Ejemplo n.º 1
0
	def createMask(self, source):
		mask = FloatProcessor(source.getWidth(), source.getHeight())
		maskColor = 0x0000ff00
		sourcePixels = source.getPixels()
		n = len(sourcePixels)
		maskPixels = mask.getPixels()
		for i in xrange(n):
			sourcePixel = sourcePixels[i] & 0x00ffffff
			if sourcePixel == maskColor:
				maskPixels[i] = 0
			else:
				maskPixels[i] = 1
		mask.setPixels(maskPixels)
		return mask
    def doMap(patch, roi, background=0.0, interpolate=False, floatp=False):
        if floatp:
            target = FloatProcessor(roi.width, roi.height)
        else:
            target = ShortProcessor(roi.width, roi.height)
        if background != 0.0:
            target.setValue(background)
            target.setRoi(0, 0, roi.width, roi.height)
            target.fill()
        t = TranslationModel2D()

        t.set(float(-roi.x), float(-roi.y))

        ctl = CoordinateTransformList()
        ctl.add( patch.getFullCoordinateTransform() )
        ctl.add( t )

        mesh = CoordinateTransformMesh( ctl, patch.getMeshResolution(), patch.getOWidth(), patch.getOHeight() )

        mapping = TransformMeshMappingWithMasks( mesh );

        source = patch.getImageProcessor()
        if floatp:
            source = source.convertToFloatProcessor()
        if interpolate:
            # patch.getImageProcessor().setInterpolationMethod( ImageProcessor.BILINEAR )
            mapping.mapInterpolated( source, target )
        else:
            mapping.map( source, target )

        return target
def bunwarpjSingle(impRef, impTarget, landMarks, directTransfoName, inverseTransfoName):
	directName = 'direct_transformation'
	inverseName = 'inverse_transformation'
	impRef.setTitle('bunwarpj_source')
	impTarget.setTitle('bunwarpj_target')
	directFileName = os.path.join(saveDir.getAbsolutePath(), directName)
	inverseFileName = os.path.join(saveDir.getAbsolutePath(), inverseName)
		#imp = IJ.run(impRef, "bUnwarpJ", "source_image=bunwarpj_source target_image=bunwarpj_target registration=Accurate image_subsample_factor=0 initial_deformation=[Coarse] final_deformation=Fine divergence_weight=0 curl_weight=0 landmark_weight=0.5 image_weight=0.5 consistency_weight=10 stop_threshold=0.01 save_transformations save_direct_transformation=["+ directFileName +"] save_inverse_transformation=["+ inverseFileName +"]");
#		transfo = computeTransformationBatch(
# 			param ImagePlus targetImp input target image 
# 			param ImagePlus sourceImp input source image
# 			param ImageProcessor targetMskIP target mask 
# 			param ImageProcessor sourceMskIP source mask
# 			param int mode accuracy mode (0 - Fast, 1 - Accurate, 2 - Mono)
# 			param int img_subsamp_fact image subsampling factor (from 0 to 7, representing 2^0=1 to 2^7 = 128)
# 			param int min_scale_deformation (0 - Very Coarse, 1 - Coarse, 2 - Fine, 3 - Very Fine)
# 			param int max_scale_deformation (0 - Very Coarse, 1 - Coarse, 2 - Fine, 3 - Very Fine, 4 - Super Fine)
# 			param double divWeight divergence weight
# 			param double curlWeight curl weight
# 			param double landmarkWeight landmark weight
# 			param double imageWeight image similarity weight
# 			param double consistencyWeight consistency weight
# 			param double stopThreshold stopping threshold
# 			return results transformation object
	accuracy_mode = 1
	img_subsamp_fact = 0
	tmp = FloatProcessor(impTarget.getWidth(), impTarget.getHeight())
	tmp.setValue(1.0)
	tmp.fill()
	targetMskIp = tmp.duplicate()
	sourceMskIp = tmp.duplicate()
	accuracy_mode = 1
	img_subsamp_fact = 0
	min_scale_deformation = 1
	max_scale_deformation = 2
	divWeight = 0.0
	curlWeight = 0.0
	consistencyWeight = 10
	stopThreshold = 0.01
	if landMarks == 1:
		landmarkWeight = 0.5
		imageWeight = 0.5
		transfo = bUnwarpJ_.computeTransformationBatch(
			impTarget, impRef, targetMskIp, sourceMskIp, accuracy_mode, img_subsamp_fact, min_scale_deformation, max_scale_deformation, divWeight, curlWeight, landmarkWeight, imageWeight, consistencyWeight, stopThreshold)
	else:
		landmarkWeight = 0.0
		imageWeight = 1.0
		transfo = bUnwarpJ_.computeTransformationBatch(
			impTarget, impRef, targetMskIp, sourceMskIp, accuracy_mode, img_subsamp_fact, min_scale_deformation, max_scale_deformation, divWeight, curlWeight, landmarkWeight, imageWeight, consistencyWeight, stopThreshold)
	transfo.saveDirectTransformation(os.path.join(saveDir.getAbsolutePath(), directTransfoName))
	transfo.saveInverseTransformation(os.path.join(saveDir.getAbsolutePath(), inverseTransfoName))
	#print(transfo.getCoefficients())
	return transfo.getInverseResults().getStack().getProcessor(1).duplicate()
Ejemplo n.º 4
0
def img_calc(func, *imps, **kwargs):
    """Runs the given function on each pixel of the given list of images.
    An additional parameter, the title of the result, is passed as keyword parameter.
    We assume that each image has the same size. This is not checked by this function.
    """
    # If the keyword parameter is not passed, it is set to a default value.
    if not kwargs['title']:
        kwargs['title'] = "Result"
    # This is a 2D list: list[number of images][pixels per image] .
    pixels = [imp.getProcessor().getPixels() for imp in imps]
    # The function is called pixel by pixel.
    # zip(*pixels) rotates the 2D list: list[pixels per image][mumber of images].
    result = [func(vals) for vals in zip(*pixels)]
    # result is a 1D list and can be used to create an ImagePlus object.
    from ij import ImagePlus
    from ij.process import FloatProcessor
    return ImagePlus(kwargs['title'], FloatProcessor(img_size, img_size,
                                                     result))
def selectionGetCurvature(x, y, n):
    kernel = [1, 1, 1, 1, 1]
    x2 = []
    y2 = []
    for i in range(n):
        x2.append(x[i])
        y2.append(y[i])
    ipx = FloatProcessor(n, 1, x, None)
    ipy = FloatProcessor(n, 1, y, None)
    ipx.convolve(kernel, len(kernel), 1)
    ipy.convolve(kernel, len(kernel), 1)
    indexes = []
    curvature = []
    for i in range(n):
        indexes.append(i)
        curvature.append(
            float(
                math.sqrt((x2[i] - x[i]) * (x2[i] - x[i]) + (y2[i] - y[i]) *
                          (y2[i] - y[i]))))
    return curvature
def identifyTunicate(imp):
    # Clear ROI manager
    rm = RoiManager.getInstance()
    if rm is not None:
        rm.reset()

    # Get hue from HSB stack
    impHue = ProcessHSB.getHue(imp)
    width = impHue.width
    height = impHue.height

    # Get processor
    ipHue = impHue.getProcessor().convertToFloat()
    huePixels = ipHue.getPixels()

    # Get macro hue because it is the same color
    newPixels = map(ProcessHSB.macroHue, huePixels)
    ipNew = FloatProcessor(width, height, newPixels)
    impTunicate = ImagePlus("MacroHue", ipNew)

    # Bring brightness into the equation
    impBrightness = ProcessHSB.getBrightness(imp)
    IJ.run(impBrightness, "Auto Threshold", "method=MaxEntropy white")
    #IJ.run(impBrightness, "Analyze Particles...", "size=10000-Infinity circularity=0.10-1.00 show=Masks in_situ") # "add" right after "include" to include roi to manager

