Ejemplo n.º 1
0
def main():

    #opens the image and gets its name
    # imp = open_test_img()
    # imp.show()
    imp = IJ.getImage()
    title = imp.getTitle()
    basename, extension = splitext(title)

    # does a minimum projection and makes a mask
    imp_min = ZProjector.run(imp, 'min')
    ip = imp_min.getProcessor()
    ip.setThreshold(1, 9999999999, 1)
    mask = ip.createMask()
    mask = ImagePlus("mask", mask)

    # fills in the holes in the mask
    IJ.run(mask, "Invert", "")
    IJ.run(mask, "Fill Holes", "")
    IJ.run(mask, "Invert", "")

    # converts to list and then finds the crop coordinates
    px = mask.getProcessor().getPixels()
    px = [-int(_) for _ in px]  #for some reason the 1s are -1 here
    px = reshape(px, (imp.height, imp.width))
    crop_top_left, crop_width, crop_height = find_largest_rectangle_2D(px)

    # crops the original image
    imp.setRoi(crop_top_left[0], crop_top_left[1], crop_width, crop_height)
    imp_cropped = imp.resize(crop_width, crop_height, "bilinear")
    imp_cropped.setTitle(basename + "_autocrop" + extension)
    imp_cropped.show()
def perform_cropping(imp, info, output_folder, default_path):
    imp.show()
    imp.setC(info.get_mosaic_labeled_ch())
    IJ.run("Enhance Contrast", "saturated=0.35")
    zcrop_imp, z_lims = z_crop(imp)
    info.set_z_crop_frames(z_lims)
    info.set_mosaic_labeled_ch(imp.getC())
    IJ.setTool("rect")
    zcrop_imp.hide()
    imp2 = ZProjector.run(zcrop_imp, "max")
    imp2.show()
    imp2.setC(info.get_mosaic_labeled_ch())
    crop_roi = None
    while crop_roi is None:
        WaitForUserDialog("Select XY region to crop...").show()
        crop_roi = imp2.getRoi()
    if crop_roi.getType():
        info.set_xy_crop_rect(
            str([(x, y) for x, y in zip(crop_roi.getPolygon().xpoints,
                                        crop_roi.getPolygon().ypoints)]))
    else:
        info.set_xy_crop_rect(crop_roi.getBounds().toString())
    imp2.close()
    zcrop_imp.show()
    zcrop_imp.setRoi(crop_roi)
    IJ.run("Crop", "")
    if crop_roi.getType():
        IJ.run(zcrop_imp, "Make Inverse", "")
        inv_roi = zcrop_imp.getRoi()
        IJ.run(zcrop_imp, "Set...", "value=0 stack")
        IJ.run(zcrop_imp, "Make Inverse", "")


#	zcrop_imp = z_crop_finetune(zcrop_imp, info);
    return imp, zcrop_imp, info, info.get_input_file_path()
def images_to_frames_stack(imgdir, savestack=False):
	'''
	Method for preparing a stack of frames using images inside the input folder.
	When savestack is true it saves the resulting stack to the images folder while opening the stack.
	'''
	title = "tracing_stack.tiff" # Title of the final image stack.
	imgdir = imgdir.getPath()
	imglist = buildList(imgdir, ext)
	if not imglist:
		raise IOError("No {0} were found in {0}.".format(ext, imgdir))
	method = "max"
	implist = []
	for img in imglist:
		imp = ImagePlus(img)
		if imp.isStack():
			imp = ZProjector.run(imp, method)
		implist.append(imp)
	stack = ImageStack(
		implist[0].getWidth(),
		implist[0].getHeight())
	[stack.addSlice(img.getProcessor()) for img in implist]
	stackimp = ImagePlus(title, stack)
	IJ.run(stackimp, "Properties...", "slices=1 frames={0}".format(stackimp.getStackSize()))
	if savestack:
		IJ.log("# Saving tracing stack...")
		save_string = os.path.join(imgdir, title)
		fs = ThreadedFileSaver.ThreadedFileSaver(stackimp, save_string, "saveAsTiff")
		fs.start()
	stackimp.show()
Ejemplo n.º 4
0
def stackprocessor(path, nChannels=4, nSlices=1, nFrames=1):
    imp = ImagePlus(path)
    imp = HyperStackConverter().toHyperStack(imp,
                                               nChannels,  # channels
                                               nSlices,  # slices
                                               nFrames)  # frames
    imp = ZProjector.run(imp, "max")
    return imp
Ejemplo n.º 5
0
def create_and_save(imp, projections, path, filename, export_format):
    """Wrapper to create one or more projections and export the results.

    Parameters
    ----------
    imp : ij.ImagePlus
        The image stack to create the projections from.
    projections : list(str)
        A list of projection types to be done, valid options are 'Average',
        'Maximum' and 'Sum'.
    path : str
        The path to store the results in. Existing files will be overwritten.
    filename : str
        The original file name to derive the results name from.
    export_format : str
        The suffix to be given to Bio-Formats, determining the storage format.

    Returns
    -------
    bool
        True in case projections were created, False otherwise (e.g. if the
        given ImagePlus is not a Z-stack).
    """
    if not projections:
        log.debug("No projection type requested, skipping...")
        return False

    if imp.getDimensions()[3] < 2:
        log.error("ImagePlus is not a z-stack, not creating any projections!")
        return False

    command = {
        "Average": "avg",
        "Maximum": "max",
        "Sum": "sum",
    }
    for projection in projections:
        log.debug("Creating '%s' projection...", projection)
        proj = ZProjector.run(imp, command[projection])
        export_using_orig_name(
            proj,
            path,
            filename,
            "-%s" % command[projection],
            export_format,
            overwrite=True,
        )
        proj.close()

    return True
Ejemplo n.º 6
0
def average(imp):
    """Create an average intensity projection.

    Parameters
    ----------
    imp : ij.ImagePlus
        The input stack to be projected.

