and adds it to each field that it is True for.

    areaCounter = 0
    for z, area in enumerate(areas):

        log.write(str(area))
        log.write("\n")

        if area > tooBigThreshold:
            summary['too-big-(>' + str(tooBigThreshold) + ')'] += 1
        elif area < tooSmallThreshold:
            summary['too-small-(<' + str(tooSmallThreshold) + ')'] += 1
        else:

            summary['#nuclei'] += 1
            areaCounter += area

            temp = 0
            for chan in channels:
                v, x = chan
                if areaFractionsArray[x][z] > areaFractionThreshold[
                        0]:  # theres an error here im not sure why. i remember fixing it before
                    summary[chan[0] + '-positive'] += 1
                    if x != 0:
                        temp += 1

            if temp == 0:
                summary['all-negative'] += 1

            if len(channels) > 2:
                if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                    if areaFractionsArray[2][z] > areaFractionThreshold[2]:
                        summary[channels[1][0] + '-' + channels[2][0] +
                                '-positive'] += 1

            if len(channels) > 3:
                if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                    if areaFractionsArray[3][z] > areaFractionThreshold[3]:
                        summary[channels[1][0] + '-' + channels[3][0] +
                                '-positive'] += 1
                if areaFractionsArray[2][z] > areaFractionThreshold[2]:
                    if areaFractionsArray[3][z] > areaFractionThreshold[3]:
                        summary[channels[2][0] + '-' + channels[3][0] +
                                '-positive'] += 1
                        if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                            summary[channels[1][0] + '-' + channels[2][0] +
                                    '-' + channels[3][0] + '-positive'] += 1

    # Calculate the average of the particles sizes

    if float(summary['#nuclei']) > 0:
        summary['size-average'] = round(areaCounter / summary['#nuclei'], 2)

    # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image)

    with open(outputDirectory + "/" + outputName + ".csv", 'a') as csvfile:

        writer = csv.DictWriter(csvfile,
                                fieldnames=fieldnames,
                                extrasaction='ignore',
                                lineterminator='\n')
        if os.path.getsize(outputDirectory + "/" + outputName + ".csv") < 1:
            writer.writeheader()
        writer.writerow(summary)

    IJ.run(imp, "Close All", "")
Ejemplo n.º 26
0
    def analyzeParticles(imp,
                         minsize,
                         maxsize,
                         mincirc,
                         maxcirc,
                         #filename='Test.czi',
                         addROIManager=False,
                         #headless=False,
                         exclude=True):

        if GraphicsEnvironment.isHeadless():
            print('Headless Mode detected. Do not use ROI Manager.')
            addROIManager = False

        if addROIManager:

            # get the ROI manager instance
            rm = RoiManager.getInstance()
            if rm is None:
                rm = RoiManager()
            rm.runCommand("Associate", "true")

            if not exclude:
                options = PA.SHOW_ROI_MASKS \
                    + PA.SHOW_RESULTS \
                    + PA.DISPLAY_SUMMARY \
                    + PA.ADD_TO_MANAGER \
                    + PA.ADD_TO_OVERLAY \

            if exclude:
                options = PA.SHOW_ROI_MASKS \
                    + PA.SHOW_RESULTS \
                    + PA.DISPLAY_SUMMARY \
                    + PA.ADD_TO_MANAGER \
                    + PA.ADD_TO_OVERLAY \
                    + PA.EXCLUDE_EDGE_PARTICLES

        if not addROIManager:

            if not exclude:
                options = PA.SHOW_ROI_MASKS \
                    + PA.SHOW_RESULTS \
                    + PA.DISPLAY_SUMMARY \
                    + PA.ADD_TO_OVERLAY \

            if exclude:
                options = PA.SHOW_ROI_MASKS \
                    + PA.SHOW_RESULTS \
                    + PA.DISPLAY_SUMMARY \
                    + PA.ADD_TO_OVERLAY \
                    + PA.EXCLUDE_EDGE_PARTICLES

        measurements = PA.STACK_POSITION \
            + PA.LABELS \
            + PA.AREA \
            + PA.RECT \
            + PA.PERIMETER \
            + PA.SLICE \
            + PA.SHAPE_DESCRIPTORS \
            + PA.CENTER_OF_MASS \
            + PA.CENTROID

        results = ResultsTable()
        p = PA(options, measurements, results, minsize, maxsize, mincirc, maxcirc)
        p.setHideOutputImage(True)
        particlestack = ImageStack(imp.getWidth(), imp.getHeight())

        for i in range(imp.getStackSize()):
            imp.setSliceWithoutUpdate(i + 1)
            ip = imp.getProcessor()
            # convert to a mask for the particle analyzer
            ip.invert()
            # do the particle analysis
            p.analyze(imp, ip)
            mmap = p.getOutputImage()
            # add the slide to the full stack
            particlestack.addSlice(mmap.getProcessor())

        return particlestack, results
Ejemplo n.º 27
0
from ij.measure import ResultsTable
from ij.measure import Measurements
from ij.plugin.frame import RoiManager
from ij.plugin.filter import ParticleAnalyzer
from ij import IJ

# get active image
imp=IJ.getImage()

# set up first ROI manager
table1 = ResultsTable()
roim1=RoiManager()
pa1 = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA|Measurements.MEAN|Measurements.ELLIPSE, table1, 0, 100, 0, 1)
pa1.setRoiManager(roim1)
pa1.analyze(imp)

# set up second ROI manager
table2 = ResultsTable()
# Pass true to second ROI manager so it will not be seen
roim2=RoiManager(True)
pa2 = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA|Measurements.MEAN|Measurements.ELLIPSE, table2, 100, 500, 0, 1)
pa2.setRoiManager(roim2)
pa2.analyze(imp)

print "rois from first manager:"
for roi in roim1.getRoisAsArray(): print roi

print 
print "rois from second manager:"
for roi in roim2.getRoisAsArray(): print roi
Ejemplo n.º 28
0
def process(subFolder, outputDirectory, filename):

    imp = IJ.openImage(inputDirectory + subFolder + '/' +
                       rreplace(filename, "_ch00.tif", ".tif"))
    IJ.run(
        imp, "Properties...",
        "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
    )
    ic = ImageConverter(imp)
    ic.convertToGray8()
    IJ.setThreshold(imp, 2, 255)
    IJ.run(imp, "Convert to Mask", "")
    IJ.run(imp, "Remove Outliers...",
           "radius=5" + " threshold=50" + " which=Dark")
    IJ.run(imp, "Remove Outliers...",
           "radius=5" + " threshold=50" + " which=Bright")

    imp.getProcessor().invert()
    rm = RoiManager(True)
    imp.getProcessor().setThreshold(0, 0, ImageProcessor.NO_LUT_UPDATE)

    boundroi = ThresholdToSelection.run(imp)
    rm.addRoi(boundroi)

    if not displayImages:
        imp.changes = False
        imp.close()

    images = [None] * 5
    intensities = [None] * 5
    blobsarea = [None] * 5
    blobsnuclei = [None] * 5
    bigAreas = [None] * 5

    for chan in channels:
        v, x = chan
        images[x] = IJ.openImage(inputDirectory + subFolder + '/' +
                                 rreplace(filename, "_ch00.tif", "_ch0" +
                                          str(x) + ".tif"))
        imp = images[x]
        for roi in rm.getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.MEAN | Measurements.AREA)
            intensities[x] = stats.mean
            bigAreas[x] = stats.area

    rm.close()
    # Opens the ch00 image and sets default properties

    imp = IJ.openImage(inputDirectory + subFolder + '/' + filename)
    IJ.run(
        imp, "Properties...",
        "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
    )

    # Sets the threshold and watersheds. for more details on image processing, see https://imagej.nih.gov/ij/developer/api/ij/process/ImageProcessor.html

    ic = ImageConverter(imp)
    ic.convertToGray8()

    IJ.run(imp, "Remove Outliers...",
           "radius=2" + " threshold=50" + " which=Dark")

    IJ.run(imp, "Gaussian Blur...", "sigma=" + str(blur))

    IJ.setThreshold(imp, lowerBounds[0], 255)

    if displayImages:
        imp.show()
    IJ.run(imp, "Convert to Mask", "")
    IJ.run(imp, "Watershed", "")

    if not displayImages:
        imp.changes = False
        imp.close()

    # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager

    table = ResultsTable()
    roim = RoiManager(True)
    ParticleAnalyzer.setRoiManager(roim)
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA,
                          table, 15, 9999999999999999, 0.2, 1.0)
    pa.setHideOutputImage(True)
    #imp = impM

    # imp.getProcessor().invert()
    pa.analyze(imp)

    areas = table.getColumn(0)

    # This loop goes through the remaining channels for the other markers, by replacing the ch00 at the end with its corresponding channel
    # It will save all the area fractions into a 2d array called areaFractionsArray

    areaFractionsArray = [None] * 5
    for chan in channels:
        v, x = chan
        # Opens each image and thresholds

        imp = images[x]
        IJ.run(
            imp, "Properties...",
            "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
        )

        ic = ImageConverter(imp)
        ic.convertToGray8()
        IJ.setThreshold(imp, lowerBounds[x], 255)

        if displayImages:
            imp.show()
            WaitForUserDialog("Title",
                              "Adjust Threshold for Marker " + v).show()

        IJ.run(imp, "Convert to Mask", "")

        # Measures the area fraction of the new image for each ROI from the ROI manager.
        areaFractions = []
        for roi in roim.getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.AREA_FRACTION)
            areaFractions.append(stats.areaFraction)

        # Saves the results in areaFractionArray

        areaFractionsArray[x] = areaFractions

    roim.close()

    for chan in channels:
        v, x = chan

        imp = images[x]
        imp.deleteRoi()
        roim = RoiManager(True)
        ParticleAnalyzer.setRoiManager(roim)
        pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
                              Measurements.AREA, table, 15, 9999999999999999,
                              0.2, 1.0)
        pa.analyze(imp)

        blobs = []
        for roi in roim.getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.AREA)
            blobs.append(stats.area)

        blobsarea[x] = sum(blobs)
        blobsnuclei[x] = len(blobs)

        if not displayImages:
            imp.changes = False
            imp.close()
        roim.reset()
        roim.close()

    # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column

    summary = {}

    summary['Image'] = filename
    summary['Directory'] = subFolder

    # Adds usual columns

    summary['size-average'] = 0
    summary['#nuclei'] = 0
    summary['all-negative'] = 0

    summary['too-big-(>' + str(tooBigThreshold) + ')'] = 0
    summary['too-small-(<' + str(tooSmallThreshold) + ')'] = 0

    # Creates the fieldnames variable needed to create the csv file at the end.

    fieldnames = [
        'Name', 'Directory', 'Image', 'size-average',
        'too-big-(>' + str(tooBigThreshold) + ')',
        'too-small-(<' + str(tooSmallThreshold) + ')', '#nuclei',
        'all-negative'
    ]

    # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei)

    summary["organoid-area"] = bigAreas[x]
    fieldnames.append("organoid-area")

    for chan in channels:
        v, x = chan
        summary[v + "-positive"] = 0
        fieldnames.append(v + "-positive")

        summary[v + "-intensity"] = intensities[x]
        fieldnames.append(v + "-intensity")

        summary[v + "-blobsarea"] = blobsarea[x]
        fieldnames.append(v + "-blobsarea")

        summary[v + "-blobsnuclei"] = blobsnuclei[x]
        fieldnames.append(v + "-blobsnuclei")

    # Adds the column for colocalization between first and second marker

    if len(channels) > 2:
        summary[channels[1][0] + '-' + channels[2][0] + '-positive'] = 0
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-positive')

    # Adds the columns for colocalization between all three markers

    if len(channels) > 3:
        summary[channels[1][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[2][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] +
                '-positive'] = 0

        fieldnames.append(channels[1][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[2][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-' +
                          channels[3][0] + '-positive')

    # Loops through each particle and adds it to each field that it is True for.

    areaCounter = 0
    for z, area in enumerate(areas):

        log.write(str(area))
        log.write("\n")

        if area > tooBigThreshold:
            summary['too-big-(>' + str(tooBigThreshold) + ')'] += 1
        elif area < tooSmallThreshold:
            summary['too-small-(<' + str(tooSmallThreshold) + ')'] += 1
        else:

            summary['#nuclei'] += 1
            areaCounter += area

            temp = 0
            for chan in channels:
                v, x = chan
                if areaFractionsArray[x][z] > areaFractionThreshold[
                        0]:  #theres an error here im not sure why. i remember fixing it before
                    summary[chan[0] + '-positive'] += 1
                    if x != 0:
                        temp += 1

            if temp == 0:
                summary['all-negative'] += 1

            if len(channels) > 2:
                if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                    if areaFractionsArray[2][z] > areaFractionThreshold[2]:
                        summary[channels[1][0] + '-' + channels[2][0] +
                                '-positive'] += 1

            if len(channels) > 3:
                if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                    if areaFractionsArray[3][z] > areaFractionThreshold[3]:
                        summary[channels[1][0] + '-' + channels[3][0] +
                                '-positive'] += 1
                if areaFractionsArray[2][z] > areaFractionThreshold[2]:
                    if areaFractionsArray[3][z] > areaFractionThreshold[3]:
                        summary[channels[2][0] + '-' + channels[3][0] +
                                '-positive'] += 1
                        if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                            summary[channels[1][0] + '-' + channels[2][0] +
                                    '-' + channels[3][0] + '-positive'] += 1

    # Calculate the average of the particles sizes

    if float(summary['#nuclei']) > 0:
        summary['size-average'] = round(areaCounter / summary['#nuclei'], 2)

    # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image)

    with open(outputDirectory + "/" + outputName + ".csv", 'a') as csvfile:

        writer = csv.DictWriter(csvfile,
                                fieldnames=fieldnames,
                                extrasaction='ignore',
                                lineterminator='\n')
        if os.path.getsize(outputDirectory + "/" + outputName + ".csv") < 1:
            writer.writeheader()
        writer.writerow(summary)
Ejemplo n.º 29
0
	+ PA.CLEAR_WORKSHEET \
#    + PA.SHOW_RESULTS \    
rt = ResultsTable()
p = PA(options, PA.AREA + PA.STACK_POSITION, rt, MINSIZE, MAXSIZE)
p.setHideOutputImage(True)

# Morphological dilate
binner.setup('dilate', None)


clusters = 0
initialCells = 0

# dilate by 'SAMPLEITER'
for i in range(SAMPLEITER+1):
	p.analyze(binimp)
	cellcounts = rt.getCounter()
	if i == 0:
		initialCells = cellcounts
	#IJ.log("iter:" + str(i) + " -- cell counts: " + str(cellcounts))
	if i == SAMPLEITER:
		clusters = cellcounts
	binner.run(binimp.getProcessor())
	rt.reset()

#binimp.show()
#binorg.show()
IJ.log("==== " + imp3.getTitle() + " =====")
IJ.log("Number of Nucleus : " + str(initialCells))
IJ.log("Clusters at dilation " + str(SAMPLEITER) + ": " + str(clusters))
IJ.log("Clusters/Nucleus " + str(float(clusters)/float(initialCells)))
Ejemplo n.º 30
0
def process(subDir, subsubDir, outputDirectory, filename):

    subFolder = subDir + "/" + subsubDir

    # Opens the d0 image and sets default properties

    imp = IJ.openImage(inputDirectory + subFolder + '/' + filename)
    IJ.run(
        imp, "Properties...",
        "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
    )

    # Sets the threshold and watersheds. for more details on image processing, see https://imagej.nih.gov/ij/developer/api/ij/process/ImageProcessor.html

    ic = ImageConverter(imp)
    ic.convertToGray8()
    imp.updateAndDraw()
    dup = imp.duplicate()
    IJ.run(
        dup, "Convolve...",
        "text1=[-1 -1 -1 -1 -1\n-1 -1 -1 -1 -1\n-1 -1 24 -1 -1\n-1 -1 -1 -1 -1\n-1 -1 -1 -1 -1\n] normalize"
    )
    stats = dup.getStatistics(Measurements.MEAN | Measurements.MIN_MAX
                              | Measurements.STD_DEV)
    dup.close()
    blurry = (stats.mean < 18 and stats.stdDev < 22) or stats.max < 250

    IJ.setThreshold(imp, lowerBounds[0], 255)

    IJ.run(imp, "Convert to Mask", "")
    IJ.run(imp, "Watershed", "")
    if displayImages:
        imp.show()
        WaitForUserDialog("Title", "Look at image").show()

    # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager

    table = ResultsTable()
    roim = RoiManager(True)
    ParticleAnalyzer.setRoiManager(roim)
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA,
                          table, 15, 9999999999999999, 0.2, 1.0)
    pa.setHideOutputImage(True)
    pa.analyze(imp)

    if not displayImages:
        imp.changes = False
        imp.close()

    areas = table.getColumn(0)

    # This loop goes through the remaining channels for the other markers, by replacing the d0 at the end with its corresponding channel
    # It will save all the area fractions into a 2d array called areaFractionsArray

    areaFractionsArray = []
    areaMeansArray = []
    means = []
    totalAreas = []
    for chan in channels:
        v, x = chan
        # Opens each image and thresholds

        imp = IJ.openImage(inputDirectory + subFolder + '/' +
                           filename.replace("d0.TIF", "d" + str(x) + ".TIF"))
        IJ.run(
            imp, "Properties...",
            "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
        )
        ic = ImageConverter(imp)
        ic.convertToGray8()
        imp.updateAndDraw()

        stats = imp.getStatistics(Measurements.MEAN)
        means.append(stats.mean)

        areaMeans = []
        for roi in roim.getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.MEAN)
            areaMeans.append(stats.mean)

        IJ.setThreshold(imp, lowerBounds[x], 255)
        IJ.run(imp, "Convert to Mask", "")

        if displayImages:
            imp.show()
            WaitForUserDialog("Title", "Look at image").show()

        stats = imp.getStatistics(Measurements.AREA_FRACTION)
        totalAreas.append(stats.areaFraction)

        # Measures the area fraction of the new image for each ROI from the ROI manager.
        areaFractions = []

        for roi in roim.getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.AREA_FRACTION)
            areaFractions.append(stats.areaFraction)

        # Saves the results in areaFractionArray

        areaFractionsArray.append(areaFractions)
        areaMeansArray.append(sum(areaMeans) / len(areaMeans))

        if not displayImages:
            imp.changes = False
            imp.close()
    roim.close()

    # Figures out what well the image is a part of

    ind = filename.index("p00_0_")
    row = filename[ind + 6:ind + 7]
    column = str(int(filename[ind + 7:ind + 9]))

    # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column

    summary = {}

    # Finds the name of the well from the nameArray 2d array

    if row in nameArray:
        if column in nameArray[row]:
            summary['Name'] = nameArray[row][column]

    summary['Image'] = filename
    summary['Directory'] = subDir
    summary['SubDirectory'] = subsubDir
    summary['Row'] = row
    summary['Column'] = column

    # Adds usual columns

    summary['size-average'] = 0
    summary['#nuclei'] = 0
    summary['all-negative'] = 0

    summary['too-big-(>' + str(tooBigThreshold) + ')'] = 0
    summary['too-small-(<' + str(tooSmallThreshold) + ')'] = 0

    summary['image-quality'] = blurry

    # Creates the fieldnames variable needed to create the csv file at the end.

    fieldnames = [
        'Name', 'Directory', 'SubDirectory', 'Image', 'Row', 'Column',
        'size-average', 'image-quality',
        'too-big-(>' + str(tooBigThreshold) + ')',
        'too-small-(<' + str(tooSmallThreshold) + ')', '#nuclei',
        'all-negative'
    ]

    # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei)

    for chan in channels:
        v, x = chan
        summary[v + "-positive"] = 0
        summary[v + "-intensity"] = means[x]
        summary[v + "-area"] = totalAreas[x]
        summary[v + "-intensity-in-nuclei"] = areaMeansArray[x]
        summary[v + "-area-fraction-in-nuclei"] = sum(
            areaFractionsArray[x]) / len(areaFractionsArray[x])
        fieldnames.append(v + "-positive")
        fieldnames.append(v + "-intensity")
        fieldnames.append(v + "-area")
        fieldnames.append(v + "-intensity-in-nuclei")
        fieldnames.append(v + "-area-fraction-in-nuclei")

    # Adds the column for colocalization between first and second marker

    if len(channels) > 2:
        summary[channels[1][0] + '-' + channels[2][0] + '-positive'] = 0
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-positive')

    # Adds the columns for colocalization between all three markers

    if len(channels) > 3:
        summary[channels[1][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[2][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] +
                '-positive'] = 0

        fieldnames.append(channels[1][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[2][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-' +
                          channels[3][0] + '-positive')

    # Loops through each particle and adds it to each field that it is True for.

    areaCounter = 0

    if not (areas is None):
        for z, area in enumerate(areas):
            if not (area is None or summary is None):
                if area > tooBigThreshold:
                    summary['too-big-(>' + str(tooBigThreshold) + ')'] += 1
                elif area < tooSmallThreshold:
                    summary['too-small-(<' + str(tooSmallThreshold) + ')'] += 1
                else:

                    summary['#nuclei'] += 1
                    areaCounter += area

                    temp = 0
                    for y, chan in enumerate(channels):
                        v, x = chan
                        if areaFractionsArray[y][z] > areaFractionThreshold:
                            summary[chan[0] + '-positive'] += 1
                            if x != 0:
                                temp += 1

                    if temp == 0:
                        summary['all-negative'] += 1

                    if len(channels) > 2:
                        if areaFractionsArray[1][z] > areaFractionThreshold:
                            if areaFractionsArray[2][z] > areaFractionThreshold:
                                summary[channels[1][0] + '-' + channels[2][0] +
                                        '-positive'] += 1

                    if len(channels) > 3:
                        if areaFractionsArray[1][z] > areaFractionThreshold:
                            if areaFractionsArray[3][z] > areaFractionThreshold:
                                summary[channels[1][0] + '-' + channels[3][0] +
                                        '-positive'] += 1
                        if areaFractionsArray[2][z] > areaFractionThreshold:
                            if areaFractionsArray[3][z] > areaFractionThreshold:
                                summary[channels[2][0] + '-' + channels[3][0] +
                                        '-positive'] += 1
                                if areaFractionsArray[1][
                                        z] > areaFractionThreshold:
                                    summary[channels[1][0] + '-' +
                                            channels[2][0] + '-' +
                                            channels[3][0] + '-positive'] += 1

    # Calculate the average of the particles sizes

    if float(summary['#nuclei']) > 0:
        summary['size-average'] = round(areaCounter / summary['#nuclei'], 2)

    # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image)

    with open(outputDirectory + "/" + outputName + ".csv", 'a') as csvfile:

        writer = csv.DictWriter(csvfile,
                                fieldnames=fieldnames,
                                extrasaction='ignore',
                                lineterminator='\n')
        if os.path.getsize(outputDirectory + "/" + outputName + ".csv") < 1:
            writer.writeheader()
        writer.writerow(summary)
Ejemplo n.º 31
0
def merge_incorrect_splits_and_get_centroids(imp,
                                             centroid_distance_limit=100,
                                             size_limit=100):
    """if particles are found with centroids closer than centroid_distance_limit and both have size<size_limit, get average centroid"""
    imp.killRoi()
    rt = ResultsTable()
    out_imp = IJ.createImage("Nuclei centroids from {}".format(imp.getTitle()),
                             imp.getWidth(), imp.getHeight(), 1, 8)
    out_imp.show()
    IJ.run(out_imp, "Select All", "")
    IJ.run(out_imp, "Set...", "value=0 slice")
    out_imp.show()
    cal = imp.getCalibration()
    mxsz = imp.width * cal.pixelWidth * imp.height * cal.pixelHeight
    print("mxsz = {}".format(mxsz))
    roim = RoiManager()
    imp.show()
    pa = ParticleAnalyzer(
        ParticleAnalyzer.ADD_TO_MANAGER, ParticleAnalyzer.AREA
        | ParticleAnalyzer.SLICE | ParticleAnalyzer.CENTROID, rt, 0,
        size_limit)
    pa.setRoiManager(roim)
    roim.reset()
    rt.reset()
    pa.analyze(imp)
    MyWaitForUser("paise",
                  "pause post-merge incorrect splits particel analysis")
    rt_xs = rt.getColumn(rt.getColumnIndex("X")).tolist()
    rt_ys = rt.getColumn(rt.getColumnIndex("Y")).tolist()
    centroids = [(x, y) for x, y in zip(rt_xs, rt_ys)]
    print("centroids = {}".format(centroids))
    centroids_set = set()
    for c in centroids:
        ds = [
            math.sqrt((c[0] - cx)**2 + (c[1] - cy)**2)
            for (cx, cy) in centroids
        ]
        close_mask = [d < centroid_distance_limit for d in ds]
        # if no other centroids are within centroid_distance_limit, add this centroid to the output set
        # otherwise, add the average position of this centroid and those within centroid_distance_limit to the output set
        centroids_set.add(
            (sum([msk * b[0]
                  for msk, b in zip(close_mask, centroids)]) / sum(close_mask),
             sum([msk * b[1] for msk, b in zip(close_mask, centroids)]) /
             sum(close_mask)))
    roim.reset()
    rt.reset()
    pa = ParticleAnalyzer(
        ParticleAnalyzer.ADD_TO_MANAGER, ParticleAnalyzer.AREA
        | ParticleAnalyzer.SLICE | ParticleAnalyzer.CENTROID, rt, size_limit,
        mxsz)
    pa.setRoiManager(roim)
    pa.analyze(imp)
    MyWaitForUser("paise",
                  "pause post-merge incorrect splits particel analysis 2")
    if rt.columnExists("X"):
        rt_xs = rt.getColumn(rt.getColumnIndex("X")).tolist()
        rt_ys = rt.getColumn(rt.getColumnIndex("Y")).tolist()
    centroids = [(x, y) for x, y in zip(rt_xs, rt_ys)]
    for c in centroids:
        centroids_set.add(c)
    centroids = list(centroids_set)
    cal = imp.getCalibration()
    centroids = [(c[0] / cal.pixelWidth, c[1] / cal.pixelHeight)
                 for c in centroids]
    print("new number of nuclei identified = {}".format(len(centroids)))
    roim.reset()
    roim.close()
    for idx, c in enumerate(centroids):
        roi = OvalRoi(c[0], c[1], 10, 10)
        out_imp.setRoi(roi)
        IJ.run(out_imp, "Set...", "value={} slice".format(idx + 1))
    imp.changes = False
    #imp.close();
    return out_imp
Ejemplo n.º 32
0
	BS.rollingBallBackground(dapi_ip,
						*[a[1] for a in bkgd_sub])
	if SHOW_IMAGES:
		dapi.updateAndDraw()
	
	# IJ.setAutoThreshold("Otsu");
	# IJ.run("Convert to Mask");
	dapi_ip.autoThreshold()
	dapi.setProcessor(dapi_ip.convertToByteProcessor(False))
	dapi_ip = dapi.getProcessor()
	# IJ.run("Watershed");
	EDM().toWatershed(dapi_ip)
	dapi_ip.invert()
	
	# IJ.run("Analyze Particles...", "size=30-400 show=Masks");
	pa_options = particle_analyzer(dapi.getCalibration().pixelWidth)
	PA = ParticleAnalyzer(*[a[1] for a in pa_options])
	PA.analyze(dapi, dapi_ip)

	if SHOW_IMAGES:
		dapi.updateAndDraw()
	
	IJ.save(dapi, savename(stack))
	
	
	dapi.close()


rename_file(progress_name, done_name)
print 'done'
 	
Ejemplo n.º 33
0
# 1. options (could be SHOW_ROI_MASKS, SHOW_OUTLINES, SHOW_MASKS, SHOW_NONE, ADD_TO_MANAGER, and others; combined with bitwise-or)
# 2. measurement options (see [http://imagej.net/developer/api/ij/measure/Measurements.html Measurements])
# 3. a ResultsTable to store the measurements
# 4. The minimum size of a particle to consider for measurement
# 5. The maximum size (idem)
# 6. The minimum circularity of a particle
# 7. The maximum circularity

minSize = 30.0
maxSize = 10000.0
opts = ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES | ParticleAnalyzer.SHOW_OVERLAY_OUTLINES
print(opts)
meas = Measurements.AREA | Measurements.MEAN | Measurements.CENTER_OF_MASS
print(meas)
pa = ParticleAnalyzer(opts, meas, results_table, minSize, maxSize)
# pa.setHideOutputImage(False)
pa.setRoiManager(roim)

if pa.analyze(imp_work):
    imp_out = pa.getOutputImage()
    # imp_out.show()
    roim.runCommand(blobs, "Show All with labels")
    blobs.show()
    results_table.show("Results")
    roim.show()
    print "All ok"
else:
    print "There was a problem in analyzing", blobs

# The measured areas are listed in the first column of the results table, as a float array:
areas = results_table.getColumn(0)
Ejemplo n.º 34
0
import ij
from ij import IJ
import ij.plugin
import ij.gui
import ij.measure

from ij.plugin.filter import ParticleAnalyzer as PA

# Make the background black...I'm not sure why it doesn't do this automatically!
IJ.run("Options...", "iterations=1 black count=1")

options = PA.FOUR_CONNECTED + \
	PA.INCLUDE_HOLES + \
	PA.SHOW_OUTLINES
rt = ij.measure.ResultsTable()

analyzer = PA(options, PA.AREA, rt, 0, 10**9)
image = IJ.getImage()
analyzer.analyze(image)

#IJ.run("Analyze Particles...", "include add slice");
Ejemplo n.º 35
0
def process(subFolder, outputDirectory, filename):

    imp = IJ.openImage(inputDirectory + subFolder + '/' + filename)
    imp.show()
    IJ.run(
        imp, "Properties...",
        "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
    )
    ic = ImageConverter(imp)
    dup = imp.duplicate()
    dup_title = dup.getTitle()
    ic.convertToGray8()
    imp.updateAndDraw()
    IJ.run("Threshold...")