    # Logic AND pictures together
    ic = ImageCalculator()
    impTunicateMask = ic.run("AND create", impTunicate, impBrightness)
    IJ.run(impTunicateMask, "8-bit", "")  # convert to 8-bit
    impTunicate.close()
    impBrightness.close()
    IJ.run(impTunicateMask, "Analyze Particles...",
           "size=10000-Infinity circularity=0.50-1.00 show=Masks add in_situ"
           )  # "add" right after "include" to include roi to manager

    impTunicateMask.close()
    #imp.show()
    #rm = RoiManager.getInstance()
    #return rm


#testImp = IJ.getImage()
#result = identifyTunicate(testImp)
#print type(result)
def mode_subtract(prj,roi):
	"""
	Subtract the mode (calculated over a given ROI) from the image.
	prj(ImagePlus): a single channel Z-projected ImagePlus object.
	z_index(int): The central stack number
	ROI(roi): Region of interest to calculate the mode.
	"""
	# Finds mode of a signle stack return the mode
	from ij.process import FloatProcessor
	from ij import ImagePlus
	# Find the mode
	dmode=roi_mode(prj,roi)
	imp=prj.duplicate()
	ip=imp.getProcessor()
	pix=ip.getPixels()
	minus_mode= map(lambda x: x - dmode, pix)
	ip= FloatProcessor(ip.width, ip.height, minus_mode, None)
	no_noise = ImagePlus(prj.title+"_no-noise", ip)
	return no_noise
Ejemplo n.º 8
0
def identifyRed(imp):
    # Clear ROI manager
    rm = RoiManager.getInstance()
    if rm is not None:
        rm.reset()

    # set results table


#	rt = ResultsTable.getResultsTable()

# Get hue from HSB stack
    impHue = ProcessHSB.getHue(imp)
    width = impHue.width
    height = impHue.height

    # Get processor for hue
    ipHue = impHue.getProcessor().convertToFloat()
    huePixels = ipHue.getPixels()

    # Bring brightness into the equation
    impBrightness = ProcessHSB.getBrightness(imp)
    IJ.run(impBrightness, "Auto Threshold", "method=MaxEntropy white")
    IJ.run(impBrightness, "Analyze Particles...",
           "size=10000-Infinity circularity=0.00-1.00 show=Masks in_situ")

    # Get processor for brightness
    ipBrightness = impBrightness.getProcessor().convertToFloat()
    brightnessPixels = ipBrightness.getPixels()

    # Do the thing now
    newPixels = map(ProcessHSB.redHueBackground, brightnessPixels, huePixels)

    # If hue < 30 and hue > 225, True
    #newNewPixels = map(ProcessHSB.redHue, newPixels)

    # Pause: Do this later
    ipNew = FloatProcessor(width, height, newPixels)
    impRed = ImagePlus("RedHue", ipNew)
    IJ.run(impRed, "8-bit", "")  # convert to 8-bit
    #IJ.run(imp, "Options...", "iterations=20 count=1 black do=[Fill Holes]");
    impRed.show()
Ejemplo n.º 9
0
def generate_r_image(imp, ring_rois, centres, unwrap_axis, threshold_val):
    """for each point in the projection, calculate the distance to the vessel axis and present as an image"""
    fp = imp.getProcessor()
    fp.setThreshold(threshold_val, fp.maxValue(), FloatProcessor.NO_LUT_UPDATE)
    bp = fp.createMask()
    bp.dilate()
    bp.erode()

    mask_imp = ImagePlus("Mask", bp)
    tile_mask = make_tiled_imp(mask_imp)
    #tile_mask.show();
    #WaitForUserDialog("pasue - generated mask").show();
    mask_imp = do_unwrap(tile_mask, unwrap_axis, imp_title=mask_imp.getTitle())
    #mask_imp.show();
    roi = PolygonRoi([x for (x, y) in unwrap_axis],
                     [y for (x, y) in unwrap_axis], PolygonRoi.POLYLINE)
    mask_imp.setRoi(roi)
    #WaitForUserDialog("pasue - unwrapped").show();
    IJ.run(mask_imp, "Fill Holes", "")
    #WaitForUserDialog("pasue - filled holes").show();
    IJ.run(mask_imp, "Divide...", "value=255")
    #WaitForUserDialog("pasue - scaled to 0-1").show();
    #mask_imp.show();

    r_list = []
    for lidx, (roi, centre) in enumerate(zip(ring_rois, centres)):
        r_sublist = [
            math.sqrt((x - centre[0])**2 + (y - centre[1])**2)
            for x, y in zip(roi.getPolygon().xpoints,
                            roi.getPolygon().ypoints)
        ]
        r_list.append(r_sublist)

    r_imp = ImagePlus("Radii", FloatProcessor([list(x) for x in zip(*r_list)]))
    tile_r_imp = make_tiled_imp(r_imp)
    r_imp = do_unwrap(tile_r_imp, unwrap_axis, imp_title=r_imp.getTitle())
    r_imp = ImageCalculator().run("Multiply create", r_imp, mask_imp)
    IJ.run(r_imp, "Cyan Hot", "")

    return r_imp, mask_imp
def identifyRed(imp):
	# Clear ROI manager
	rm = RoiManager.getInstance()
	if rm is not None:
		rm.reset()
	
	# Get hue from HSB stack
	impHue = ProcessHSB.getHue(imp)
	width = impHue.width
	height = impHue.height
	
	# Get processor for hue
	ipHue = impHue.getProcessor().convertToFloat()
	huePixels = ipHue.getPixels()

	# Bring brightness into the equation
	impBrightness = ProcessHSB.getBrightness(imp)
	IJ.run(impBrightness, "Auto Threshold", "method=Default white")
	#IJ.run(impBrightness, "Analyze Particles...", "size=10000-Infinity circularity=0.00-1.00 show=Masks in_situ")
	
	# If hue < 30 and hue > 225, True
	newPixels = map(ProcessHSB.redHue, huePixels)
	
	# Pause: Do this later
	ipNew = FloatProcessor(width, height, newPixels)
	impRed = ImagePlus("RedHue", ipNew)
	IJ.run(impRed, "8-bit", "") # convert to 8-bit
	
	# Logic AND pictures together
	ic = ImageCalculator()
	impRedMask = ic.run("AND create", impRed, impBrightness)
	IJ.run(impRedMask, "8-bit", "") # convert to 8-bit
	IJ.run(impRedMask, "Analyze Particles...", "size=10000-Infinity circularity=0.00-1.00 show=Masks add in_situ") # "add" right after "include" to include roi to manager
	
	impHue.close()
	impBrightness.close()
	impRed.close()
	impRedMask.close()
Ejemplo n.º 11
0
def depthmap(stack): 
    # Takes a single channel z stack.
    width = stack.getWidth()
    height = stack.getHeight()

    # Loop through slices in stack.
    size = stack.getSize()
    outstack = ImageStack()

    IJ.log("size: {}".format(size))

    for z in range(1, size): 

        # Calculate maxfilter.
        imslice = stack.getPixels(z)
        imslice = [i for i in imslice]
        imslice = FloatProcessor(width, height, imslice)
        imslice = maxfilter(imslice)
        outstack.addSlice(imslice)
        IJ.showProgress(1.0*z/size)

    # Return output stack.
    return outstack
Ejemplo n.º 12
0
def projectfocus(instack, depthstack):

    # Initialize variables.
    width = instack.getWidth()
    height = instack.getHeight()
    nSlices = instack.getSize()
    dest_pixels = [0] * width * height