    Returns
    -------
    ij.ImagePlus
        The result of the projection.
    """
    if imp.getDimensions()[3] < 2:
        log.warn("ImagePlus is not a z-stack, not creating a projection!")
        return imp

    log.debug("Creating average projection...")
    proj = ZProjector.run(imp, "avg")
    return proj
Ejemplo n.º 7
0
def extract_frame_process_roi(imp, frame, channel, process, background, roi, z_min, z_max, correct_only_xy):
  # extract frame and channel 
  imp_frame = ImagePlus("", extract_frame(imp, frame, channel, z_min, z_max)).duplicate()
  # check for roi and crop
  if roi != None:
    #print roi.getBounds()
    imp_frame.setRoi(roi)
    IJ.run(imp_frame, "Crop", "")
  # subtract background  
  if background > 0:
    #IJ.log("Subtracting "+str(background));
    IJ.run(imp_frame, "Subtract...", "value="+str(background)+" stack");
  # enhance edges  
  if process:
    IJ.run(imp_frame, "Mean 3D...", "x=1 y=1 z=0");
    IJ.run(imp_frame, "Find Edges", "stack");
  # project into 2D
  if imp_frame.getNSlices() > 1:
    if correct_only_xy:
      imp_frame = ZProjector.run( imp_frame, "avg");
  # return
  return imp_frame
Ejemplo n.º 8
0
def extract_frame_process_roi(imp, frame, roi, options):
  # extract frame and channel 
  imp_frame = ImagePlus("", extract_frame(imp, frame, options['channel'], options['z_min'], options['z_max'])).duplicate()
  # check for roi and crop
  if roi != None:
    #print roi.getBounds()
    imp_frame.setRoi(roi)
    IJ.run(imp_frame, "Crop", "")
  # subtract background  
  if options['background'] > 0:
    #IJ.log("Subtracting "+str(background));
    IJ.run(imp_frame, "Subtract...", "value="+str(options['background'])+" stack");
  # enhance edges  
  if options['process']:
    IJ.run(imp_frame, "Mean 3D...", "x=1 y=1 z=0");
    IJ.run(imp_frame, "Find Edges", "stack");
  # project into 2D if we only want to correct the drift in x and y
  if imp_frame.getNSlices() > 1:
    if options['correct_only_xy']:
      imp_frame = ZProjector.run(imp_frame, "avg");
  # return
  return imp_frame
Ejemplo n.º 9
0
def main():
	root = myDir.getPath() # get the root out the java file object
	print(root)
	
	import os, glob

	# set up bioformats
	from loci.plugins import BF
	from loci.plugins.in import ImporterOptions
	options = ImporterOptions()
	options.setColorMode(ImporterOptions.COLOR_MODE_COMPOSITE)
	options.setGroupFiles(True)  # if the files are named logically if will group them into a stack
  	
	# this will do the maximum intensity projection
	from ij.plugin import ZProjector
	Zproj = ZProjector()

	for path, subdirs, files in os.walk(root):
		print(path)
		# just get the one of the files that matches your image pattern
		flist = glob.glob(os.path.join(path,"*.tif"))
		print(len(flist))
		if( flist ):
			file = flist[0]
			print("Processing {}".format(file))
			options.setId(file)
			imp = BF.openImagePlus(options)[0]

			# show the image if you want to see it
			IJ.run(imp, "Grays", "")
			imp.show()

			imp_max = Zproj.run(imp,'max')
			IJ.run(imp_max, "Grays", "")
			imp_max.show()

			# save the Z projection
			IJ.save(imp_max,file.rsplit('_',1)[0]+'_processed.tif')
Ejemplo n.º 10
0
    def doprojection(self, title, onGPU=False):
        '''
		Run ij.plugin.Zprojector on image referenced by title using self.method as
		projection method and saves the projection on self.savefolder.
		'''
        IJ.log("# Processing {0}...".format(title))
        imp = self.load_image(title)
        if onGPU:
            projection = self.CLIJ2_max_projection(imp)
        else:
            projection = ZProjector.run(imp, self.method)
        if self.savefolder:
            save_string = os.path.join(self.savefolder, title)
            try:
                ij.io.FileSaver(projection).saveAsTiff(save_string)
                IJ.log("{0}".format(save_string))
            except:
                IJ.log(
                    "ij.io.FileSaver raised an exception while trying to save img '{0}' as '{1}'.Skipping image."
                    .format(title, save_string))
        else:
            imp.close()
            projection.show()
Ejemplo n.º 11
0
def main():
    check_dependencies()
    # setup
    Prefs.blackBackground = True
    params = Parameters()
    params.load_last_params()
    # select folders
    if params.last_input_path is not None:
        DirectoryChooser.setDefaultDirectory(params.last_input_path)
    dc = DirectoryChooser("Choose root folder containing data for analysis")
    input_folder = dc.getDirectory()
    params.last_input_path = input_folder
    if input_folder is None:
        print("Run canceled")
        return
    if params.last_output_path is not None:
        DirectoryChooser.setDefaultDirectory(
            os.path.dirname(params.last_output_path))
    dc = DirectoryChooser("choose location to save output")
    output_folder = dc.getDirectory()
    if output_folder is None:
        print("Run canceled")
        return
    timestamp = datetime.strftime(datetime.now(), '%Y-%m-%d %H-%M-%S')
    output_folder = os.path.join(output_folder, (timestamp + ' output'))
    params.last_output_path = output_folder
    os.mkdir(output_folder)
    analysis_mode, threshold_method, minimum_cell_area_um2 = choose_analysis_mode(
        params)
    if analysis_mode is None:
        print("Run canceled")
        return
    params.last_analysis_mode = analysis_mode
    do_manual_qc = "+ manual correction" in analysis_mode
    params.last_threshold_method = threshold_method
    params.last_minimum_cell_area_um2 = minimum_cell_area_um2
    params.persist_parameters()

    # load  image(s):
    files_lst = [
        f for f in os.listdir(input_folder) if os.path.splitext(f)[1] == '.tif'
    ]
    out_statses = []
    for f in files_lst:
        print("Working on image {}...".format(os.path.splitext(f)[0]))
        imp = IJ.openImage(os.path.join(input_folder, f))
        metadata = import_iq3_metadata(
            os.path.join(input_folder,
                         os.path.splitext(f)[0] + '.txt'))
        n_channels = int(metadata['n_channels'])
        gfp_channel_number = [
            ("488" in ch) for ch in metadata['channel_list']
        ].index(True) + 1 if any(
            [("488" in ch) for ch in metadata['channel_list']]) else None
        dapi_channel_number = [
            ("405" in ch) for ch in metadata['channel_list']
        ].index(True) + 1 if any(
            [("405" in ch) for ch in metadata['channel_list']]) else None
        red_channel_number = [
            ("561" in ch) for ch in metadata['channel_list']
        ].index(True) + 1 if any(
            [("561" in ch) for ch in metadata['channel_list']]) else None
        imp = HyperStackConverter.toHyperStack(imp, n_channels,
                                               imp.getNSlices() // n_channels,
                                               1, "Color")
        imp = ZProjector.run(imp, "max")
        if dapi_channel_number is not None:
            imp.setC(dapi_channel_number)
            IJ.run(imp, "Blue", "")
            IJ.run(imp, "Enhance Contrast", "saturated=0.35")
        else:
            raise NotImplementedError(
                "Nuclear staining channel doesn't seem to exist!")
        if red_channel_number is not None:
            imp.setC(red_channel_number)
            IJ.run(imp, "Red", "")
            IJ.run(imp, "Enhance Contrast", "saturated=0.35")
        if gfp_channel_number is not None:
            imp.setC(gfp_channel_number)
            IJ.run(imp, "Green", "")
            IJ.run(imp, "Enhance Contrast", "saturated=0.35")
            imp.setC(gfp_channel_number)