    IJ.setThreshold(218, 245)

    IJ.run(imp, "Convert to Mask", "")

    rm = RoiManager()
    imp.getProcessor().setThreshold(0, 0, ImageProcessor.NO_LUT_UPDATE)
    boundroi = ThresholdToSelection.run(imp)
    rm.addRoi(boundroi)

    imp.changes = False
    imp.close()

    images = [None] * 5
    intensities = [None] * 5
    blobsarea = [None] * 5
    blobsnuclei = [None] * 5
    cells = [None] * 5
    bigareas = [None] * 5

    IJ.run(dup, "Colour Deconvolution", "vectors=[H DAB]")

    images[0] = getImage(dup_title + "-(Colour_1)")
    images[1] = getImage(dup_title + "-(Colour_2)")
    images[2] = getImage(dup_title + "-(Colour_3)")

    images[2].close()

    for chan in channels:
        v, x = chan
        imp = images[x]
        imp.show()
        for roi in rm.getRoiManager().getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.MEAN | Measurements.AREA)
            intensities[x] = stats.mean
            bigareas[x] = stats.area

        rm.runCommand(imp, "Show None")

    rm.close()
    # Opens the ch00 image and sets default properties

    imp = images[0].duplicate()
    IJ.run(
        imp, "Properties...",
        "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
    )

    # Sets the threshold and watersheds. for more details on image processing, see https://imagej.nih.gov/ij/developer/api/ij/process/ImageProcessor.html

    imp.show()
    setTempCurrentImage(imp)
    ic = ImageConverter(imp)
    imp.updateAndDraw()
    IJ.run(imp, "Gaussian Blur...", "sigma=" + str(blur))
    imp.updateAndDraw()

    imp.show()
    IJ.run("Threshold...")
    IJ.setThreshold(30, lowerBounds[0])
    if displayImages:
        imp.show()
        WaitForUserDialog(
            "Title", "Adjust threshold for nuclei. Current region is: " +
            region).show()
    IJ.run(imp, "Convert to Mask", "")

    # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager

    table = ResultsTable()
    roim = RoiManager()
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA,
                          table, 5, 9999999999999999, 0.05, 1.0)

    pa.setHideOutputImage(True)
    imp = IJ.getImage()
    # imp.getProcessor().invert()
    pa.analyze(imp)

    imp.changes = False
    imp.close()

    areas = table.getColumn(0)

    # This loop goes through the remaining channels for the other markers, by replacing the ch00 at the end with its corresponding channel
    # It will save all the area fractions into a 2d array called areaFractionsArray

    areaFractionsArray = [None] * 5
    maxThresholds = []
    for chan in channels:
        v, x = chan
        # Opens each image and thresholds

        imp = images[x]
        IJ.run(
            imp, "Properties...",
            "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001"
        )

        imp.show()

        setTempCurrentImage(imp)

        ic = ImageConverter(imp)
        ic.convertToGray8()
        imp.updateAndDraw()

        rm.runCommand(imp, "Show None")
        rm.runCommand(imp, "Show All")
        rm.runCommand(imp, "Show None")

        imp.show()
        IJ.selectWindow(imp.getTitle())

        IJ.run("Threshold...")
        IJ.setThreshold(20, lowerBounds[x])

        if displayImages:

            WaitForUserDialog(
                "Title", "Adjust threshold for " + v +
                ". Current region is: " + region).show()
            ip = imp.getProcessor()
            maxThresholds.append(ip.getMaxThreshold())

        IJ.run(imp, "Convert to Mask", "")

        # Measures the area fraction of the new image for each ROI from the ROI manager.
        areaFractions = []
        for roi in roim.getRoiManager().getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.AREA_FRACTION)
            areaFractions.append(stats.areaFraction)

        # Saves the results in areaFractionArray

        areaFractionsArray[x] = areaFractions

    roim.close()

    for chan in channels:
        v, x = chan

        imp = images[x]
        imp.deleteRoi()
        imp.updateAndDraw()
        setTempCurrentImage(imp)
        roim = RoiManager()
        pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
                              Measurements.AREA, table, 15, 9999999999999999,
                              0.2, 1.0)
        pa.analyze(imp)

        blobs = []
        cell = []
        for roi in roim.getRoiManager().getRoisAsArray():
            imp.setRoi(roi)
            stats = imp.getStatistics(Measurements.AREA)
            blobs.append(stats.area)
            if stats.area > tooSmallThresholdDAB and stats.area < tooBigThresholdDAB:
                cell.append(stats.area)

        blobsarea[x] = sum(blobs)
        blobsnuclei[x] = len(blobs)

        cells[x] = len(cell)
        imp.changes = False

        imp.close()
        roim.reset()
        roim.close()

    # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column

    summary = {}

    summary['Image'] = filename
    summary['Directory'] = subFolder

    # Adds usual columns

    summary['size-average'] = 0
    summary['#nuclei'] = 0
    summary['all-negative'] = 0

    summary['too-big-(>' + str(tooBigThreshold) + ')'] = 0
    summary['too-small-(<' + str(tooSmallThreshold) + ')'] = 0

    # Creates the fieldnames variable needed to create the csv file at the end.

    fieldnames = [
        'Directory', 'Image', 'size-average',
        'too-big-(>' + str(tooBigThreshold) + ')',
        'too-small-(<' + str(tooSmallThreshold) + ')', '#nuclei',
        'all-negative'
    ]

    for row in info:
        if row['Animal ID'] == filename.replace('s', '-').replace(
                'p', '-').split('-')[0]:
            for key, value in row.items():
                fieldnames.insert(0, key)
                summary[key] = value

    # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei)

    summary["tissue-area"] = bigareas[0]
    fieldnames.append("tissue-area")

    for chan in channels:
        v, x = chan
        summary[v + "-HEMO-cells"] = 0
        fieldnames.append(v + "-HEMO-cells")

        summary[v + "-intensity"] = intensities[x]
        fieldnames.append(v + "-intensity")

        summary[v + "-area"] = blobsarea[x]
        fieldnames.append(v + "-area")

        summary[v + "-area/tissue-area"] = blobsarea[x] / bigareas[0]
        fieldnames.append(v + "-area/tissue-area")

        summary[v + "-particles"] = blobsnuclei[x]
        fieldnames.append(v + "-particles")

        summary[v + "-cells"] = cells[x]
        fieldnames.append(v + "-cells")

        summary[v + "-particles/tissue-area"] = blobsnuclei[x] / bigareas[0]
        fieldnames.append(v + "-particles/tissue-area")

        fieldnames.append(v + "-HEMO-Cells/tissue-area")

    # Adds the column for colocalization between first and second marker

    if len(channels) > 2:
        summary[channels[1][0] + '-' + channels[2][0] + '-positive'] = 0
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-positive')

    # Adds the columns for colocalization between all three markers

    if len(channels) > 3:
        summary[channels[1][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[2][0] + '-' + channels[3][0] + '-positive'] = 0
        summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] +
                '-positive'] = 0

        fieldnames.append(channels[1][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[2][0] + '-' + channels[3][0] + '-positive')
        fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-' +
                          channels[3][0] + '-positive')

    # Loops through each particle and adds it to each field that it is True for.

    areaCounter = 0
    for z, area in enumerate(areas):

        if area > tooBigThreshold:
            summary['too-big-(>' + str(tooBigThreshold) + ')'] += 1
        elif area < tooSmallThreshold:
            summary['too-small-(<' + str(tooSmallThreshold) + ')'] += 1
        else:

            summary['#nuclei'] += 1
            areaCounter += area

            temp = 0
            for chan in channels:
                v, x = chan
                if areaFractionsArray[x][z] > areaFractionThreshold[0]:
                    summary[chan[0] + '-HEMO-cells'] += 1
                    if x != 0:
                        temp += 1

            if temp == 0:
                summary['all-negative'] += 1

            if len(channels) > 2:
                if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                    if areaFractionsArray[2][z] > areaFractionThreshold[2]:
                        summary[channels[1][0] + '-' + channels[2][0] +
                                '-positive'] += 1

            if len(channels) > 3:
                if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                    if areaFractionsArray[3][z] > areaFractionThreshold[3]:
                        summary[channels[1][0] + '-' + channels[3][0] +
                                '-positive'] += 1
                if areaFractionsArray[2][z] > areaFractionThreshold[2]:
                    if areaFractionsArray[3][z] > areaFractionThreshold[3]:
                        summary[channels[2][0] + '-' + channels[3][0] +
                                '-positive'] += 1
                        if areaFractionsArray[1][z] > areaFractionThreshold[1]:
                            summary[channels[1][0] + '-' + channels[2][0] +
                                    '-' + channels[3][0] + '-positive'] += 1

    # Calculate the average of the particles sizes

    for chan in channels:
        v, x = chan
        summary[v + "-cells/tissue-area"] = summary[v + "-cells"] / bigareas[0]

    if float(summary['#nuclei']) > 0:
        summary['size-average'] = round(areaCounter / summary['#nuclei'], 2)

    if displayImages:

        fieldnames = ["Directory", "Image"]

        for chan in channels:
            v, x = chan
            summary[v + "-threshold"] = maxThresholds[x]
            fieldnames.append(v + "-threshold")
            allMaxThresholds[v + "-" + region].append(maxThresholds[x])

    # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image)

    with open(outputName, 'a') as csvfile:

        writer = csv.DictWriter(csvfile,
                                fieldnames=fieldnames,
                                extrasaction='ignore',
                                lineterminator='\n')
        if os.path.getsize(outputName) < 1:
            writer.writeheader()
        writer.writerow(summary)
Ejemplo n.º 36
0
def processImages(cfg, wellName, wellPath, images):

    stats = [[[dict() for t in range(cfg.getValue(ELMConfig.numT))] for z in range(cfg.getValue(ELMConfig.numZ))] for c in range(cfg.getValue(ELMConfig.numChannels))]
    times = {}
    for c in range(0, cfg.getValue(ELMConfig.numChannels)):
        chanStr = 'ch%(channel)02d' % {"channel" : c};
        chanName = cfg.getValue(ELMConfig.chanLabel)[c]

        # Set some config based upon channel
        if (cfg.getValue(ELMConfig.chanLabel)[c] in cfg.getValue(ELMConfig.chansToSkip)):
            continue
        if (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.BRIGHTFIELD):
            minCircularity = 0.001 # We want to identify one big cell ball, so ignore small less circular objects
            if cfg.params[ELMConfig.imgType] == "png":
                minSize = 5;
            else:
                minSize = 500
        elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.BLUE) \
                or (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.RED) \
                or (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.GREEN): #
            minCircularity = 0.001
            minSize = 5
        elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.YELLOW):
            minCircularity = 0.001
            minSize = 5

        # Process images in Z stack
        for z in range(0, cfg.getValue(ELMConfig.numZ)):
            zStr = cfg.getZStr(z);
            for t in range(0, cfg.getValue(ELMConfig.numT)):
                tStr = cfg.getTStr(t)
                if (cfg.getValue(ELMConfig.imgType) == "png"):
                    # Brightfield uses the whole iamge
                    if (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.BRIGHTFIELD):
                        currIP = IJ.openImage(images[c][z][t][0])
                    else: # otherwise, we'll plit off channels
                        chanIdx = 2
                        if (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.RED):
                            chanIdx = 0
                        elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.GREEN):
                            chanIdx = 1;
                        img = IJ.openImage(images[c][z][t][0])
                        imgChanns = ChannelSplitter.split(img);
                        img.close()
                        currIP = imgChanns[chanIdx];
                else:
                    currIP = IJ.openImage(images[c][z][t][0])
                resultsImage = currIP.duplicate()
                dbgOutDesc = wellName + "_" + zStr + "_" + chanStr + "_" + tStr
                if (cfg.getValue(ELMConfig.numT) > 1):
                    outputPath = os.path.join(wellPath, "images") 
                    if not os.path.exists(outputPath):
                        os.makedirs(outputPath)
                else:
                    outputPath = wellPath

                if cfg.getValue(ELMConfig.debugOutput):
                    WindowManager.setTempCurrentImage(currIP)
                    IJ.saveAs('png', os.path.join(outputPath, "Orig_" + dbgOutDesc +  ".png"))

                # We need to get to a grayscale image, which will be done differently for different channels
                startTime = time.time()
                currIP = ELMImageUtils.getThresholdedMask(currIP, c, z, t, chanName, cfg, outputPath, dbgOutDesc)
                endTime = time.time()
                if not 'grayscale' in times:
                    times['grayscale'] = []
                times['grayscale'].append(endTime-startTime)

                if (not currIP):
                    resultsImage.close()
                    stats[c][z][t][ELMConfig.UM_AREA] = []
                    continue
                
                startTime = time.time()
                # Create a table to store the results
                table = ResultsTable()
                # Create a hidden ROI manager, to store a ROI for each blob or cell
                #roim = RoiManager(True)
                # Create a ParticleAnalyzer
                measurements = Measurements.AREA + Measurements.MEAN + Measurements.STD_DEV + Measurements.MIN_MAX + Measurements.CENTROID + Measurements.RECT + Measurements.ELLIPSE
                paFlags = ParticleAnalyzer.IN_SITU_SHOW | ParticleAnalyzer.SHOW_MASKS | ParticleAnalyzer.CLEAR_WORKSHEET
                pa = ParticleAnalyzer(paFlags, measurements, table, minSize, Double.POSITIVE_INFINITY, minCircularity, 1.0)

                #pa.setHideOutputImage(True)
                
                # The Result image is copied when CurrIP can still have calibration from loading
                # We want the output to be in terms of pixels, for ease of use, so adjust calibration
                resultsImage.setCalibration(currIP.getCalibration())
                Analyzer.setRedirectImage(resultsImage)
                if not pa.analyze(currIP):
                    print "There was a problem in analyzing", currIP
        
                endTime = time.time()
                if not 'pa' in times:
                    times['pa'] = []
                times['pa'].append(endTime-startTime)
                #for i in range(0, roim.getCount()) :
                #    r = roim.getRoi(i);
                #    r.setColor(Color.red)
                #    r.setStrokeWidth(2)
                
                # The measured areas are listed in the first column of the results table, as a float array:
                newAreas = []
                maxArea = 0
                if table.getColumn(ResultsTable.AREA):
                    for pixArea in table.getColumn(ResultsTable.AREA):
                        a = pixArea * cfg.getValue(ELMConfig.pixelHeight) * cfg.getValue(ELMConfig.pixelWidth)
                        newAreas.append(a)
                        if (a > maxArea):
                            maxArea = a
                        
                # Threshold areas
                idxToRemove = set()
                if cfg.hasValue(ELMConfig.areaMaxPercentThreshold):
                    areaPercentThresh = cfg.getValue(ELMConfig.areaMaxPercentThreshold)
                    for i in range(0,len(newAreas)):
                        if newAreas[i] < (areaPercentThresh * maxArea):
                            idxToRemove.add(i)
                if cfg.hasValue(ELMConfig.areaAbsoluteThreshold):
                    areaAbsoluteThresh = cfg.getValue(ELMConfig.areaAbsoluteThreshold)
                    for i in range(0,len(newAreas)):
                        if newAreas[i] < areaAbsoluteThresh:
                            idxToRemove.add(i)

                for i in sorted(idxToRemove, reverse=True):
                    del newAreas[i]
                
                stats[c][z][t][ELMConfig.UM_AREA] = newAreas
                centroidX = []
                centroidY = []
                roiX = []
                roiY = []
                roiWidth = []
                roiHeight = []
                rArea = []
                # Store all of the other data
                for col in range(0,table.getLastColumn()):
                    newData = table.getColumn(col)
                    if not newData is None:
                        if col == ResultsTable.X_CENTROID:
                            for idx in idxToRemove:
                                centroidX.append(newData[idx])
                        if col == ResultsTable.Y_CENTROID:
                            for idx in idxToRemove:
                                centroidY.append(newData[idx])
                        if col == ResultsTable.ROI_X:
                            for idx in idxToRemove:
                                roiX.append(int(newData[idx]))
                        if col == ResultsTable.ROI_Y:
                            for idx in idxToRemove:
                                roiY.append(int(newData[idx]))
                        if col == ResultsTable.ROI_WIDTH:
                            for idx in idxToRemove:
                                roiWidth.append(int(newData[idx]))
                        if col == ResultsTable.ROI_HEIGHT:
                            for idx in idxToRemove:
                                roiHeight.append(int(newData[idx]))
                        if col == ResultsTable.AREA:
                            for idx in idxToRemove:
                                rArea.append(newData[idx])
                        
                        for i in sorted(idxToRemove, reverse=True):
                            del newData[i]
                    stats[c][z][t][table.getColumnHeading(col)] = newData

                IJ.saveAs('png', os.path.join(outputPath, "PreFiltered_Segmentation_" + dbgOutDesc + "_particles.png"))

                # Remove the segmentation masks for the objects removed
                currProcessor = currIP.getProcessor()
                ff = FloodFiller(currProcessor)
                currIP.getProcessor().setValue(0)
                calib = resultsImage.getCalibration()
                sortedAreaIndices = [i[0] for i in sorted(enumerate(rArea), key=lambda x:x[1])]
                for idx in range(0, len(sortedAreaIndices)):
                    i = sortedAreaIndices[idx]
                    centX = int(calib.getRawX(centroidX[i]))
                    centY = int(calib.getRawY(centroidY[i]))

                    # Since the centroid isn't guaranteed to be part of the blob
                    # search around until an active pixel is found
                    found = False
                    halfWidth = min([roiHeight[i], roiWidth[i]])
                    for offset in range(0,halfWidth):
                        if found:
                            break
                        for x in range(centX-offset,centX+offset+1):
                            if found:
                                break
                            for y in range(centY-offset,centY+offset+1):
                                if not currProcessor.getPixel(x,y) == 0x0:
                                    found = True
                                    finalX = x
                                    finalY = y
                                    break
                    if not found:
                        print "\t\tZ = " + str(z) + ", T = " + str(t) +  ", chan " + chanName + ": ERROR: Never found active pixel for filtered blob, centroid: " + str(centX) + ", " + str(centY)
                    else:
                        currProcessor.setRoi(roiX[i], roiY[i], roiWidth[i], roiHeight[i])
                        ff.fill8(finalX,finalY)
                        #IJ.saveAs('png', os.path.join(outputPath, "Segmentation_" + dbgOutDesc + "_" + str(idx) + ".png"))
                    