    # Loop through y coordinates.
    for y in range(height):

        offset = y*width

        # Loop through x coordinates
        for x in range(width):

            i = offset + x
            maxpx = 0.0
            maxslice = 1

            # Loop through z stack.
            for z in range(1, nSlices):

                # Find maximum pixel value
                current_pixels = depthstack.getPixels(z)
                current_pix = current_pixels[i]
                
                if current_pix > maxpx:
                    maxslice = z
                    maxpx = current_pix
            
            origin_pixels = instack.getPixels(maxslice)
            # origin_pixels = [((i+min(origin_pixels))/max(origin_pixels))*255 for i in origin_pixels]# Need to get rid of negative pixels!
            dest_pixels[i] = origin_pixels[i]

    output = FloatProcessor(width, height, dest_pixels)
    return output
Ejemplo n.º 13
0
def bunwarpjSingle(impRef, impTarget, landMarks, directTransfoName,
                   inverseTransfoName):
    directName = 'direct_transformation'
    inverseName = 'inverse_transformation'
    impRef.setTitle('bunwarpj_source')
    impTarget.setTitle('bunwarpj_target')
    directFileName = os.path.join(saveDir.getAbsolutePath(), directName)
    inverseFileName = os.path.join(saveDir.getAbsolutePath(), inverseName)
    #imp = IJ.run(impRef, "bUnwarpJ", "source_image=bunwarpj_source target_image=bunwarpj_target registration=Accurate image_subsample_factor=0 initial_deformation=[Coarse] final_deformation=Fine divergence_weight=0 curl_weight=0 landmark_weight=0.5 image_weight=0.5 consistency_weight=10 stop_threshold=0.01 save_transformations save_direct_transformation=["+ directFileName +"] save_inverse_transformation=["+ inverseFileName +"]");
    #		transfo = computeTransformationBatch(
    # 			param ImagePlus targetImp input target image
    # 			param ImagePlus sourceImp input source image
    # 			param ImageProcessor targetMskIP target mask
    # 			param ImageProcessor sourceMskIP source mask
    # 			param int mode accuracy mode (0 - Fast, 1 - Accurate, 2 - Mono)
    # 			param int img_subsamp_fact image subsampling factor (from 0 to 7, representing 2^0=1 to 2^7 = 128)
    # 			param int min_scale_deformation (0 - Very Coarse, 1 - Coarse, 2 - Fine, 3 - Very Fine)
    # 			param int max_scale_deformation (0 - Very Coarse, 1 - Coarse, 2 - Fine, 3 - Very Fine, 4 - Super Fine)
    # 			param double divWeight divergence weight
    # 			param double curlWeight curl weight
    # 			param double landmarkWeight landmark weight
    # 			param double imageWeight image similarity weight
    # 			param double consistencyWeight consistency weight
    # 			param double stopThreshold stopping threshold
    # 			return results transformation object
    accuracy_mode = 1
    img_subsamp_fact = 0
    tmp = FloatProcessor(impTarget.getWidth(), impTarget.getHeight())
    tmp.setValue(1.0)
    tmp.fill()
    targetMskIp = tmp.duplicate()
    sourceMskIp = tmp.duplicate()
    accuracy_mode = 1
    img_subsamp_fact = 0
    min_scale_deformation = 1
    max_scale_deformation = 2
    divWeight = 0.0
    curlWeight = 0.0
    consistencyWeight = 10
    stopThreshold = 0.01
    if landMarks == 1:
        landmarkWeight = 0.5
        imageWeight = 0.5
        transfo = bUnwarpJ_.computeTransformationBatch(
            impTarget, impRef, targetMskIp, sourceMskIp, accuracy_mode,
            img_subsamp_fact, min_scale_deformation, max_scale_deformation,
            divWeight, curlWeight, landmarkWeight, imageWeight,
            consistencyWeight, stopThreshold)
    else:
        landmarkWeight = 0.0
        imageWeight = 1.0
        transfo = bUnwarpJ_.computeTransformationBatch(
            impTarget, impRef, targetMskIp, sourceMskIp, accuracy_mode,
            img_subsamp_fact, min_scale_deformation, max_scale_deformation,
            divWeight, curlWeight, landmarkWeight, imageWeight,
            consistencyWeight, stopThreshold)
    transfo.saveDirectTransformation(
        os.path.join(saveDir.getAbsolutePath(), directTransfoName))
    transfo.saveInverseTransformation(
        os.path.join(saveDir.getAbsolutePath(), inverseTransfoName))
    #print(transfo.getCoefficients())
    return transfo.getInverseResults().getStack().getProcessor(1).duplicate()
Ejemplo n.º 14
0
jDD = SM(K, K).eqInnerProductMatrix(jD)
jMP = MP(jD, jDD)

# matching pursuit to create a sparse appoximation

w = []
for i in range(0, p):
    q = x[i]
    if Rt == "OMP":
        W = jMP.vsOMP(q, t_w)
    elif Rt == "MP":
        W = jMP.vsBMP(q, t_w)
    else:
        W = jMP.vsORMP(q, t_w)
    w.append(W)

w2 = zip(*w)

Sp = Matrix(w2).getColumnPackedCopy()

#return matrices to images
ipFloat = FloatProcessor(K, imp2.height * imp2.width, Sp)
impa = ImagePlus("Sp", ipFloat)
impa.show()
IJ.run("Montage to Stack...",
       "columns=1 rows=" + str(imp2.height) + " border=0")
imp3 = IJ.getImage()
IJ.run("Reslice [/]...", "output=1.000 start=Left avoid")
impa.close()
imp3.close()
Ejemplo n.º 15
0
def fretCalculations(imp1, nFrame, donorChannel, acceptorChannel,
                     acceptorChannel2, table, gfx1, gfx2, gfx3, gfx4, gfx5,
                     originalTitle):
    donorImp = extractChannel(imp1, donorChannel, nFrame)
    acceptorImp = extractChannel(imp1, acceptorChannel, nFrame)
    acceptorImp2 = extractChannel(imp1, acceptorChannel2, nFrame)

    #push donor and acceptor channels to gpu and threshold them both to remove saturated pixels

    gfx4 = clij2.push(donorImp)
    gfx5 = clij2.push(acceptorImp)
    gfx6 = clij2.create(gfx5)

    clij2.threshold(gfx4, gfx2, maxIntensity)
    clij2.binarySubtract(gfx3, gfx2, gfx6)

    clij2.threshold(gfx5, gfx2, maxIntensity)
    clij2.binarySubtract(gfx6, gfx2, gfx3)

    clij2.threshold(gfx3, gfx6, 0.5)
    clij2.multiplyImages(gfx6, gfx4, gfx2)
    clij2.multiplyImages(gfx6, gfx5, gfx4)

    gfx6 = clij2.push(acceptorImp2)

    #donor is gfx2, acceptor FRET is gfx4, segment channel (acceptor normal) is gfx6

    results = ResultsTable()
    clij2.statisticsOfBackgroundAndLabelledPixels(gfx2, gfx1, results)

    donorChIntensity = results.getColumn(13)
    results2 = ResultsTable()
    clij2.statisticsOfBackgroundAndLabelledPixels(gfx4, gfx1, results2)
    acceptorChIntensity = results2.getColumn(13)

    results3 = ResultsTable()
    clij2.statisticsOfBackgroundAndLabelledPixels(gfx6, gfx1, results3)