        imp.show()
        imp.setDisplayMode(IJ.COMPOSITE)
        cal = imp.getCalibration()
        cal.setUnit(metadata["y_unit"])
        cal.pixelWidth = metadata["x_physical_size"]
        cal.pixelHeight = metadata["y_physical_size"]
        imp.setCalibration(cal)

        min_size_pix = minimum_cell_area_um2 / (cal.pixelHeight *
                                                cal.pixelWidth)
        if "GFP intensity" in analysis_mode:
            out_stats = gfp_analysis(imp,
                                     f,
                                     output_folder,
                                     gfp_channel_number=gfp_channel_number,
                                     dapi_channel_number=dapi_channel_number,
                                     threshold_method=threshold_method,
                                     do_manual_qc=do_manual_qc,
                                     min_size_pix=min_size_pix)
        elif analysis_mode == "Manual":
            important_channel = gfp_channel_number if gfp_channel_number is not None else dapi_channel_number
            out_stats = manual_analysis(
                imp,
                f,
                output_folder,
                gfp_channel_number=gfp_channel_number,
                dapi_channel_number=dapi_channel_number,
                important_channel=important_channel)
        elif "E-cadherin watershed" in analysis_mode:
            out_stats = ecad_analysis(imp,
                                      f,
                                      output_folder,
                                      gfp_channel_number=gfp_channel_number,
                                      red_channel_number=red_channel_number,
                                      dapi_channel_number=dapi_channel_number,
                                      do_manual_qc=do_manual_qc)
            imp.close()
        out_statses.extend(out_stats)
        print("Current total number of cells identified: {}".format(
            len(out_statses)))
        # get # nuclei per "cell"
    params.save_parameters_to_json(
        os.path.join(output_folder, "parameters used.json"))
    WaitForUserDialog(
        "Done", "Done, having analysed {} cells in total!".format(
            len(out_statses))).show()
    return
Ejemplo n.º 12
0
def main():
    # Prepare directory tree for output.
    indir = IJ.getDirectory("input directory")
    outdir = IJ.getDirectory(".csv output directory")
    c1dir = os.path.join(outdir, "Channel1")
    c2dir = os.path.join(outdir, "Channel2")
    c3dir = os.path.join(outdir, "Channel3")
    c4dir = os.path.join(outdir, "Channel4")
    channelsdir = os.path.join(outdir, "Channels")
    if not os.path.isdir(c1dir):
        os.mkdir(c1dir)
    if not os.path.isdir(c2dir):
        os.mkdir(c2dir)
    if not os.path.isdir(c3dir):
        os.mkdir(c3dir)
    if not os.path.isdir(c4dir):
        os.mkdir(c4dir)
    if not os.path.isdir(channelsdir):
        os.mkdir(channelsdir)

    # Collect all file paths in the input directory
    files = readdirfiles(indir)

    # Initialize the results tables.
    c1Results = ResultsTable()
    c2Results = ResultsTable()
    c3Results = ResultsTable()
    c4Results = ResultsTable()

    for file in files:

        IJ.log("File: {}/{}".format(files.index(file) + 1, len(files)))

        if file.endswith('.tif'):

            # Open .tiff file as ImagePlus.
            imp = Opener().openImage(file)
            imp = ZProjector.run(imp, "max")
            # imp = stackprocessor(file,
            #                        nChannels=4,
            #                        nSlices=7,
            #                        nFrames=1)
            channels = ChannelSplitter.split(imp)
            name = imp.getTitle()

            # For every channel, save the inverted channel in grayscale as .jpg.
            for channel in channels:
                IJ.run(channel, "Grays", "")
                IJ.run(channel, "Invert", "")
                jpgname = channel.getShortTitle()
                jpgoutfile = os.path.join(channelsdir,
                                          "{}.jpg".format(jpgname))
                IJ.saveAs(channel.flatten(), "Jpeg", jpgoutfile)
                IJ.run(channel, "Invert", "")

            # OPTIONAL - Perform any other operations (e.g. crossexcitation compensation tasks) before object count.
            c2name = channels[2].getTitle()
            cal = channels[2].getCalibration()
            channels[2] = ImagePlus(
                c2name,
                ImageCalculator().run("divide create 32-bit", channels[2],
                                      channels[3]).getProcessor(
                                      )  # This removes AF647 bleed-through
            )
            channels[2].setCalibration(cal)

            # Settings for channel1 threshold.
            c1 = countobjects(channels[0],
                              c1Results,
                              threshMethod="Triangle",
                              subtractBackground=True,
                              watershed=True,
                              minSize=0.00,
                              maxSize=100,
                              minCirc=0.00,
                              maxCirc=1.00)

            # Settings for channel2 threshold.
            c2 = countobjects(channels[1],
                              c2Results,
                              threshMethod="RenyiEntropy",
                              subtractBackground=True,
                              watershed=False,
                              minSize=0.00,
                              maxSize=30.00,
                              minCirc=0.00,
                              maxCirc=1.00)

            # Settings for channel3 threshold.
            c3 = countobjects(channels[2],
                              c3Results,
                              threshMethod="RenyiEntropy",
                              subtractBackground=True,
                              watershed=False,
                              minSize=0.00,
                              maxSize=30.00,
                              minCirc=0.00,
                              maxCirc=1.00)

            # Settings for channel4 threshold.
            c4 = countobjects(channels[3],
                              c4Results,
                              threshMethod="RenyiEntropy",
                              subtractBackground=True,
                              watershed=False,
                              minSize=0.20,
                              maxSize=100.00,
                              minCirc=0.00,
                              maxCirc=1.00)

            # Format filenames for thresholded .tiff files.
            outfileC1 = os.path.join(c1dir, "threshold_c1_{}".format(name))
            outfileC2 = os.path.join(c2dir, "threshold_c2_{}".format(name))
            outfileC3 = os.path.join(c3dir, "threshold_c3_{}".format(name))
            outfileC4 = os.path.join(c4dir, "threshold_c4_{}".format(name))