                    
                #outImg = pa.getOutputImage()
                IJ.saveAs('png', os.path.join(outputPath, "Segmentation_" + dbgOutDesc + "_particles.png"))
                
                if cfg.hasValue(ELMConfig.createSegMask) and cfg.getValue(ELMConfig.createSegMask) == True:
                    # Create segmentation mask
                    segMask = currIP.duplicate()
                    segMask.setTitle("SegMask_" + dbgOutDesc)
                    # Iterate by smallest area first
                    #  We are more likely to correctly label small areas
                    if len(newAreas) > 0:
                        segProcessor = segMask.getProcessor()
                        if (len(newAreas) > 255):
                            segProcessor = segProcessor.convertToShort(True)
                            segMask.setProcessor(segProcessor)
                        ff = FloodFiller(segProcessor)
                        sortedAreaIndices = [i[0] for i in sorted(enumerate(stats[c][z][t]['Area']), key=lambda x:x[1])]
                        for idx in range(0, len(sortedAreaIndices)):
                            row = sortedAreaIndices[idx]
                            centX = int(stats[c][z][t]['X'][row])
                            centY = int(stats[c][z][t]['Y'][row])
                            roiX = int(stats[c][z][t]['BX'][row])
                            roiY = int(stats[c][z][t]['BY'][row])
                            roiWidth = int(stats[c][z][t]['Width'][row])
                            roiHeight = int(stats[c][z][t]['Height'][row])
                            area = stats[c][z][t]['Area'][row]
                            halfRoiHeight = roiHeight/2 + 1
                            halfRoiWidth = roiWidth/2 + 1  
                            # Since the centroid isn't guaranteed to be part of the blob
                            # search around until an active pixel is found
                            found = False
                            for xOffset in range(0,halfRoiWidth):
                                if found:
                                    break
                                for yOffset in range(0, halfRoiHeight):
                                    if found:
                                        break
                                    for x in range(centX-xOffset,centX+xOffset+1):
                                        if found:
                                            break
                                        for y in range(centY-yOffset,centY+yOffset+1):
                                            # original image and this image for masked pixel
                                            # By checking original image, we avoid confusion with a label of 255
                                            if segProcessor.getPixel(x,y) == 255 and currProcessor.getPixel(x,y) == 255:
                                                found = True
                                                finalX = x
                                                finalY = y
                                                break
                            if not found:
                                print "\t\tZ = " + str(z) + ", T = " + str(t) +  ", chan " + chanName + ": ERROR: Never found active pixel for seg mask, centroid, roi, area (px): " \
                                    + str(centX) + ", " + str(centY) + ", " + str(roiX) + ", " + str(roiY) + ", " + str(roiWidth) + ", " + str(roiHeight) + ", " + str(area)
                            else:
                                segProcessor.setRoi(roiX, roiY, roiWidth, roiHeight)
                                segProcessor.setColor(row + 1)
                                ff.fill8(finalX,finalY)
                    
                    lut = LutLoader.openLut(cfg.getValue(ELMConfig.lutPath))
                    segMask.setLut(lut)
                    WindowManager.setTempCurrentImage(segMask);
                    IJ.saveAs('png', os.path.join(outputPath, "SegMask_" + dbgOutDesc + "_particles.png"))
                

                startTime = time.time()

                width = currIP.getWidth();
                height = currIP.getHeight();
                overlayImage = resultsImage.duplicate()
                overlayImage.setTitle("Overlay_" + dbgOutDesc + "_particles")
                if not overlayImage.getType() == ImagePlus.COLOR_RGB:
                    imgConvert = ImageConverter(overlayImage)
                    imgConvert.convertToRGB() 
                overlayProcessor = overlayImage.getProcessor()
                currProcessor = currIP.getProcessor()

                if (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.BRIGHTFIELD):
                    maskColor = 0x0000ff00
                elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.YELLOW):
                    maskColor = 0x000000ff
                elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.RED):
                    maskColor = 0x0000ff00
                elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.GREEN):
                    maskColor = 0x00ff0000
                elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.BLUE):
                    maskColor = 0x00ffff00

                for x in range(0, width):
                    for y in range(0,height):
                        currPix = currProcessor.getPixel(x,y);
                        if not currPix == 0x00000000:
                            overlayProcessor.putPixel(x, y, maskColor)
                            
                endTime = time.time()
                if not 'overlay' in times:
                    times['overlay'] = []
                times['overlay'].append(endTime-startTime)
                
                WindowManager.setTempCurrentImage(overlayImage);
                IJ.saveAs('png', os.path.join(outputPath, "Overlay_" + dbgOutDesc + "_particles.png"))

                #currIP.hide()
                currIP.close()
                resultsImage.close()

    timesAvg = {}
    for key in times:
        timeList = times[key]
        timesAvg[key] = sum(timeList) / len(timeList);
    print("processImage times " + str(timesAvg))
    return stats
from java.lang import Double


imp = IJ.getImage()

# Create a table to store the results
table = ResultsTable()
# Create a hidden ROI manager, to store a ROI for each blob or cell
roim = RoiManager(True)
# Create a ParticleAnalyzer, with arguments:
# 1. options (could be SHOW_ROI_MASKS, SHOW_OUTLINES, SHOW_MASKS, SHOW_NONE, ADD_TO_MANAGER, and others; combined with bitwise-or)
# 2. measurement options (see [http://rsb.info.nih.gov/ij/developer/api/ij/measure/Measurements.html Measurements])
# 3. a ResultsTable to store the measurements
# 4. The minimum size of a particle to consider for measurement
# 5. The maximum size (idem)
# 6. The minimum circularity of a particle
# 7. The maximum circularity
pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
	Measurements.AREA
	+ Measurements.CENTER_OF_MASS
	+ Measurements.SHAPE_DESCRIPTORS
	+ Measurements.INTEGRATED_DENSITY,
	table, 0,
	Double.POSITIVE_INFINITY, 0.0, 1.0)
pa.setHideOutputImage(True)
 
if pa.analyze(imp):
  print "All ok"
  table.show("foooo");
else:
  print "There was a problem in analyzing", blobs
Ejemplo n.º 38
0
print(dupes)

for dupe in dupes:
	# get centroidys
	
	

rt = ResultsTable();
#rm = RoiManager.getInstance();
#print(rm)
rm = RoiManager(False);
pa = ParticleAnalyzer((ParticleAnalyzer.ADD_TO_MANAGER | ParticleAnalyzer.SHOW_MASKS), (Measurements.CENTROID | Measurements.STACK_POSITION), rt, 500, 30000, 0.0, 1.0)
pa.setHideOutputImage(False)
keep_rois = [];
pa.analyze(imp);

IJ.run("Set Measurements...", "centroid redirect=None decimal=3");
frames = imp.getNFrames();	
for fridx in range(0, frames):
	rt.reset();
	imp.setSliceWithoutUpdate(fridx + 1);
	ip = imp.getProcessor();
	if not pa.analyze(imp, ip):
		raise Exception("something went wrong analysing particles!")
	rt.show("centroids");
	rm = RoiManager.getInstance();
	if rm.getCount() > 0:
		rois = rm.getRoisAsArray();
		centroidsx = rt.getColumn(rt.getColumnIndex('X'));
		centroidsy = rt.getColumn(rt.getColumnIndex('Y'));
                    #Threshold and watershed

                    IJ.run(channel, "Convert to Mask", "")
                    IJ.run(channel, "Watershed", "")
                    IJ.run("Set Measurements...", "area mean limit display redirect=None decimal=1");
                    
                    table = ResultsTable()
                    roim = RoiManager(True)
                    ParticleAnalyzer.setRoiManager(roim)

                        #Analyses particles: finds all the objects that match criteria
                    
                    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER | ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES, Measurements.AREA, table, minimum_size[i], maximum_size[i], 0.1, 1.0)
                    pa.setHideOutputImage(True)
                    pa.analyze(channel)
                
                
                if thresholdMode:
                    happy=False
                    while(happy==False):
                        IJ.run("Threshold...")
                        WaitForUserDialog("Title", "Adjust threshold for " + color[i]).show()
                        summary[color[i] + "-threshold-used"] = ImageProcessor.getMinThreshold(channel.getProcessor())
                        channel.show()
                       
                        summary[color[i] + "-threshold-used"] = ImageProcessor.getMinThreshold(channel.getProcessor())
                      
                        copy=channel.duplicate()
                        copy.show()
                        
Ejemplo n.º 40
0
	if not rm:
	  rm = RoiManager()
	else:
		rm.reset()
	
	#IJ.run(imp,"Analyze Particles...", "size=112-Infinity exclude add")
	rt=ResultsTable()
	pa=ParticleAnalyzer(EXCLUDE_EDGE_PARTICLES | ADD_TO_MANAGER,
                        0,
                        rt,
                        112/4,
                        200,
                        0.0,
                        1.0)

	pa.analyze(imp)
	# time.sleep(2)
	print 'Size of results: ',rt.size()
	# rm.runCommand("select","all")
	# rm.runCommand("Fill","3")
	save_path=saving_dir+"\\mask_%s" % (image[image.rindex('\\')+1:])
	# print(save_path)
	impMask = IJ.createImage("Mask", "8-bit grayscale-mode", imp.getWidth(), imp.getHeight(), imp.getNChannels(), imp.getNSlices(), imp.getNFrames())
	impMask.show()
	IJ.setForegroundColor(255, 255, 255)
	
	rm.runCommand(impMask,"Deselect")
	rm.runCommand(impMask,"Draw")
	

	if doFileSave and FileSaver(impMask).saveAsTiff(save_path):
Ejemplo n.º 41
0
	def __calRois(self, imp, indice) :									
		"""
		Returns the ROIs of a slice given (identified with its n°) in a stack
		"""
		##imp=self.__dictImages[nameimages]							 		# IL FAUT RÉCUPÉRER L'IMAGE DU STACK !!!!!
		#if self.__batch : imp.hide()
		#else : imp.show()
		#imp.hide()
		imp.show()
		if self.__batch : imp.hide()
		imp.setSlice(indice)
		imp.killRoi()
		ip = imp.getProcessor()

		bs=BackgroundSubtracter() 

		#if str(self.__subback) == "0" or str(self.__subback) == "1" : self.__subback = bool(int(self.__subback))
		#if self.__subback == True : IJ.run(imp, "Subtract Background...", "rolling="+str(self.__radius)+" light")
		if self.__subback == True : bs.rollingBallBackground(ip, self.__radius, False, True, False, True, False)

		if self.__runmacro :
			imp.show()
			imp.setSlice(indice)
			imp.updateAndDraw()
			IJ.runMacroFile(self.__macropath, imp.getTitle())
		