    #calculate the fret ratios, removing any ROI with intensity of zero
    FRET = []

    for i in xrange(len(acceptorChIntensity)):
        if (acceptorChIntensity[i] > 0) and (donorChIntensity[i] > 0):
            #don't write in the zeros to the results
            FRET.append((1000 * acceptorChIntensity[i] / donorChIntensity[i]))

            table.incrementCounter()
            table.addValue("Frame (Time)", nFrame)
            table.addValue("Label", i)
            table.addValue("Emission ratio",
                           acceptorChIntensity[i] / donorChIntensity[i])

            table.addValue("Mean donor emission",
                           results.getValue("MEAN_INTENSITY", i))
            table.addValue("Mean acceptor emission (FRET)",
                           results2.getValue("MEAN_INTENSITY", i))
            table.addValue("Mean acceptor emission",
                           results3.getValue("MEAN_INTENSITY", i))

            table.addValue("Sum donor emission", donorChIntensity[i])
            table.addValue("Sum acceptor emission (FRET)",
                           acceptorChIntensity[i])
            table.addValue("Sum acceptor emission",
                           results3.getValue("SUM_INTENSITY", i))

            table.addValue(
                "Volume",
                cal.pixelWidth * cal.pixelHeight * cal.pixelDepth *
                results.getValue("PIXEL_COUNT", i))
            table.addValue("Pixel count", results.getValue("PIXEL_COUNT", i))
            table.addValue("x",
                           cal.pixelWidth * results.getValue("CENTROID_X", i))
            table.addValue("y",
                           cal.pixelHeight * results.getValue("CENTROID_Y", i))
            table.addValue("z",
                           cal.pixelDepth * results.getValue("CENTROID_Z", i))
            table.addValue("File name", originalTitle)
        else:
            #must write in the zeros as this array is used to generate the map of emission ratios
            FRET.append(0)

    table.show("Results of " + originalTitle)

    FRET[0] = 0
    FRETarray = array("f", FRET)
    fp = FloatProcessor(len(FRET), 1, FRETarray, None)
    FRETImp = ImagePlus("FRETImp", fp)
    gfx4 = clij2.push(FRETImp)
    clij2.replaceIntensities(gfx1, gfx4, gfx5)
    maxProj = clij2.create(gfx5.getWidth(), gfx5.getHeight(), 1)
    clij2.maximumZProjection(gfx5, maxProj)

    #pull the images

    FRETimp2 = clij2.pull(gfx5)
    FRETProjImp = clij2.pull(maxProj)
    labelImp = clij2.pull(gfx1)

    clij2.clear()
    donorImp.close()
    acceptorImp.close()
    acceptorImp2.close()

    return table, FRETimp2, FRETProjImp, labelImp
Ejemplo n.º 16
0
def do_angular_projection(imp,
                          max_r_pix=60,
                          min_r_pix=10,
                          generate_roi_stack=True):
    """perform ray-based projection of vessel wall, c.f. ICY TubeSkinner (Lancino 2018)"""
    Prefs.blackBackground = True
    print("do angular projection input imp = " + str(imp))
    split_chs = ChannelSplitter().split(imp)
    mch_imp = split_chs[0]
    IJ.setAutoThreshold(mch_imp, "IsoData dark stack")
    egfp_imp = split_chs[1]
    proj_imp = Duplicator().run(egfp_imp)
    cl_imp = split_chs[2]
    if generate_roi_stack:
        egfp_imp_disp = Duplicator().run(egfp_imp)
        roi_stack = IJ.createImage("rois", egfp_imp.getWidth(),
                                   egfp_imp.getHeight(), egfp_imp.getNSlices(),
                                   16)

    centres = []
    projected_im_pix = []
    ring_rois = []
    for zidx in range(cl_imp.getNSlices()):
        if ((zidx + 1) % 100) == 0:
            print("Progress = " +
                  str(round(100 * (float(zidx + 1) / cl_imp.getNSlices()))))
        projected_im_row = []
        proj_imp.setZ(zidx + 1)
        mch_imp.setZ(zidx + 1)
        bp = mch_imp.createThresholdMask()
        bp.dilate()
        bp.erode()
        bp.erode()
        bp.erode()
        mask_imp = ImagePlus("mask", bp)
        IJ.run(mask_imp, "Create Selection", "")
        roi = mask_imp.getRoi()
        proj_imp.setRoi(roi)
        IJ.run(proj_imp, "Set...", "value=0 slice")
        IJ.run(proj_imp, "Make Inverse", "")
        roi = proj_imp.getRoi()
        centre = (roi.getStatistics().xCentroid, roi.getStatistics().yCentroid)
        centres.append(centre)
        ring_roi_xs = []
        ring_roi_ys = []
        for theta in range(360):
            pt1 = (centre[0] + min_r_pix * math.cos(math.radians(theta)),
                   centre[1] + min_r_pix * math.sin(math.radians(theta)))
            pt2 = (centre[0] + max_r_pix * math.cos(math.radians(theta)),
                   centre[1] + max_r_pix * math.sin(math.radians(theta)))
            roi = Line(pt1[0], pt1[1], pt2[0], pt2[1])
            proj_imp.setRoi(roi)
            profile = roi.getPixels()
            projected_im_row.append(max(profile))
            try:
                ring_roi_xs.append(roi.getContainedPoints()[profile.index(
                    max(profile))].x)
            except IndexError:
                ring_roi_xs.append(pt2[0])
            try:
                ring_roi_ys.append(roi.getContainedPoints()[profile.index(
                    max(profile))].y)
            except IndexError:
                ring_roi_ys.append(pt2[1])
            proj_imp.killRoi()
        ring_roi = PolygonRoi(ring_roi_xs, ring_roi_ys, Roi.FREELINE)
        ring_rois.append(ring_roi)
        if generate_roi_stack:
            roi_stack.setZ(zidx + 1)
            roi_stack.setRoi(ring_roi)
            IJ.run(roi_stack, "Line to Area", "")
            IJ.run(
                roi_stack, "Set...",
                "value=" + str(roi_stack.getProcessor().maxValue()) + " slice")
        #egfp_imp.setRoi(ring_roi);
        projected_im_pix.append(projected_im_row)


#	for ch in split_chs:
#		ch.close();

    out_imp = ImagePlus(
        "projected", FloatProcessor([list(x) for x in zip(*projected_im_pix)]))

    if generate_roi_stack:
        roi_stack.show()
        egfp_imp_disp.show()
        # merge?
    else:
        roi_stack = None
    return out_imp, roi_stack, ring_rois, centres
Ejemplo n.º 17
0
# 밑바닥부터 이미지 만들기
from ij import ImagePlus
from ij.process import FloatProcessor
from array import zeros
from random import random

width = 1024
height = 1024
# Jython으로 array 만들기
# http://fiji.sc/wiki/index.php/Jython_Scripting_Examples#Creating_multi-dimensional_native_java_arrays
pixels = zeros('f', width * height)  # f: "float"

for i in xrange(len(pixels)):
    pixels[i] = random()

fp = FloatProcessor(width, height, pixels, None)
imp = ImagePlus("White noise", fp)

imp.show()
dzdx.close()

Norms.setSlice(2)
dzdy = Norms.crop()
dzdy.show()
dzdy = IJ.getImage()
IJ.run("FFT")  #Needs to be a complex Fourier transform
DZDY = IJ.getImage()
dzdy.close()

# Create two images with a ramp gradient from left to right (wx and wy in Frankot Chellapa).
# Size of ramp needs to be a square of same dimensions as FFT image generated by ImageJ.
# Make sure that "Complex Fourier Transform" button under "Process, FFT" is selected or else it will not work...

imp = ImagePlus(
    "wx", FloatProcessor(1024, 1024)
)  # for later create a dialog box for choosing pads of 512x512, 1024x1024, 2048x2048, etc.
pix = imp.getProcessor().getPixels()
n_pixels = len(pix)  # total number of pixels
w = imp.getWidth()  # length of one row

for i in range(
        len(pix)
):  # fill row with linear ramp from 0 to whatever the image width; for 512 size, values range 0 to 512
    pix[i] = i % w

imp.getProcessor()
imp.show()
imp = IJ.getImage()