            # Save thresholded .tiff files.
            IJ.saveAs(c1.flatten(), "Tiff", outfileC1)
            IJ.saveAs(c2.flatten(), "Tiff", outfileC2)
            IJ.saveAs(c3.flatten(), "Tiff", outfileC3)
            IJ.saveAs(c4.flatten(), "Tiff", outfileC4)

    # Show results tables.


#    c1Results.show("channel1")
#    c2Results.show("channel2")
#    c3Results.show("channel3")
#    c4Results.show("channel4")

# Prepare results table filenames.
    c1out = os.path.join(outdir, "channel1.csv")
    c2out = os.path.join(outdir, "channel2.csv")
    c3out = os.path.join(outdir, "channel3.csv")
    c4out = os.path.join(outdir, "channel4.csv")

    # Save results tables.
    ResultsTable.save(c1Results, c1out)
    ResultsTable.save(c2Results, c2out)
    ResultsTable.save(c3Results, c3out)
    ResultsTable.save(c4Results, c4out)
Ejemplo n.º 13
0
# manual roi copied from z-projected version of this resliced image (add roi from z-proj to ROI manager, then add 
# to resliced image)

imp.killRoi();
IJ.run(imp, "Reslice [/]...", "output=1.000 start=Top avoid");
rot_imp = IJ.getImage();
crop_roi = Roi(10, 0, rot_imp.getWidth()-20, rot_imp.getHeight());
rot_imp.setRoi(crop_roi);
rot_imp.crop();
rot_imp.show();
WaitForUserDialog("pause").show();
split_ch = ChannelSplitter().split(rot_imp);
mch_imp = split_ch[0];
egfp_imp = split_ch[1];
roi_imp = split_ch[2];
zproj_imp = ZProjector.run(roi_imp, "max");
IJ.setRawThreshold(zproj_imp, 33153, 65535, None);
IJ.run(zproj_imp, "Make Binary", "")
zproj_imp.show();
raise error;
IJ.run(zproj_imp, "Skeletonize", "");
IJ.run(zproj_imp, "Create Selection", "");
roi = zproj_imp.getRoi();
floatpoly = roi.getContainedFloatPoints();
roi = PolygonRoi(floatpoly, Roi.FREELINE);
zproj_imp.setRoi(roi);
WaitForUserDialog("pause").show();

#IJ.setTool("freeline");
#WaitForUserDialog("Draw a line").show();
#IJ.run(zproj_imp, "Fit Spline", "");
Ejemplo n.º 14
0
def main():
    # setup
    Prefs.blackBackground = True
    params = Parameters()
    params.load_last_params()
    # select folders
    if params.last_input_path is not None:
        DirectoryChooser.setDefaultDirectory(params.last_input_path)
    dc = DirectoryChooser("Choose root folder containing data for analysis")
    input_folder = dc.getDirectory()
    params.last_input_path = input_folder
    if input_folder is None:
        raise KeyboardInterrupt("Run canceled")
    if params.last_output_path is not None:
        DirectoryChooser.setDefaultDirectory(
            os.path.dirname(params.last_output_path))
    dc = DirectoryChooser("choose location to save output")
    output_folder = dc.getDirectory()
    timestamp = datetime.strftime(datetime.now(), '%Y-%m-%d %H-%M-%S')
    output_folder = os.path.join(output_folder, (timestamp + ' output'))
    params.last_output_path = output_folder
    os.mkdir(output_folder)
    analysis_mode = choose_analysis_mode(params)
    params.last_analysis_mode = analysis_mode
    params.persist_parameters()

    # load  image(s):
    files_lst = [
        f for f in os.listdir(input_folder) if os.path.splitext(f)[1] == '.tif'
    ]
    out_statses = []
    for f in files_lst:
        print("Working on image {}...".format(os.path.splitext(f)[0]))
        imp = IJ.openImage(os.path.join(input_folder, f))
        metadata = import_iq3_metadata(
            os.path.join(input_folder,
                         os.path.splitext(f)[0] + '.txt'))
        imp = HyperStackConverter.toHyperStack(imp, 3,
                                               imp.getNSlices() // 3, 1,
                                               "Color")
        imp = ZProjector.run(imp, "max")
        imp.setC(3)
        IJ.run(imp, "Blue", "")
        IJ.run(imp, "Enhance Contrast", "saturated=0.35")
        imp.setC(2)
        IJ.run(imp, "Red", "")
        IJ.run(imp, "Enhance Contrast", "saturated=0.35")
        imp.setC(1)
        IJ.run(imp, "Green", "")
        IJ.run(imp, "Enhance Contrast", "saturated=0.35")
        imp.show()
        imp.setDisplayMode(IJ.COMPOSITE)
        cal = imp.getCalibration()
        cal.setUnit(metadata["y_unit"])
        cal.pixelWidth = metadata["x_physical_size"]
        cal.pixelHeight = metadata["y_physical_size"]
        imp.setCalibration(cal)

        if analysis_mode == "GFP intensity":
            out_stats = gfp_analysis(imp, f, output_folder)
        elif analysis_mode == "Manual":
            out_stats = manual_analysis(imp, f, output_folder)
        out_statses.extend(out_stats)
        print("Current total number of cells identified: {}".format(
            len(out_statses)))
        # get # nuclei per "cell"
    params.save_parameters_to_json(
        os.path.join(output_folder, "parameters used.json"))
    WaitForUserDialog(
        "Done", "Done, having analysed {} cells in total!".format(
            len(out_statses))).show()
    return
Ejemplo n.º 15
0
def make_projection(imp, method, slices):
    z_prjor = ZProjector(imp)
    prj_imp = z_prjor.run(imp, method, slices[0], slices[1])
    return prj_imp
Ejemplo n.º 16
0
def project(img, method):
    zp = ZProjector.run(img, method)
    return zp
Ejemplo n.º 17
0
def run():

	IJ.run("Close All", "")
	IJ.log("\\Clear")

	IJ.log("Find_close_peaks")

	imp = IJ.run("Bio-Formats Importer")
	imp = IJ.getImage()


	Channel_1, Channel_2, radius_background, sigmaSmaller, sigmaLarger, minPeakValue, min_dist = getOptions()

	IJ.log("option used:" \
    		+ "\n" + "channel 1:" + str(Channel_1) \
    		+ "\n" + "channel 2:"+ str(Channel_2) \
    		+ "\n" + "Radius Background:"+ str(radius_background) \
    		+ "\n" + "Smaller Sigma:"+ str(sigmaSmaller) \
    		+ "\n" + "Larger Sigma:"+str(sigmaLarger) \
    		+ "\n" + "Min Peak Value:"+str(minPeakValue) \
    		+ "\n" + "Min dist between peaks:"+str(min_dist))