		
			
		imp.updateAndDraw()
		
		#if str(self.__manthresh) == "0" or str(self.__manthresh) == "1" : self.__manthresh = bool(int(self.__manthresh))
		
		#if self.__manthresh : IJ.setThreshold(imp, self.__minthr, self.__maxthr)
		if self.__manthresh : 
			ip.setThreshold(self.__minthr, self.__maxthr, ImageProcessor.RED_LUT)
		else : self.__setThreshold(imp, indice)
		
		rt=ResultsTable()
		pa1=ParticleAnalyzer(ParticleAnalyzer.SHOW_MASKS+ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES , Measurements.AREA, rt, self.__minArea, self.__maxArea, self.__minCirc, self.__maxCirc)
		pa1.setHideOutputImage(True) 
		pa1.analyze(imp)
		
		masks=pa1.getOutputImage()
		masks.getProcessor().erode()
		masks.getProcessor().dilate()
		masks.getProcessor().invertLut()
		masks.getProcessor().threshold(1)
		
		rm = RoiManager.getInstance()
		if (rm==None): rm = RoiManager()
		rm.runCommand("reset")
		#rm.hide()
		
		pa2=ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER+ParticleAnalyzer.CLEAR_WORKSHEET+ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES , Measurements.AREA, rt, self.__minArea, self.__maxArea, self.__minCirc, self.__maxCirc) 
		pa2.analyze(masks)
		masks.close()
		
		temparray=rm.getRoisAsArray()
		for r in temparray :
			tempnameroi=r.getName()
			r.setPosition(indice)
			r.setName(str(indice)+"-"+tempnameroi)
			r.setStrokeWidth(1) 
		
		if len(self.__params) > 0 :
			for k in self.__params:
				#if k[0]=="Area": self.__minArea, self.__maxArea = str(k[1]), str(k[2])
				if k[0]=="Area": self.__minArea, self.__maxArea = k[1], k[2]
			for k in self.__params:
				#if k[0]=="Circ": self.__minCirc, self.__maxCirc = str(k[1]), str(k[2])
				if (k[0]=="Circ") and k[3] : self.__minCirc, self.__maxCirc = k[1], k[2]
				else : self.__minCirc, self.__maxCirc = 0, 1
			self.__rr.setRoisarray(temparray, imp)
			self.__rr.setRange(indice, self.__params)
			return self.__rr.includeRois
		else : return temparray
Ejemplo n.º 42
0
		def updatepressed(event):
			self.__image=IJ.getImage()
			rm = RoiManager.getInstance()
			if (rm==None): rm = RoiManager()
			rm.runCommand("reset")
			self.__image.killRoi()
			IJ.run("Threshold...")
			IJ.setAutoThreshold(self.__image, "MaxEntropy")
			
			rt=ResultsTable()
			pa=ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER+ParticleAnalyzer.CLEAR_WORKSHEET , Measurements.AREA+Measurements.ELLIPSE+Measurements.MEAN, rt, 0.00, 10000.00, 0.00, 1.00)
			pa.analyze(self.__image)
			self.__roisArray=[]
			self.__roisArray=rm.getRoisAsArray()
			#for i in range(rm.getCount()) : 
			#	rm.select(i)
			#	rm.runCommand("Set Color", "0000FF", 2)
				
			IJ.resetThreshold(self.__image)
			rt.show("tempRT")
			areas=rt.getColumn(ResultsTable.AREA)
			means=rt.getColumn(ResultsTable.MEAN)
			majors=rt.getColumn(ResultsTable.MAJOR)
			minors=rt.getColumn(ResultsTable.MINOR)
			#print 0
			if self.__slidersDict["Area_max"].getMaximum() <  int(max(areas)+1):
			#	print 1
				self.__slidersDict["Area_max"].setMaximum(int(max(areas))+1)
			if self.__slidersDict["Area_min"].getMaximum() < int(max(areas)+1):
			#	print 2
				self.__slidersDict["Area_min"].setMaximum(int(max(areas))+1)
			if self.__slidersDict["Mean_max"].getMaximum() < int(max(means)+1):
			#	print 3
				self.__slidersDict["Mean_max"].setMaximum(int(max(means))+1)
			if self.__slidersDict["Mean_min"].getMaximum() < int(max(means)+1):
			#	print 4
				self.__slidersDict["Mean_min"].setMaximum(int(max(means))+1)
			if self.__slidersDict["Major_max"].getMaximum() < int(max(majors)):
			#	print 5
				self.__slidersDict["Major_max"].setMaximum(int(max(majors))+1)
			if self.__slidersDict["Major_min"].getMaximum() < int(max(majors)+1):
			#	print 6
				self.__slidersDict["Major_min"].setMaximum(int(max(majors))+1)
			if self.__slidersDict["Minor_max"].getMaximum() < int(max(minors)+1):
			#	print 7
				self.__slidersDict["Minor_max"].setMaximum(int(max(minors))+1)
			if self.__slidersDict["Minor_min"].getMaximum() < int(max(minors)+1):
			#	print 8
				self.__slidersDict["Minor_min"].setMaximum(int(max(minors))+1)
			if self.__slidersDict["AR_max"].getMaximum() < int((max(majors)+1)/min(minors)+1):
			#	print 9
				self.__slidersDict["AR_max"].setMaximum(int((max(majors)+1)/(min(minors))))
			if self.__slidersDict["AR_min"].getMaximum() < int((max(majors)+1)/min(minors)):
			#	print 10
				self.__slidersDict["AR_min"].setMaximum(int((max(majors)+1)/(min(minors))))

			#print 11
				
			for sb in self.__slidersDict.values():
				sb.repaint()

			#rm.runCommand("reset")
			#temprois=self.getIncludeRois()
			#IJ.run(self.__image, "Remove Overlay", "")
			#o=Overlay()
			#for roi in temprois:
			#	o.addElement(roi)
			#self.__image.killRoi()
			#self.__image.setOverlay(o)
			self.__image.updateAndDraw()
Ejemplo n.º 43
0
imp = IJ.openImage(binimgpath)

# paOpt = PA.CLEAR_WORKSHEET +\
paOpt = PA.SHOW_OUTLINES + PA.EXCLUDE_EDGE_PARTICLES  # +\
# PA.INCLUDE_HOLES #+ \
#       PA.SHOW_RESULTS
measOpt = PA.AREA + PA.CENTROID + PA.SLICE  # + PA.SHAPE_DESCRIPTORS + PA.INTEGRATED_DENSITY
rt = ResultsTable()
MINSIZE = 2
MAXSIZE = 10000
pa = PA(paOpt, measOpt, rt, MINSIZE, MAXSIZE)
pa.setHideOutputImage(True)
# pa.processStack = True
for i in range(imp.getStackSize()):
    imp.setSlice(i + 1)
    pa.analyze(imp)
# pa.getOutputImage().show()
rt.show("cells")

# rt = ResultsTable.open2(path)
dotlinker = DotLinker(loadmethod, rt)  # better there is a constructor also with linkkost function object.
dotlinker.setTrajectoryThreshold(5)
dotlinker.setShowTrackTable(False)
# dotlinker = DotLinker(loadmethod)
linkcostfunction = dotlinker.setLinkCostFunction(lcAD)
linkcostfunction.setParameters(5.0, 2.0)
rtout = dotlinker.doLinking(False)
rtout.show("Tracks")


vd = ViewDynamicsArea(imp)
Ejemplo n.º 44
0
				summary[color[i] + "-threshold-used"] = ImageProcessor.getMinThreshold(channel.getProcessor())

					#Threshold and watershed

				IJ.run(channel, "Convert to Mask", "")
				IJ.run(channel, "Watershed", "")
				
				table = ResultsTable()
				roim = RoiManager(True)
				ParticleAnalyzer.setRoiManager(roim)

					#Analyses particles: finds all the objects that match criteria
				
				pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER | ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES, Measurements.AREA, table, minimum_size, maximum_size, 0.1, 1.0)
				pa.setHideOutputImage(True)
				pa.analyze(channel)
				
				
				if thresholdMode:
					channel.show()
					WaitForUserDialog("Title", "Look at threshold for" + color[i]).show()
				
					#adds count to summary 
				
				if table.getColumnIndex("Area") != -1:
					summary[color[i] + "-ROI-count"] = len(table.getColumn(table.getColumnIndex("Area")))


				channel.changes = False
				channel.close()
def generate_background_rois(input_mask_imp,
                             params,
                             membrane_edges,
                             dilations=5,
                             threshold_method=None,
                             membrane_imp=None):
    """automatically identify background region based on auto-thresholded image, existing membrane edges and position of midpoint anchor"""
    if input_mask_imp is None and membrane_imp is not None:
        segmentation_imp = Duplicator().run(membrane_imp)
        # do thresholding using either previous method if threhsold_method is None or using (less conservative?) threshold method
        if (threshold_method is None
                or not (threshold_method in params.listThresholdMethods())):
            mask_imp = make_and_clean_binary(segmentation_imp,
                                             params.threshold_method)
        else:
            mask_imp = make_and_clean_binary(segmentation_imp,
                                             threshold_method)
        segmentation_imp.close()
    else:
        input_mask_imp.killRoi()
        mask_imp = Duplicator().run(input_mask_imp)

    rois = []
    IJ.setForegroundColor(0, 0, 0)
    roim = RoiManager(True)
    rt = ResultsTable()

    for fridx in range(mask_imp.getNFrames()):
        mask_imp.setT(fridx + 1)
        # add extra bit to binary mask from loaded membrane in case user refined edges...
        # flip midpoint anchor across the line joining the two extremes of the membrane,
        # and fill in the triangle made by this new point and those extremes
        poly = membrane_edges[fridx].getPolygon()
        l1 = (poly.xpoints[0], poly.ypoints[0])
        l2 = (poly.xpoints[-1], poly.ypoints[-1])
        M = (0.5 * (l1[0] + l2[0]), 0.5 * (l1[1] + l2[1]))
        Mp1 = (params.manual_anchor_midpoint[0][0] - M[0],
               params.manual_anchor_midpoint[0][1] - M[1])
        p2 = (M[0] - Mp1[0], M[1] - Mp1[1])
        new_poly_x = list(poly.xpoints)
        new_poly_x.append(p2[0])
        new_poly_y = list(poly.ypoints)
        new_poly_y.append(p2[1])
        mask_imp.setRoi(PolygonRoi(new_poly_x, new_poly_y, PolygonRoi.POLYGON))
        IJ.run(mask_imp, "Fill", "slice")
        mask_imp.killRoi()