#adjust min and max so the ramp ranges from -0.5 cycles/pixel to + 0.5 cycles/pixel
Ejemplo n.º 19
0
N_larg = 4
N_lon  = 4
# 2 - Create a new stack to store the result
new_stack = ImageStack(imp.width, imp.height)

for i in range(1, imp.getNSlices()+1):
	slice = stack.getProcessor(i)
	red = slice.toFloat(0, None)
	green = slice.toFloat(1, None)
	blue = slice.toFloat(2, None)
	
	pix_red = red.getPixels()
	pix_green = green.getPixels()
	pix_blue = blue.getPixels()

	new_red  = FloatProcessor(imp.width, imp.height)
	pix_new_red = new_red.getPixels()
	
	new_green = FloatProcessor(imp.width, imp.height)
	pix_new_green = new_green.getPixels()
	
	new_blue = FloatProcessor(imp.width, imp.height)
	pix_new_blue = new_blue.getPixels()

	new_blade  = FloatProcessor(imp.width, imp.height)
	pix_blade = new_blade.getPixels()
	
	for k in range(len(pix_red)):
		if (pix_green[k] > 100) &  (pix_green[k] < 250) &  (pix_red[k] < 250) &  (pix_blue[k] < 250):
			pix_new_red[k]     = pix_red[k]
			pix_new_green[k] = pix_green[k]
Ejemplo n.º 20
0
    del pix2
    del pix3
    del pix4
    if not os.path.exists(subsub):
        os.mkdir(subsub)
    pixels = []
    for j in range(4):
        System.gc()
        imp = segmentator.applyClassifier(imps[j], 0, True)
        imp = imp.getStack()
        imp = imp.getProcessor(1)
        cm = imp.getColorModel()
        pixels.append(imp.getPixels())
    pix1 = pixels[0]
    pix2 = pixels[1]
    pix3 = pixels[2]
    pix4 = pixels[3]
    pixcomb = pix1[:-s * d1] + pix2[s * d1:-s * d1] + pix3[s * d1:-s *
                                                           d1] + pix4[s * d1:]
    result = ImagePlus("Result", FloatProcessor(d1, dimentions[1], pixcomb,
                                                cm))
    IJ.save(result, subsub + "\\result_RAW.tif")
    IJ.run(result, "Despeckle", "")
    strel = morphology.Strel.Shape.DISK.fromDiameter(3)
    result = morphology.Morphology.erosion(result.getProcessor(), strel)
    result = result.convertToByteProcessor()
    result = ImagePlus("plus", result)
    IJ.run(result, "Gaussian Blur...", "sigma=15")
    IJ.save(result, subsub + "\\result_READY.tif")
    result.close()
def do_tubefitting(im_path=im_test_path,
                   metadata_path=metadata_test_path,
                   output_path=output_path,
                   save_output=False):
    # todo: fix things so that all operations use a consistent definition of background rather than changing Prefs on the fly...
    Prefs.blackBackground = False
    info = PrescreenInfo()
    info.load_info_from_json(metadata_path)
    z_xy_ratio = abs(
        info.get_z_plane_spacing_um()) / info.get_xy_pixel_size_um()
    #z_xy_ratio = 1.0;
    bfimp = bf.openImagePlus(im_path)
    imp = bfimp[0]
    imp.show()
    IJ.run(imp, "Set Scale...", "distance=0 known=0 pixel=1 unit=pixel")
    imp = utils.downsample_for_isotropy(imp,
                                        extra_downsample_factor=1.0,
                                        info=info)
    rot_seg_imp, rot_proj_imp, egfp_mch_imps = split_and_rotate(imp, info)
    depth = rot_seg_imp.getNSlices() if rot_seg_imp.getNSlices(
    ) > rot_seg_imp.getNFrames() else rot_seg_imp.getNFrames()
    width = rot_seg_imp.getWidth()
    height = int(round(rot_seg_imp.getHeight() * z_xy_ratio))

    # Apply 3d MEDIAN FILTER to denoise and emphasise vessel-associated voxels
    fit_basis_imp = threshold_and_binarise(rot_seg_imp, z_xy_ratio)
    fit_basis_imp.setTitle("fit_basis_imp")
    fit_basis_imp.show()

    # plane-wise, use binary-outline
    # say the non-zero points then make up basis for fitting to be performed per http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html
    rois = []
    centres = []
    major_axes = []
    roi_imp = IJ.createImage("rois", width, height, depth, 32)
    pts_stack = ImageStack(width, height + 1)
    IJ.run(imp, "Line Width...", "line=3")
    for zidx in range(fit_basis_imp.getNSlices()):
        fit_basis_imp.setZ(zidx + 1)
        IJ.run(fit_basis_imp, "Outline", "slice")
        IJ.run(fit_basis_imp, "Create Selection", "")
        roi = fit_basis_imp.getRoi()
        fit_basis_imp.killRoi()
        pts = [(pt.x, pt.y) for pt in roi.getContainedPoints()]
        clean_pts = convex_hull_pts(pts)
        clean_pts = [(x, z_xy_ratio * y) for (x, y) in clean_pts]
        # make a stack of clean points...
        ip = FloatProcessor(width, height + 1)
        pix = ip.getPixels()
        for pt in clean_pts:
            pix[int(pt[1]) * width + int(pt[0])] = 128
        pts_stack.addSlice(ip)
        centre, angle, axl = ellipse_fitting.fit_ellipse(clean_pts)
        major_axes.append(max(axl))
        centres.append(centre)
        rot_seg_imp.setZ(zidx + 1)
        ellipse_roi = ellipse_fitting.generate_ellipse_roi(centre, angle, axl)
        rois.append(ellipse_roi)
    IJ.run(imp, "Line Width...", "line=1")
    cal = imp.getCalibration()
    smooth_centres, tangent_vecs = generate_smoothed_vessel_axis(
        centres, pixel_size_um=cal.pixelDepth)
    for zidx in range(fit_basis_imp.getNSlices()):
        centre = smooth_centres[zidx]
        major_axis = major_axes[zidx]
        ellipse_roi = EllipseRoi(centre[0] - 2, centre[1], centre[0] + 2,
                                 centre[1], 1.0)
        roi_imp.setZ(zidx + 1)
        roi_imp.setRoi(ellipse_roi)
        IJ.run(roi_imp, "Set...",
               "value=" + str(roi_imp.getProcessor().maxValue()) + " slice")

    pts_stack_imp = ImagePlus("Cleaned points", pts_stack)
    pts_stack_imp.setTitle("pts_stack_imp")
    pts_stack_imp.show()

    rot_seg_imp.changes = False
    rot_seg_imp.close()
    egfp_imp = egfp_mch_imps[0]
    mch_imp = egfp_mch_imps[1]
    imps_to_combine = [egfp_mch_imps[1], egfp_mch_imps[0], roi_imp]
    egfp_imp.show()
    mch_imp.show()
    roi_imp.show()
    print("box height um = " +
          str(roi_imp.getNSlices() * info.get_xy_pixel_size_um()))
    IJ.run(
        egfp_imp, "Size...", "width=" + str(width) + " height=" + str(height) +
        " depth=" + str(depth) + " average interpolation=Bilinear")
    IJ.run(
        mch_imp, "Size...", "width=" + str(width) + " height=" + str(height) +
        " depth=" + str(depth) + " average interpolation=Bilinear")
    #IJ.run("Merge Channels...", "c1=[" + mch_imp.getTitle() +
    #								"] c2=[" + egfp_imp.getTitle() +
    #								"] c7=[" + roi_imp.getTitle() + "] create keep");
    composite_imp = RGBStackMerge().mergeChannels(imps_to_combine, False)
    print(composite_imp)
    composite_imp.show()
    print("end of vessel centerline id step, image dims = ({}x{}x{})".format(
        composite_imp.getWidth(), composite_imp.getHeight(),
        composite_imp.getNSlices()))
    WaitForUserDialog("pause").show()
    # do qc here?