	IJ.log("Computing Max Intensity Projection")

	if imp.getDimensions()[3] > 1:
		imp_max = ZProjector.run(imp,"max")
		#imp_max = IJ.run("Z Project...", "projection=[Max Intensity]")
		#imp_max = IJ.getImage()
	else:
		imp_max = imp

	ip1, ip2 = extract_channel(imp_max, Channel_1, Channel_2)
	imp1, imp2 = back_substraction(ip1, ip2, radius_background)
	imp1.show()
	imp2.show()

	IJ.log("Finding Peaks")

	ip1_1, ip2_1, peaks_1, peaks_2 = find_peaks(imp1, imp2, sigmaSmaller, sigmaLarger, minPeakValue)

	# Create a PointRoi from the DoG peaks, for visualization
	roi_1 = PointRoi(0, 0)
	roi_2 = PointRoi(0, 0)
	roi_3 = PointRoi(0, 0)
	roi_4 = PointRoi(0, 0)

	# A temporary array of integers, one per dimension the image has
	p_1 = zeros(ip1_1.numDimensions(), 'i')
	p_2 = zeros(ip2_1.numDimensions(), 'i')

	# Load every peak as a point in the PointRoi
	for peak in peaks_1:
	  # Read peak coordinates into an array of integers
	  peak.localize(p_1)
	  roi_1.addPoint(imp1, p_1[0], p_1[1])

	for peak in peaks_2:
	  # Read peak coordinates into an array of integers
	  peak.localize(p_2)
	  roi_2.addPoint(imp2, p_2[0], p_2[1])

	# Chose minimum distance in pixel
	#min_dist = 20

	for peak_1 in peaks_1:
		peak_1.localize(p_1)
		for peak_2 in peaks_2:
			peak_2.localize(p_2)
			d1 = distance(p_1, p_2)
			if  d1 < min_dist:
				roi_3.addPoint(imp1, p_2[0], p_2[1])
				break

	for peak_2 in peaks_2:
		peak_2.localize(p_2)
		for peak_1 in peaks_1:
			peak_1.localize(p_1)
			d2 = distance(p_2, p_1)
			if  d2 < min_dist:
				roi_4.addPoint(imp1, p_2[0], p_2[1])
				break

	rm = RoiManager.getInstance()
	if not rm:
	  rm = RoiManager()
	rm.reset()

	rm.addRoi(roi_1)
	rm.addRoi(roi_2)
	rm.addRoi(roi_3)
	rm.addRoi(roi_4)

	rm.select(0)
	rm.rename(0, "ROI neuron")
	rm.runCommand("Set Color", "yellow")

	rm.select(1)
	rm.rename(1, "ROI glioma")
	rm.runCommand("Set Color", "blue")

	rm.select(2)
	rm.rename(2, "ROI glioma touching neurons")
	rm.runCommand("Set Color", "red")

	rm.select(3)
	rm.rename(3, "ROI neurons touching glioma")
	rm.runCommand("Set Color", "green")

	rm.runCommand(imp1, "Show All")

	#Change distance to be in um
	cal = imp.getCalibration()
	min_distance = str(round((cal.pixelWidth * min_dist),1))

	table = ResultsTable()
	table.incrementCounter()
	table.addValue("Numbers of Neuron Markers", roi_1.getCount(0))
	table.addValue("Numbers of Glioma Markers", roi_2.getCount(0))
	table.addValue("Numbers of Glioma within %s um of Neurons" %(min_distance), roi_3.getCount(0))
	table.addValue("Numbers of Neurons within %s um of Glioma" %(min_distance), roi_4.getCount(0))

	table.show("Results Analysis")
Ejemplo n.º 18
0
                       stack.size() + 1):  #loop over all images in the stack
            if i < 20:
                ip = stack.getProcessor(i)
                avgI.append(ip.getStats().mean)  #get average intensity
            else:
                avgI.append(0)
            if len(avgI) == dims[3]:
                apicalZ = avgI.index(
                    max(avgI))  #get position of apical surface
        if apicalZ == False:
            print('Selecting default apical slice...')
            apicalZ = 9

        #Get apical average projection of apical surface and find cell positions
        try:
            apical_detect_imp = zp.run(detect_imp, 'avg', apicalZ - 4,
                                       apicalZ + 4)
            apical_measure_imp = zp.run(measure_imp, 'avg', apicalZ - 4,
                                        apicalZ + 4)
        except:
            print('Projecting full apical part of stack...')
            apical_detect_imp = zp.run(detect_imp, 'avg', 5, stack.size())
            apical_measure_imp = zp.run(measure_imp, 'avg', 5, stack.size())
        apical_detect_imp.show()
        measured.reset()
        IJ.run("Find Maxima...",
               "noise=" + str(noise_threshold) + " output=List exclude")
        measured = rt.getResultsTable()
        centroidX = measured.getColumn(measured.getColumnIndex('X'))
        centroidY = measured.getColumn(measured.getColumnIndex('Y'))
        print 'Detected ' + str(len(centroidX)) + ' cells'
Ejemplo n.º 19
0
name = imp.getTitle()
width = imp.width
height = imp.height
num_slices = imp.getNSlices()
num_channels = imp.getNChannels()
num_frames = imp.getNFrames()

max_cycle_length = int(max_cycle_length)

assert width_sub < width and width_sub < height, "Size of square must be less than dimensions of movie"
assert num_channels == 1, "Image can only have one channel"

#imp = process.ImageConverter.convertToGray32(original_imp)

avg_img = ZProjector.run(imp,"avg");
avg_img.show()
imp2 = ImageCalculator().run("Subtract create stack", imp, avg_img)
imp2.show()
#WindowManager.getImage("AVG_Pos0")

num_window_x = int(round(width/width_sub)) #int(width-width_sub+1)
num_window_y = int(round(height/width_sub)) #int(height-width_sub+1)

center_px = int(round(width_sub/2))

new_rois = []
for i in range(0,num_window_x):
	for j in range(0,num_window_y):
		new_roi = Roi(i*width_sub, j*width_sub, width_sub, width_sub)
		new_rois.append(new_roi)
def main():
	# ensure consistent preference settings
	Prefs.blackBackground = False;
	
	# get locations for previous and new outputs
	params = Parameters();
	params.loadLastParams();
	output_folder_old, output_folder = mbio.rerun_location_chooser(params.input_image_path);
	params.loadParametersFromJson(os.path.join(output_folder_old, 'parameters used.json'));
	params.setOutputPath(output_folder);