        # now dilate the masked image and identify the unmasked region closest to the midpoint anchor
        ip = mask_imp.getProcessor()
        dilations = 5
        for d in range(dilations):
            ip.dilate()
        ip.invert()
        mask_imp.setProcessor(ip)
        mxsz = mask_imp.getWidth() * mask_imp.getHeight()
        pa = ParticleAnalyzer(
            ParticleAnalyzer.ADD_TO_MANAGER | ParticleAnalyzer.SHOW_PROGRESS,
            ParticleAnalyzer.CENTROID, rt, 0, mxsz)
        pa.setRoiManager(roim)
        pa.analyze(mask_imp)
        ds_to_anchor = [
            math.sqrt((x - params.manual_anchor_midpoint[0][0])**2 +
                      (y - params.manual_anchor_midpoint[0][1])**2)
            for x, y in zip(
                rt.getColumn(rt.getColumnIndex("X")).tolist(),
                rt.getColumn(rt.getColumnIndex("Y")).tolist())
        ]
        if len(ds_to_anchor) > 0:
            roi = roim.getRoi(ds_to_anchor.index(min(ds_to_anchor)))
            rois.append(roi)
        else:
            rois.append(None)
        roim.reset()
        rt.reset()
    roim.close()
    mask_imp.close()
    return rois
Ejemplo n.º 46
0
def analyze_homogeneity(image_title):
    IJ.selectWindow(image_title)
    raw_imp = IJ.getImage()
    IJ.run(raw_imp, "Duplicate...", "title=Homogeneity duplicate")
    IJ.selectWindow('Homogeneity')
    hg_imp = IJ.getImage()

    # Get a 2D image
    if hg_imp.getNSlices() > 1:
        IJ.run(hg_imp, "Z Project...", "projection=[Average Intensity]")
        hg_imp.close()
        IJ.selectWindow('MAX_Homogeneity')
        hg_imp = IJ.getImage()
        hg_imp.setTitle('Homogeneity')

    # Blur and BG correct the image
    IJ.run(hg_imp, 'Gaussian Blur...', 'sigma=' + str(HOMOGENEITY_RADIUS) + ' stack')

    # Detect the spots
    IJ.setAutoThreshold(hg_imp, HOMOGENEITY_THRESHOLD + " dark")
    rm = RoiManager(True)
    table = ResultsTable()
    pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER,
                          ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES,
                          Measurements.AREA, # measurements
                          table, # Output table
                          0, # MinSize
                          500, # MaxSize
                          0.0, # minCirc
                          1.0) # maxCirc
    pa.setHideOutputImage(True)
    pa.analyze(hg_imp)

    areas = table.getColumn(table.getHeadings().index('Area'))

    median_areas = compute_median(areas)
    st_dev_areas = compute_std_dev(areas, median_areas)
    thresholds_areas = (median_areas - (2 * st_dev_areas), median_areas + (2 * st_dev_areas))

    roi_measurements = {'integrated_density': [],
                        'max': [],
                        'area': []}
    IJ.setForegroundColor(0, 0, 0)
    for roi in rm.getRoisAsArray():
        hg_imp.setRoi(roi)
        if REMOVE_CROSS and hg_imp.getStatistics().AREA > thresholds_areas[1]:
            rm.runCommand('Fill')
        else:
            roi_measurements['integrated_density'].append(hg_imp.getStatistics().INTEGRATED_DENSITY)
            roi_measurements['max'].append(hg_imp.getStatistics().MIN_MAX)
            roi_measurements['integrated_densities'].append(hg_imp.getStatistics().AREA)

        rm.runCommand('Delete')

    measuremnts = {'mean_integrated_density': compute_mean(roi_measurements['integrated_density']),
                   'median_integrated_density': compute_median(roi_measurements['integrated_density']),
                   'std_dev_integrated_density': compute_std_dev(roi_measurements['integrated_density']),
                   'mean_max': compute_mean(roi_measurements['max']),
                   'median_max': compute_median(roi_measurements['max']),
                   'std_dev_max': compute_std_dev(roi_measurements['max']),
                   'mean_area': compute_mean(roi_measurements['max']),
                   'median_area': compute_median(roi_measurements['max']),
                   'std_dev_area': compute_std_dev(roi_measurements['max']),
                   }

    # generate homogeinity image
    # calculate interpoint distance in pixels
    nr_point_columns = int(sqrt(len(measuremnts['mean_max'])))
    # TODO: This is a rough estimation that does not take into account margins or rectangular FOVs
    inter_point_dist = hg_imp.getWidth() / nr_point_columns
    IJ.run(hg_imp, "Maximum...", "radius="+(inter_point_dist*1.22))
    # Normalize to 100
    IJ.run(hg_imp, "Divide...", "value=" + max(roi_measurements['max'] / 100))
    IJ.run(hg_imp, "Gaussian Blur...", "sigma=" + (inter_point_dist/2))
    hg_imp.getProcessor.setMinAndMax(0, 255)

    # Create a LUT based on a predefined threshold
    red = zeros(256, 'b')
    green = zeros(256, 'b')
    blue = zeros(256, 'b')
    acceptance_threshold = HOMOGENEITY_ACCEPTANCE_THRESHOLD * 256 / 100
    for i in range(256):
        red[i] = (i - acceptance_threshold)
        green[i] = (i)
    homogeneity_LUT = LUT(red, green, blue)
    hg_imp.setLut(homogeneity_LUT)

    return hg_imp, measuremnts
Ejemplo n.º 47
0
def nucleusSegmentation(imp2):
    """ Segmentation of nucleus image. 
    Nucleus are selected that:
    1. No overlapping with dilated regions
    2. close to circular shape. Deformed nuclei are rejected.
    Outputs a binary image.
    """
#Convert to 8bit
    ImageConverter(imp2).convertToGray8()
#blur slightly using Gaussian Blur 
    radius = 2.0
    accuracy = 0.01
    GaussianBlur().blurGaussian( imp2.getProcessor(), radius, radius, accuracy)
# Auto Local Thresholding
    imps = ALT().exec(imp2, "Bernsen", 15, 0, 0, True)
    imp2 = imps[0]


#ParticleAnalysis 0: prefiltering by size and circularity
    rt = ResultsTable()
    paOpt = PA.CLEAR_WORKSHEET +\
                    PA.SHOW_MASKS +\
                    PA.EXCLUDE_EDGE_PARTICLES +\
                    PA.INCLUDE_HOLES #+ \
#		PA.SHOW_RESULTS 
    measOpt = PA.AREA + PA.STD_DEV + PA.SHAPE_DESCRIPTORS + PA.INTEGRATED_DENSITY
    MINSIZE = 20
    MAXSIZE = 10000
    pa0 = PA(paOpt, measOpt, rt, MINSIZE, MAXSIZE, 0.8, 1.0)
    pa0.setHideOutputImage(True)
    pa0.analyze(imp2)
    imp2 = pa0.getOutputImage() # Overwrite 
    imp2.getProcessor().invertLut()
#impNuc = imp2.duplicate()	## for the ring. 
    impNuc = Duplicator().run(imp2)

#Dilate the Nucleus Area
## this should be 40 pixels in Cihan's method, but should be smaller. 
#for i in range(20):
#	IJ.run(imp2, "Dilate", "")
    rf = RankFilters()
    rf.rank(imp2.getProcessor(), RIMSIZE, RankFilters.MAX)

#Particle Analysis 1: get distribution of sizes. 

    paOpt = PA.CLEAR_WORKSHEET +\
                    PA.SHOW_NONE +\
                    PA.EXCLUDE_EDGE_PARTICLES +\
                    PA.INCLUDE_HOLES #+ \
#		PA.SHOW_RESULTS 
    measOpt = PA.AREA + PA.STD_DEV + PA.SHAPE_DESCRIPTORS + PA.INTEGRATED_DENSITY
    rt1 = ResultsTable()
    MINSIZE = 20
    MAXSIZE = 10000
    pa = PA(paOpt, measOpt, rt1, MINSIZE, MAXSIZE)
    pa.analyze(imp2)
    #rt.show('after PA 1')
#particle Analysis 2: filter nucleus by size and circularity. 
    #print rt1.getHeadings()
    if (rt1.getColumnIndex('Area') > -1):
      q1, q3, outlier_offset = getOutlierBound(rt1)
    else:
      q1 = MINSIZE
      q3 = MAXSIZE
      outlier_offset = 0
      print imp2.getTitle(), ": no Nucleus segmented,probably too many overlaps"

    paOpt = PA.CLEAR_WORKSHEET +\
                    PA.SHOW_MASKS +\
                    PA.EXCLUDE_EDGE_PARTICLES +\
                    PA.INCLUDE_HOLES #+ \
#		PA.SHOW_RESULTS 
    rt2 = ResultsTable()
    #pa = PA(paOpt, measOpt, rt, q1-outlier_offset, q3+outlier_offset, circq1-circoutlier_offset, circq3+circoutlier_offset)
    pa = PA(paOpt, measOpt, rt2, q1-outlier_offset, q3+outlier_offset, 0.8, 1.0)
    pa.setHideOutputImage(True)
    pa.analyze(imp2)
    impDilatedNuc = pa.getOutputImage() 

#filter original nucleus

    filteredNuc = ImageCalculator().run("AND create", impDilatedNuc, impNuc)
    return filteredNuc