    #WM.getImage("Composite").addImageListener(UpdateRoiImageListener(rois));
    IJ.run(roi_imp, "8-bit", "")

    if save_output:
        FileSaver(composite_imp).saveAsTiffStack(
            os.path.join(output_path, "segmentation result.tif"))
        print(roi_imp)
        FileSaver(roi_imp).saveAsTiff(
            os.path.join(output_path, "vessel axis.tif"))

    egfp_imp.changes = False
    mch_imp.changes = False
    roi_imp.changes = False
    fit_basis_imp.changes = False
    pts_stack_imp.changes = False
    egfp_imp.close()
    mch_imp.close()
    #roi_imp.close();
    fit_basis_imp.close()
    pts_stack_imp.close()

    zcoords = [i for i in range(composite_imp.getNSlices())]
    xyz_smooth_centres = [(x, y, z)
                          for ((x, y), z) in zip(smooth_centres, zcoords)]

    composite_imp2 = straighten_vessel(composite_imp,
                                       xyz_smooth_centres,
                                       save_output=True)
    composite_imp3 = straighten_vessel(composite_imp2,
                                       xyz_smooth_centres,
                                       it=2,
                                       save_output=True)
    return composite_imp3
Ejemplo n.º 22
0
#Import XYZ Images. Normalize by white balance before.
n_slices = imp2.getStack().getSize()
I =[]
for i in range(1, n_slices+1):
  imp2.setSlice(i) 
  n = imp2.getProcessor().getPixels()   
  n2 = [val for val in n]
  I.append(n2)

D= SimpleMatrix(I) 

RGB = M.mult(D).getMatrix().data

L1 = [RGB[i:i+imp2.height*imp2.width] for i in range(0, len(RGB), imp2.height*imp2.width)]

#fiddly bits to make an image stack and display 

R = ImagePlus("Red", FloatProcessor(imp2.width,imp2.height,L1[0])).show()
G= ImagePlus("Green", FloatProcessor(imp2.width,imp2.height,L1[1])).show()
B = ImagePlus("Blue", FloatProcessor(imp2.width,imp2.height,L1[2])).show()

IJ.run("Images to Stack", "name=Stack title=[] use")
imp = IJ.getImage()
imp.setTitle("RGB")
IJ.run("Make Composite", "display=Composite")
IJ.run("Enhance Contrast", "saturated=0.35")
IJ.run("Next Slice [>]")
IJ.run("Enhance Contrast", "saturated=0.35")
IJ.run("Next Slice [>]")
IJ.run("Enhance Contrast", "saturated=0.35")
Ejemplo n.º 23
0
#imp1=dsin.duplicate()
#imp = ij.convert().convert(imp1, ImagePlus)
imp = ImagePlus()
imp.setDimensions(c, z, 1)
stack = ImageStack(h, w)
#imp1.copyDataFrom(dsin)
k = 0
ioffset = 0
planesize = h * w
for i in range(0, z):
    for j in range(0, c):
        k = k + 1
        stack.addSlice(
            str(k),
            FloatProcessor(h, w, doutarray[ioffset:(ioffset + planesize)]))
        ioffset = ioffset + planesize
#outds1 = ijmService.getDataset(doutMNarray)
imp.setStack(stack, c, z, 1)

if c == 2:
    outds1 = extractChannel(imp, 1, 2)
    outds2 = extractChannel(imp, 2, 2)
    #  outds1 = createChannel(doutarray,h,w,z,1)
    #  outds2 = createChannel(doutarray,h,w,z,2)
    outds1.setColor(java.awt.Color.RED)
    outds2.setColor(java.awt.Color.GREEN)
    outds = RGBStackMerge.mergeChannels(array([outds1, outds2], ImagePlus), 0)
else:
    if c > 2:
        outds1 = extractChannel(imp, 1, 3)
Ejemplo n.º 24
0
from ij.process import ImageStatistics, AutoThresholder
from ij.process.AutoThresholder import getThreshold
from ij.process.AutoThresholder import Method 


from script.imglib.math import Compute, Divide, Multiply, Subtract
from script.imglib.algorithm import Gauss, Scale2D, Resample
from script.imglib import ImgLib 

import mpicbg.imglib.image.ImagePlusAdapter
import mpicbg.imglib.image.display.imagej.ImageJFunctions
import fiji.process.Image_Expression_Parser

IJ.run("Close All")

imp = ImagePlus("my new image", FloatProcessor(512, 512))
pix = imp.getProcessor().getPixels()
print(type(pix))

n_pixels = len(pix)
print(n_pixels)

# catch width
w = imp.getWidth()
# create a ramp gradient from left to right
for i in range(len(pix)):
	pix[i] = i % w
  
# adjust min and max, since we know them
imp.getProcessor().setMinAndMax(0, w-1)
imp.show()
Ejemplo n.º 25
0
# 이미지 전체에서 최소픽셀값 빼기
from ij import IJ, ImagePlus
from ij.process import FloatProcessor

imp = IJ.getImage()
ip = imp.getProcessor().convertToFloat()  # as a copy
pixels = ip.getPixels()

# Built-in 함수 사용 (min, reduce)
# pixels를 훑으며 min 적용
minimum = reduce(min, pixels)

# Method 1: for loop을 적용해서 모든 pixel 값을 직접 변경
for i in xrange(len(pixels)):
    pixels[i] -= minimum
# 변경된 pixel값들로 새 이미지 만들기:
imp2 = ImagePlus(imp.title, ip)

# Method 2: 모든 pixel에서 최소값을 뺀 결과를 다른 배열(pixel3)에 저장
pixels3 = map(lambda x: x - minimum, pixels)
# 배열로부터 이미지 만들기
ip3 = FloatProcessor(ip.width, ip.height, pixels3, None)  # None: color
imp3 = ImagePlus(imp.title, ip3)

# Show the images in an ImageWindow:
imp2.show()
imp3.show()
Ejemplo n.º 26
0
# Input parameters
N = 500  # number of pixels
L = 532 * 0.000000001  # wavelength in nm
w = 0.002  # width of field in meters
z = 0.05  # object-to-detector distance in meter

imp = IJ.getImage()
z = Propagator.Zone(L, N, z, w)  #wave propagation term

#iterative reconstruction
for j in range(0, 50):
    if j == 0:
        #creating initial complex-valued field distribution in the detector plane
        imp_init = ImagePlus("real",
                             FloatProcessor(N, N, [0 for i in range(N * N)]))
        fft_1 = fft.fft(imp, imp_init, N, N)
    else:
        #reconstruction of transmission function
        imp2 = ImagePlus(
            "phase", FloatProcessor(N, N, [cmath.phase(x) for x in fft_4],
                                    None))
        m = [val for val in imp.getProcessor().getPixels()]
        sin = [math.sin(val) for val in imp2.getProcessor().getPixels()]
        cos = [math.cos(val) for val in imp2.getProcessor().getPixels()]
        imp_r = ImagePlus(
            "", FloatProcessor(N, N, [x * y for x, y in zip(m, cos)]))
        imp_i = ImagePlus(
            "", FloatProcessor(N, N, [x * y for x, y in zip(m, sin)]))
        fft_1 = fft.fft(imp_r, imp_i, N, N)
# 선택 영역 칠하기
from ij import ImagePlus
from ij.process import FloatProcessor
from array import zeros
from random import random
from ij.gui import Roi, PolygonRoi

# noise로 칠해진 이미지 생성
width = 1024
height = 1024
pixels = zeros('f', width * height)

for i in xrange(len(pixels)):
    pixels[i] = random()

fp = FloatProcessor(width, height, pixels, None)
imp = ImagePlus("Random", fp)

imp.show()

# 직사각형 관심영역(ROI: Region of Interest)를 2로 채우기
fp = FloatProcessor(width, height, pixels, None)
roi = Roi(400, 200, 400, 300)  # Roi(int x, int y, int width, int height)
fp.setRoi(roi)
fp.setValue(2.0)
fp.fill()

imp2 = ImagePlus("Rectangle", fp)
imp2.show()

# Polygon ROI를 -3으로 채우기
Ejemplo n.º 28
0

# open image (RGB)
imp = IJ.openImage(srcpath)

# imageProcessor
ip = imp.getProcessor()

# FloatProcessor by channel
chpx = []  # channel pixels
filtered = []  # filtered FloatProcessor
for i in range(3):
    chpx.append(ip.toFloat(i, None).getPixels())