	# get original image file (for overlays etc.) 
	if not os.path.isfile(params.input_image_path):
		mbui.warning_dialog(["The original data can't be found at the location specified in saved parameters. ", 
							"(Possibly something as simple as a change in network drive mapping has occurred)",
							"Please specify the location of the original image file..."]);
		params.setInputImagePath(mbio.input_file_location_chooser(params.output_path));

	import_opts, params = mbui.choose_series(params.input_image_path, params);
	imps = bf.openImagePlus(import_opts);
	imp = imps[0];

	if imp.getNSlices() > 1:
		mbui.warning_dialog(["More than one Z plane detected.", 
							"I will do a maximum projection before proceeding", 
							"Continue?"]);
		imp = ZProjector.run(imp,"max all");

	# prompt user to select ROI
	original_imp = Duplicator().run(imp);
	_, crop_params = mbui.crop_to_ROI(imp, params);
	imp.show();

	if crop_params is not None:
		params.perform_spatial_crop = True;
		mbui.autoset_zoom(imp);
		imp.updateAndDraw();
		review_crop = mb.check_cropping(output_folder_old, params);
		keep_crop = not review_crop;
		if review_crop:
			keep_crop = mbui.crop_review();
		if not keep_crop:
			imp.changes = False;
			imp.close();
			imp = original_imp;
		else:
			original_imp.close();
	else:
		original_imp.close();

	# prompt user to do time cropping
	imp, start_end_tuple = mbui.time_crop(imp, params);
	params.setTimeCropStartEnd(start_end_tuple);

	params = mbio.get_metadata(params);
	params.setCurvatureLengthUm(round(params.curvature_length_um / params.pixel_physical_size) * params.pixel_physical_size);
	params.persistParameters();
	IJ.run(imp, "Set Scale...", "distance=0 known=0 pixel=1 unit=pixel");
	imp.show();
	if imp.getNChannels() > 1:
		imp.setPosition(params.membrane_channel_number, 1, 1);
	mbui.autoset_zoom(imp);
	IJ.run("Enhance Contrast", "saturated=0.35");

	split_channels = mbfs.split_image_plus(imp, params);
	membrane_test_channel_imp = Duplicator().run(split_channels[0]);
	segmentation_channel_imp = split_channels[-1];

	# import edges
	imp.hide();
	membrane_edges = mbio.load_qcd_edges2(os.path.join(output_folder_old, "user_defined_edges.zip"));
	dummy_anchors = [params.manual_anchor_positions for _ in membrane_edges]
	membrane_edges, fixed_anchors = mbui.perform_user_qc(membrane_test_channel_imp, membrane_edges, membrane_edges, dummy_anchors, params);
	imp.show();
	rgbstack = ImageStack(imp.getWidth(), imp.getHeight());
	for tidx in range(imp.getNFrames()): 
		imp.setT(tidx+1);
		ip = imp.getProcessor();
		rgbip = ip.convertToRGB();
		rgbstack.addSlice(rgbip);
	rgbimp = ImagePlus(("RGB " + imp.getTitle()), rgbstack);
	imp.close();
	rgbimp.show();
	IJ.run("Colors...", "foreground=yellow background=white selection=yellow");
	for tidx in range(rgbimp.getNSlices()):
		rgbimp.setSlice(tidx+1);
		rgbimp.setRoi(membrane_edges[tidx]);
		IJ.run(rgbimp, "Draw", "slice");
	IJ.run("Colors...", "foreground=red background=white selection=yellow");
	for tidx in range(rgbimp.getNSlices()):
		rgbimp.setSlice(tidx+1);
		for anchor in params.manual_anchor_positions:
			rgbimp.setRoi(PointRoi(anchor[0], anchor[1]));
			IJ.run(rgbimp, "Draw", "slice");
	params.saveParametersToJson(os.path.join(params.output_path, "parameters used.json"));
	params.persistParameters();	
	rgbimp.changes = False;
from loci.plugins import BF
from net.imglib2.img.display.imagej import ImageJFunctions
from net.imglib2.view import Views
from net.imglib2.roi import Regions, Masks, BinaryMaskRegionOfInterest
from net.imglib2.type.logic import BitType
from net.imglib2.type.numeric.real import DoubleType
from ij.plugin import Duplicator

image, = BF.openImagePlus(inputFile.getAbsolutePath())
t = image.getTitle()

### SELECT REGION OF INTEREST

# Z Projection
from ij.plugin import ZProjector
image_mip = ZProjector.run(image, "max")

# ROI CREATION
image_mip.show()
image_mip.setRoi(image_mip.width / 2, image_mip.height / 2, regionSize,
                 regionSize)

from ij.gui import WaitForUserDialog
myWait = WaitForUserDialog("Choose ROI",
                           "Please position the ROI.. Press 'OK' when done.")
myWait.show()

# CROP
image.setRoi(image_mip.getRoi())
from ij import IJ
image = Duplicator().run(image)
Ejemplo n.º 22
0
def process(srcDir, dstDir, currentDir, fileName, keepDirectories, Channel_1, Channel_2, radius_background, sigmaSmaller, sigmaLarger, minPeakValue, min_dist):
 	IJ.run("Close All", "")

 	# Opening the image
 	IJ.log("Open image file:" + fileName)
 	#imp = IJ.openImage(os.path.join(currentDir, fileName))
	#imp = IJ.getImage()
	imp = BF.openImagePlus(os.path.join(currentDir, fileName))
	imp = imp[0]

	# getDimensions(width, height, channels, slices, frames)

	IJ.log("Computing Max Intensity Projection")

	if imp.getDimensions()[3] > 1:
		imp_max = ZProjector.run(imp,"max")
	else:
		imp_max = imp

	ip1, ip2 = extract_channel(imp_max, Channel_1, Channel_2)

	IJ.log("Substract background")

	imp1, imp2 = back_substraction(ip1, ip2, radius_background)

	IJ.log("Finding Peaks")

	ip1_1, ip2_1, peaks_1, peaks_2 = find_peaks(imp1, imp2, sigmaSmaller, sigmaLarger, minPeakValue)

	# Create a PointRoi from the DoG peaks, for visualization
	roi_1 = PointRoi(0, 0)
	roi_2 = PointRoi(0, 0)
	roi_3 = PointRoi(0, 0)
	roi_4 = PointRoi(0, 0)

	# A temporary array of integers, one per dimension the image has
	p_1 = zeros(ip1_1.numDimensions(), 'i')
	p_2 = zeros(ip2_1.numDimensions(), 'i')


	# Load every peak as a point in the PointRoi
	for peak in peaks_1:
	  # Read peak coordinates into an array of integers
	  peak.localize(p_1)
	  roi_1.addPoint(imp1, p_1[0], p_1[1])

	for peak in peaks_2:
	  # Read peak coordinates into an array of integers
	  peak.localize(p_2)
	  roi_2.addPoint(imp2, p_2[0], p_2[1])

	# Chose minimum distance in pixel
	#min_dist = 20

	for peak_1 in peaks_1:
		peak_1.localize(p_1)
		for peak_2 in peaks_2:
			peak_2.localize(p_2)
			d1 = distance(p_1, p_2)
			if  d1 < min_dist:
				roi_3.addPoint(imp1, p_2[0], p_2[1])
				break

	for peak_2 in peaks_2:
		peak_2.localize(p_2)
		for peak_1 in peaks_1:
			peak_1.localize(p_1)
			d2 = distance(p_2, p_1)
			if  d2 < min_dist:
				roi_4.addPoint(imp1, p_2[0], p_2[1])
				break

	cal = imp.getCalibration()
	min_distance = str(round((cal.pixelWidth * min_dist),1))

	table = ResultsTable()
	table.incrementCounter()
	table.addValue("Numbers of Neuron Markers", roi_1.getCount(0))
	table.addValue("Numbers of Glioma Markers", roi_2.getCount(0))
	table.addValue("Numbers of Glioma within %s um of Neurons" %(min_distance), roi_3.getCount(0))
	table.addValue("Numbers of Neurons within %s um of Glioma" %(min_distance), roi_4.getCount(0))
	#table.show("Results Analysis")
	saveDir = currentDir.replace(srcDir, dstDir) if keepDirectories else dstDir
	if not os.path.exists(saveDir):
		os.makedirs(saveDir)
	IJ.log("Saving to" + saveDir)
	table.save(os.path.join(saveDir, fileName + ".csv"))
	IJ.selectWindow("Log")
	IJ.saveAs("Text", os.path.join(saveDir, fileName + ".csv"));
def main():
	### debug ###############################################################
	#print (sys.version_info);
	#print(sys.path);
	#file_path = "D:\\data\\Inverse blebbing\\MAX_2dpf marcksl1b-EGFP inj_TgLifeact-mCh_movie e4_split-bleb1.tif";
	#output_root = "D:\\data\\Inverse blebbing\\output";
	#from datetime import datetime
	#timestamp = datetime.strftime(datetime.now(), '%Y-%m-%d %H-%M-%S');
	#output_folder = os.path.join(output_root, (timestamp + ' output')); 
	#os.mkdir(output_folder); 
	########################################################################
	
	# ensure consistent preference settings
	Prefs.blackBackground = False;

	# prompt user for input parameters
	params = mbui.analysis_parameters_gui();

	# prompt user for file locations
	file_path, output_folder = mbio.file_location_chooser(params.input_image_path);
	params.setInputImagePath(file_path);
	params.setOutputPath(output_folder);

	# get image file
	import_opts, params = mbui.choose_series(file_path, params);
	imps = bf.openImagePlus(import_opts);
	imp = imps[0];

	# catch unexpected image dimensions - for now, project in Z...:
	if  imp.getNSlices() > 1:
		mbui.warning_dialog(["More than one Z plane detected.", 
							"I will do a maximum projection before proceeding", 
							"Continue?"]);
		imp = ZProjector.run(imp,"max all");

	params = mbio.get_metadata(params);
	params.setCurvatureLengthUm(round(params.curvature_length_um / params.pixel_physical_size) * params.pixel_physical_size);
	params.persistParameters();
	IJ.run(imp, "Set Scale...", "distance=0 known=0 pixel=1 unit=pixel");
	imp.show();
	if imp.getNChannels() > 1:
		imp.setPosition(params.membrane_channel_number, 1, 1);
	mbui.autoset_zoom(imp);
	IJ.run("Enhance Contrast", "saturated=0.35");

	# prompt user to select ROI
	original_imp, crop_params = mbui.crop_to_ROI(imp, params);
	if crop_params is not None:
		params.perform_spatial_crop = True;
		mbui.autoset_zoom(imp);
	else:
		params.perform_spatial_crop = False;


	# prompt user to do time cropping
	imp, start_end_tuple = mbui.time_crop(imp, params);
	params.setTimeCropStartEnd(start_end_tuple);

	repeats = 1;
	inner_outer_comparisons = None;
	if params.inner_outer_comparison:
		inner_outer_comparisons = InnerOuterComparisonData();
		repeats = 2;

	IJ.selectWindow(imp.getTitle());
	IJ.run("Enhance Contrast", "saturated=0.35");
	for r in range(0, repeats):
		calculated_objects = CalculatedObjects();
		if params.time_crop_start_end[0] is not None:
			calculated_objects.timelist = [idx * params.frame_interval for idx in range(params.time_crop_start_end[0], params.time_crop_start_end[1]+1)]
		else:
			calculated_objects.timelist = [idx * params.frame_interval for idx in range(imp.getNFrames())];
		calculated_objects, params, split_channels = mbfs.generate_edges(imp, params, calculated_objects, (r+1)/repeats);
		membrane_channel_imp = split_channels[0];
		actin_channel_imp = split_channels[1];
		segmentation_channel_imp = split_channels[2];

		calculated_objects = mbfs.calculate_outputs(params,
													calculated_objects, 
													split_channels, 
													repeat_fraction=(r+1)/repeats);
						
		# output colormapped images and kymographs 
		fig_imp_list = mbfs.generate_and_save_figures(imp, calculated_objects, params, membrane_channel_imp, segmentation_channel_imp);
		mbfs.save_csvs(calculated_objects, params);
	
		params.saveParametersToJson(os.path.join(params.output_path, "parameters used.json"));
		imp.changes = False;
		IJ.setTool("zoom");
		if params.close_on_completion or (params.inner_outer_comparison and r!=(repeats-1)):
			for fig_imp in fig_imp_list:
				fig_imp.close();
		elif params.close_on_completion and (r==(repeats-1)):
			imp.close();
	
	if params.inner_outer_comparison:
		tname = "Time, " + params.interval_unit;
		output_folder = os.path.dirname(params.output_path);
		profile = [[((inner, outer), (float(outer)/inner)) for inner, outer in zip(calculated_objects.inner_outer_data.inner_means, calculated_objects.inner_outer_data.outer_means)]];
		mbio.save_profile_as_csv(profile, 
								os.path.join(output_folder, "Intensity ratios.csv"), 
								"outer/inner", 
								xname="inner", 
								yname="outer",
								tname=tname, 
								time_list=calculated_objects.timelist);
		sd_profile = [[((inner, outer), (float(outer)/inner)) for inner, outer in zip(calculated_objects.inner_outer_data.inner_sds, calculated_objects.inner_outer_data.outer_sds)]];
		mbio.save_profile_as_csv(profile, 
								os.path.join(output_folder, "Intensity standard deviation ratios.csv"), 
								"outer sd/inner sd", 
								xname="inner sd", 
								yname="outer sd",
								tname=tname, 
								time_list=calculated_objects.timelist);
	return;
def main():
    # ensure consistent preference settings
    Prefs.blackBackground = False