    _filtered = [threshold(p) for p in chpx[i]]  # filtered pixels
    filtered.append(FloatProcessor(ip.width, ip.height, _filtered, None))

# save each channels
for i in range(3):
    IJ.save(ImagePlus("filtered_%d" % i, filtered[i]),
            dstpath[:-4] + '_%d' % i)

# add slices to new stack
stack_new = ImageStack(imp.width, imp.height)

for i in range(3):
    stack_new.addSlice(None, filtered[i])

# new image (stack)
imp_new = ImagePlus("new", stack_new)
imp_new.show()
Ejemplo n.º 29
0
    IJ.run(roi_stack, "Set...",
           "value=" + str(roi_stack.getProcessor().maxValue()) + " slice")
    min_idx = projected_im_row.index(min(projected_im_row))
    #	print("min idx = " + str(min_idx));
    unzip_axis.append(min_idx)
    egfp_imp.setRoi(ring_roi)
    projected_im_pix.append(projected_im_row)
#	WaitForUserDialog("pause").show();

#print(centres);
for ch in split_chs:
    ch.close()

w = len(projected_im_row)
h = len(projected_im_pix)
ip = FloatProcessor(w, h)
pix = ip.getPixels()
for x in range(w):
    for y in range(h):
        pix[y * w + x] = projected_im_pix[y][x]

out_imp = ImagePlus("projected", ip)
out_imp.show()

egfp_imp_disp.show()
roi_stack.show()
#egfp_imp_disp.addImageListener(UpdateRoiImageListener(ring_rois));

unwrapped_imp = IJ.createImage("twisted unwrap", 2 * out_imp.getWidth(),
                               out_imp.getHeight(), 1, 32)
unwrapped_imp.show()
Ejemplo n.º 30
0
calc.calculate("Add create", red,green);

IJ.run("Subtract Background...", "rolling=50");
IJ.run("LoG 3D");

imp = IJ.getImage()
pix = imp.getProcessor().convertToFloat().getPixels()
 
# find out the minimal pixel value
min = reduce(Math.min, pix)
 
# create a new pixel array with the minimal value subtracted
pix2 = map(lambda x: x - min, pix)

name="log"
ImagePlus(name, FloatProcessor(imp.width, imp.height, pix2, None)).show()
IJ.run("16-bit");

IJ.selectWindow(name)
IJ.run("16-bit")
IJ.run("Auto Threshold", "method=Otsu");

'''IJ.run("Make Binary");

table = ResultsTable()
# Create a hidden ROI manager, to store a ROI for each blob or cell
roim = RoiManager(True)
pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA, table, 0, Double.POSITIVE_INFINITY, 0.0, 1.0)

print len(table)'''
# reshape image stack as an n x m matrix
n_slices = imp2.getStack().getSize()
I = []
for i in range(1, n_slices + 1):
    imp2.setSlice(i)
    n = imp2.getProcessor().getPixels()
    n2 = [val for val in n]
    I.append(n2)

# construct Jama matrices and calculate normals
B = Matrix(L)
C = Matrix(I)
kN = B.solve(C).getColumnPackedCopy()  # calculate normals via least squares

#return matrices to images
ipFloat = FloatProcessor(3, imp2.height * imp2.width, kN)
impa = ImagePlus("kN", ipFloat)
impa.show()

#reshape as using montage and reslice commands (need a better way to do this)
IJ.run(impa, "Montage to Stack...",
       "images_per_row=1 images_per_column=%d border=0" % imp2.height)
impb = IJ.getImage()
IJ.run("Reslice [/]...", "output=1.000 start=Left avoid")
impc = IJ.getImage()

impa.close()
impb.close()

#calculating albedo
IJ.run("Z Project...", "projection=[Max Intensity]")
Ejemplo n.º 32
0
A speed test example fixed

                     Modifications
  Date      Who  Ver                       What
----------  --- ------  -------------------------------------------------
2017-04-02  JRM 0.1.00  Initial test with 4096. Original example did not
                        import functions. 11.594sec on jrmFastMac
"""

from org.python.core import codecs
codecs.setDefaultEncoding('utf-8')

from java.lang import System
from ij import IJ, ImagePlus
from ij.process import FloatProcessor
from math import sqrt


t0 = System.currentTimeMillis()
size = 4096
ip = FloatProcessor(size,size)
for y in range(size):
   IJ.showProgress(y,size-1)
   for x in range(size):
       dx=x-size/2; dy=y-size/2
       d = sqrt(dx*dx+dy*dy)
       ip.setf(x,y,-d)
time = str((System.currentTimeMillis()-t0)/1000.0)+" seconds"
ImagePlus(time,ip).show()
IJ.run("Red/Green");
Ejemplo n.º 33
0
def maxfilter(floatIm, kernalSize=11):


    def _kernalmax(floatIm, X, Y, kernalX, kernalY):
        
        # Define image dimensions and kernal shape.
        pixels_ = floatIm.getPixels()
        width_ = int(floatIm.getWidth())
        height_ = int(floatIm.getHeight())
        halfX = int(kernalX / 2)
        halfY = int(kernalY / 2)
        startX = int(X-halfX)
        startY = int(Y-halfY)
        if (startX < 0):
            startX = 0
        if (startY < 0):
            startY = 0
        endX = X+halfX
        endY = Y+halfY
        if (endX > width_):
            endX = width_
        if (endY > height_):
            endY = height_
        
        # Loop through y coordinates, shift kernal for every pixel.
        maxPx = 0
        
        for y in range(startY, endY):

            offset_ = width_ * y
        
            for x in range(startX, endX):

                j = offset_ + x
                if pixels_[j] > maxPx:
                    maxPx = pixels_[j]

        return maxPx


    # Define input image dimensions.
    width = floatIm.getWidth()
    height = floatIm.getHeight()
    ndim = width * height
    # pixels = floatIm.getPixels()
    # pixIn = [pixels[i] for i in range(len(pixels))]

    # Initiate output stack with same XY dimensions as input stack.
    pixOut = [0] * ndim

    # Calculate Sobel transform of input image.
    procIm = floatIm.convertToByteProcessor(True)
    
    # procIm = procIm.medianFilter()
    # procIm = procIm.smooth()
    # procIm = procIm.findEdges()

    # Loop through pixels in y dimension.
    for row in range(height-1):

        offset = width * row

        # Within every y dimension, loop through pixels in x dimension.
        for column in range(width-1):

            # Retrieve maximum within kernel around pixel in sobel filtered image.
            # Set pixel value in output to max of kernel in sobel image.
            i = offset + column
            pixOut[i] = _kernalmax(procIm, column, row, kernalSize, kernalSize)

    # Return 
    floatOut = FloatProcessor(width, height, pixOut)
    return floatOut
Ejemplo n.º 34
0
from ij import IJ, ImagePlus, WindowManager
from ij.process import FloatProcessor
from ij.gui import OvalRoi, Roi
from ij.plugin.filter import GaussianBlur
from java.util import Random

w, h = 128, 128
fp = FloatProcessor(w, h)
imp = ImagePlus("synth training", fp)

fp.setColor(150)  # background
fp.fill()

# neurites
rois = [
    OvalRoi(w / 2 - w / 4, h / 2 - h / 4, w / 4,
            h / 2),  # stretched vertically
    OvalRoi(w / 2, h / 2 - h / 8, w / 4, h / 4),
    OvalRoi(w / 2 - w / 18, h / 2 + h / 10, w / 6, h / 4),
    OvalRoi(w / 2 - w / 18, h / 8 + h / 16, w / 3, h / 5)
]

fp.setColor(50)  # membrane
fp.setLineWidth(3)

for roi in rois:
    fp.draw(roi)

fp.setColor(90)  # oblique membrane
fp.setLineWidth(5)
roi_oblique = OvalRoi(w / 2 + w / 8, h / 2 + h / 8, w / 4, h / 4)
Ejemplo n.º 35
0
#
from ij import IJ, ImagePlus  
from ij.process import FloatProcessor  
from array import zeros  
from random import random  
from ij.gui import Roi, PolygonRoi  
  