    # get locations for previous and new outputs
    params = Parameters()
    params.loadLastParams()
    output_folder_old, output_folder = mbio.rerun_location_chooser(
        params.input_image_path)
    params.loadParametersFromJson(
        os.path.join(output_folder_old, 'parameters used.json'))
    params.setOutputPath(output_folder)

    # present user with the familiar setup UI, with options that don't make sense/aren't yet implemented disabled
    params = mbui.analysis_parameters_gui(rerun_analysis=True, params=params)

    # get original image file (for overlays etc.)
    if not os.path.isfile(params.input_image_path):
        mbui.warning_dialog([
            "The original data can't be found at the location specified in saved parameters. ",
            "(Possibly something as simple as a change in network drive mapping has occurred)",
            "Please specify the location of the original image file..."
        ])
        params.setInputImagePath(
            mbio.input_file_location_chooser(params.output_path))

    import_opts, params = mbui.choose_series(params.input_image_path, params)
    imps = bf.openImagePlus(import_opts)
    imp = imps[0]

    if imp.getNSlices() > 1:
        mbui.warning_dialog([
            "More than one Z plane detected.",
            "I will do a maximum projection before proceeding", "Continue?"
        ])
        imp = ZProjector.run(imp, "max all")

    params = mbio.get_metadata(params)
    params.setCurvatureLengthUm(
        round(params.curvature_length_um / params.pixel_physical_size) *
        params.pixel_physical_size)
    params.persistParameters()
    IJ.run(imp, "Set Scale...", "distance=0 known=0 pixel=1 unit=pixel")
    imp.show()
    if imp.getNChannels() > 1:
        imp.setPosition(params.membrane_channel_number, 1, 1)
    mbui.autoset_zoom(imp)
    IJ.run("Enhance Contrast", "saturated=0.35")

    # prompt user to select ROI
    original_imp = Duplicator().run(imp)
    _, crop_params = mbui.crop_to_ROI(imp, params)
    imp.show()

    if crop_params is not None:
        params.perform_spatial_crop = True
        mbui.autoset_zoom(imp)
        imp.updateAndDraw()
        review_crop = mb.check_cropping(output_folder_old, params)
        keep_crop = not review_crop
        if review_crop:
            keep_crop = mbui.crop_review()
        if not keep_crop:
            imp.changes = False
            imp.close()
            imp = original_imp
        else:
            original_imp.close()
    else:
        original_imp.close()

    # prompt user to do time cropping
    imp, start_end_tuple = mbui.time_crop(imp, params)
    params.setTimeCropStartEnd(start_end_tuple)

    # import edges
    membrane_edges = mbio.load_qcd_edges2(
        os.path.join(output_folder_old, "user_defined_edges.zip"))
    mbio.save_qcd_edges2(membrane_edges, params.output_path)

    calculated_objects = CalculatedObjects()
    calculated_objects.membrane_edges = membrane_edges
    if params.time_crop_start_end[0] is not None:
        calculated_objects.timelist = [
            idx * params.frame_interval
            for idx in range(params.time_crop_start_end[0],
                             params.time_crop_start_end[1] + 1)
        ]
    else:
        calculated_objects.timelist = [
            idx * params.frame_interval for idx in range(imp.getNFrames())
        ]

    split_channels = mbfs.split_image_plus(imp, params)
    membrane_channel_imp = split_channels[0]
    actin_channel_imp = split_channels[1]
    segmentation_channel_imp = None
    if params.photobleaching_correction:
        if os.path.isfile(
                os.path.join(output_folder_old, 'binary_membrane_stack.tif')):
            segmentation_binary_path = os.path.join(
                output_folder_old, 'binary_membrane_stack.tif')
            segmentation_channel_imp = IJ.openImage(segmentation_binary_path)
        else:
            segmentation_channel_imp = split_channels[2]
            segmentation_channel_imp = mb.make_and_clean_binary(
                segmentation_channel_imp, params.threshold_method)
        split_channels[2] = segmentation_channel_imp

    calculated_objects = mbfs.calculate_outputs(params, calculated_objects,
                                                split_channels)

    # output colormapped images and kymographs
    fig_imp_list = mbfs.generate_and_save_figures(imp, calculated_objects,
                                                  params, membrane_channel_imp,
                                                  segmentation_channel_imp)
    mbfs.save_csvs(calculated_objects, params)

    params.saveParametersToJson(
        os.path.join(params.output_path, "parameters used.json"))
    imp.changes = False
    IJ.setTool("zoom")
    if params.close_on_completion:
        for fig_imp in fig_imp_list:
            fig_imp.close()
            imp.close()

    return
#imp2 = HyperStackConverter.toHyperStack(imp, int(metadata['n_channels']), int(metadata['z_pixels']), 1, "Composite");
print(metadata)
IJ.run(
    imp, "Properties...", "channels=" + str(int(metadata['n_channels'])) +
    " slices=" + str(int(metadata['z_pixels'])) + " frames=1 unit=" +
    str(metadata['x_unit']) + " pixel_width=" +
    str(metadata['x_physical_size']) + " pixel_height=" +
    str(metadata['y_physical_size']) + " voxel_depth=" +
    str(metadata['z_extent'] / metadata['z_pixels']))
imp.show()
imp, z_lims = z_crop(imp)
use_ch = imp.getC()
print(use_ch)
IJ.setTool("rect")
imp.hide()
imp2 = ZProjector.run(imp, "max")
imp2.show()
imp2.setC(use_ch + 1)
WaitForUserDialog("Select XY region to crop...").show()
crop_roi = imp2.getRoi()
imp2.close()
imp.show()
imp.setRoi(crop_roi)
IJ.run("Crop", "")
frames = imp.getNFrames()
slices = imp.getNSlices()
imp = Duplicator().run(imp, use_ch + 1, use_ch + 1, 1, slices, 1, frames)
imp.show()

# now do 3d segmentation....
#histo =  StackStatistics(imp).histogram;