# Create a new ImagePlus filled with noise  
width = 1024  
height = 1024  
pixels = zeros('f', width * height)  
  
for i in xrange(len(pixels)):  
  pixels[i] = random()  
  
fp = FloatProcessor(width, height, pixels, None)  
imp = ImagePlus("Random", fp)  
  
# Fill a rectangular region of interest  
# with a value of 2:  
roi = Roi(400, 200, 400, 300)  
fp.setRoi(roi)  
fp.setValue(2.0)  
fp.fill()  
  
# Fill a polygonal region of interest  
# with a value of -3  
xs = [234, 174, 162, 102, 120, 123, 153, 177, 171,  
      60, 0, 18, 63, 132, 84, 129, 69, 174, 150,  
      183, 207, 198, 303, 231, 258, 234, 276, 327,  
      378, 312, 228, 225, 246, 282, 261, 252]  
Ejemplo n.º 36
0
def regBf(fn=None, imp=None, refId=None):
    """ 
        Register a time series stack to a specified reference slice, 
            from a file (imported by BioFormat) or a stack ImagePlus.
        Returns a registered ImagePlus.
        The stack must have only 1 z layer.
        refId is in the format of [int channel, int slice, int frame]
            If no refId is supplied, will use the first slice [1,1,1]

        Note: since TurboReg is used for registeration, there will be 
            temporary opened image windows.

    """

    ## Prepare the right ImagePlus
    if imp is None:
        if fn is None:
            od = OpenDialog("Choose a file", None)
            filename = od.getFileName()

            if filename is None:
                print "User canceled the dialog!"
                return
            else:
                directory = od.getDirectory()
                filepath = directory + filename
                print "Selected file path:", filepath
        else:
            if os.path.exists(fn) and os.path.isfile(fn):
                filepath = fn
            else:
                print "File does not exist!"
                return

        imps = BF.openImagePlus(filepath)
        imp = imps[0]
        if imp is None:
            print "Cannot load file!"
            return

    else:
        if fn is not None:
            print "File or ImagePlus? Cannot load both."
            return

    width = imp.getWidth()
    height = imp.getHeight()
    # C
    nChannels = imp.getNChannels()
    # Z
    nSlices = imp.getNSlices()
    # T
    nFrames = imp.getNFrames()
    # pixel size
    calibration = imp.getCalibration()

    # Only supoort one z layer
    if nSlices != 1:
        print "Only support 1 slice at Z dimension."
        return

    # set registration reference slice
    if refId is None:
        refC = 1
        refZ = 1
        refT = 1
    else:
        refC = refId[0]
        refZ = refId[1]
        refT = refId[2]
        if (refC not in range(1, nChannels + 1)
                or refZ not in range(1, nSlices + 1)
                or refT not in range(1, nFrames + 1)):
            print "Invalid reference image!"
            return

    stack = imp.getImageStack()
    registeredStack = ImageStack(width, height, nChannels * nFrames * nSlices)

    # setup windows, these are needed by TurboReg
    tmpip = FloatProcessor(width, height)
    refWin = ImageWindow(ImagePlus("ref", tmpip))
    bounds = refWin.getBounds()
    # refWin.setVisible(False)
    toRegWin = ImageWindow(ImagePlus("toReg", tmpip))
    toRegWin.setLocation(bounds.width + bounds.x, bounds.y)
    # toRegWin.setVisible(False)
    toTransformWin = ImageWindow(ImagePlus("toTransform", tmpip))
    toTransformWin.setLocation(2 * bounds.width + bounds.x, bounds.y)
    # toTransformWin.setVisible(False)

    # get reference image
    refImp = ImagePlus("ref",
                       stack.getProcessor(imp.getStackIndex(refC, refZ, refT)))
    refWin.setImage(refImp)

    tr = TurboReg_()

    for t in xrange(1, nFrames + 1):
        IJ.showProgress(t - 1, nFrames)

        # print "t ", t
        # do TurboReg on reference channel
        toRegId = imp.getStackIndex(refC, refZ, t)
        toRegImp = ImagePlus("toReg", stack.getProcessor(toRegId))
        toRegWin.setImage(toRegImp)

        regArg =  "-align " +\
                  "-window " + toRegImp.getTitle() + " " +\
                  "0 0 " + str(width - 1) + " " + str(height - 1) + " " +\
                  "-window " + refImp.getTitle() + " " +\
                  "0 0 " + str(width - 1) + " " + str(height - 1) + " " +\
                  "-rigidBody " +\
                  str(width / 2) + " " + str(height / 2) + " " +\
                  str(width / 2) + " " + str(height / 2) + " " +\
                  "0 " + str(height / 2) + " " +\
                  "0 " + str(height / 2) + " " +\
                  str(width - 1) + " " + str(height / 2) + " " +\
                  str(width - 1) + " " + str(height / 2) + " " +\
                  "-hideOutput"

        tr = TurboReg_()
        tr.run(regArg)
        registeredImp = tr.getTransformedImage()
        sourcePoints = tr.getSourcePoints()
        targetPoints = tr.getTargetPoints()

        registeredStack.setProcessor(registeredImp.getProcessor(), toRegId)

        # toRegImp.flush()

        # apply transformation on other channels
        for c in xrange(1, nChannels + 1):
            # print "c ", c
            if c == refC:
                continue

            toTransformId = imp.getStackIndex(c, 1, t)
            toTransformImp = ImagePlus("toTransform",
                                       stack.getProcessor(toTransformId))
            toTransformWin.setImage(toTransformImp)

            transformArg = "-transform " +\
                           "-window " + toTransformImp.getTitle() + " " +\
                           str(width) + " " + str(height) + " " +\
                           "-rigidBody " +\
                           str(sourcePoints[0][0]) + " " +\
                           str(sourcePoints[0][1]) + " " +\
                           str(targetPoints[0][0]) + " " +\
                           str(targetPoints[0][1]) + " " +\
                           str(sourcePoints[1][0]) + " " +\
                           str(sourcePoints[1][1]) + " " +\
                           str(targetPoints[1][0]) + " " +\
                           str(targetPoints[1][1]) + " " +\
                           str(sourcePoints[2][0]) + " " +\
                           str(sourcePoints[2][1]) + " " +\
                           str(targetPoints[2][0]) + " " +\
                           str(targetPoints[2][1]) + " " +\
                           "-hideOutput"

            tr = TurboReg_()
            tr.run(transformArg)
            registeredStack.setProcessor(
                tr.getTransformedImage().getProcessor(), toTransformId)

            # toTransformImp.flush()
            sourcePoints = None
            targetPoints = None

        IJ.showProgress(t, nFrames)
        IJ.showStatus("Frames registered: " + str(t) + "/" + str(nFrames))

    refWin.close()
    toRegWin.close()
    toTransformWin.close()

    imp2 = ImagePlus("reg_" + imp.getTitle(), registeredStack)
    imp2.setCalibration(imp.getCalibration().copy())
    imp2.setDimensions(nChannels, nSlices, nFrames)
    # print "type ", imp.getType()
    # print "type ", imp2.getType()
    # print nChannels, " ", nSlices, " ", nFrames
    # print registeredStack.getSize()

    for key in imp.getProperties().stringPropertyNames():
        imp2.setProperty(key, imp.getProperty(key))
    # comp = CompositeImage(imp2, CompositeImage.COLOR)
    # comp.show()
    # imp2 = imp.clone()
    # imp2.setStack(registeredStack)
    # imp2.setTitle("reg"+imp.getTitle())
    # imp2.show()
    # imp.show()

    return imp2