Ejemplo n.º 1
0
def rgb2gray(rgbFram):
    #grayFram = rgbFram
    #sensor.set_pixformat(sensor.GRAYSCALE)
    img_gray = sensor.snapshot()
    for x in range(0, rgbFram.width()):
        for y in range(0, rgbFram.height()):
            rgb = rgbFram.get_pixel(x, y)
            gray = image.rgb_to_grayscale(rgb)
            img_gray.set_pixel(x, y, gray)
            #grayFram[x,y] = gray
    a = img_gray.get_pixel(10, 10)
    print(a)
    return img_gray
         img.draw_rectangle(blob.rect())
 for blob in img.find_blobs([yellow_thresholds], area_threshold=150, merge=False):
     if(max(blob.w(), blob.h())/min(blob.w()+blob.w(), blob.h())<1.5 and blob.cx()+(blob.w()/2)<ImageX and blob.cx()-(blob.w()/2)>0 and blob.cy()-(blob.h()/2)>0 and blob.cy()+(blob.h()/2)<ImageY and math.sqrt(((blob.cx()-(ImageX/2))*(blob.cx()-(ImageX/2)))+((blob.cy()-(ImageY/2))*(blob.cy()-(ImageY/2))))<(ImageY/3) and img.get_statistics(roi=blob.rect()).stdev()<30):
         yellow_blobfound=True
         img.draw_rectangle(blob.rect())
 for blob in img.find_blobs([green_thresholds], area_threshold=150, merge=False):
     if(max(blob.w(), blob.h())/min(blob.w()+blob.w(), blob.h())<1.5 and blob.cx()+(blob.w()/2)<ImageX and blob.cx()-(blob.w()/2)>0 and blob.cy()-(blob.h()/2)>0 and blob.cy()+(blob.h()/2)<ImageY and math.sqrt(((blob.cx()-(ImageX/2))*(blob.cx()-(ImageX/2)))+((blob.cy()-(ImageY/2))*(blob.cy()-(ImageY/2))))<(ImageY/3) and img.get_statistics(roi=blob.rect()).stdev()<30):
         green_blobfound=True
         img.draw_rectangle(blob.rect())
 img.cartoon(size=1, seed_threshold=1)
 img.binary([letter_thresholds], zero=True)
 letter_blobfound=False
 for blob in img.find_blobs([letter_thresholds], area_threshold=150, merge=False):
     if(max(blob.w(), blob.h())/min(blob.w()+blob.w(), blob.h())<1.5 and blob.cx()+(blob.w()/2)<ImageX and blob.cx()-(blob.w()/2)>0 and blob.cy()-(blob.h()/2)>0 and blob.cy()+(blob.h()/2)<ImageY and math.sqrt(((blob.cx()-(ImageX/2))*(blob.cx()-(ImageX/2)))+((blob.cy()-(ImageY/2))*(blob.cy()-(ImageY/2))))<(ImageY/3) and img.get_statistics(roi=blob.rect()).stdev()>30):
         letter_blobfound=True
         SimilarityH = 255-((abs(image.rgb_to_grayscale(img.get_pixel(blob.cx(), blob.y()))-blobHtop)+abs(image.rgb_to_grayscale(img.get_pixel(blob.x(), blob.cy()))-blobHleft)+abs(image.rgb_to_grayscale(img.get_pixel(blob.x(), blob.y()))-blobHtopleft)+abs(image.rgb_to_grayscale(img.get_pixel(blob.cx(), blob.cy()))-blobHcenter))/4)
         SimilarityS = 255-((abs(image.rgb_to_grayscale(img.get_pixel(blob.cx(), blob.y()))-blobStop)+abs(image.rgb_to_grayscale(img.get_pixel(blob.x(), blob.cy()))-blobSleft)+abs(image.rgb_to_grayscale(img.get_pixel(blob.x(), blob.y()))-blobStopleft)+abs(image.rgb_to_grayscale(img.get_pixel(blob.cx(), blob.cy()))-blobScenter))/4)
         SimilarityU = 255-((abs(image.rgb_to_grayscale(img.get_pixel(blob.cx(), blob.y()))-blobUtop)+abs(image.rgb_to_grayscale(img.get_pixel(blob.x(), blob.cy()))-blobUleft)+abs(image.rgb_to_grayscale(img.get_pixel(blob.x(), blob.y()))-blobUtopleft)+abs(image.rgb_to_grayscale(img.get_pixel(blob.cx(), blob.cy()))-blobUcenter))/4)
         img.draw_rectangle(blob.rect())
 if(red_blobfound==True):
     print('Red')
     uart.write('R')
 elif(yellow_blobfound==True):
     print('Yellow')
     uart.write('Y')
 elif(green_blobfound==True):
     print('Green')
     uart.write('G')
 elif(letter_blobfound==True):
     if(SimilarityS>=SimilarityH and SimilarityS>=SimilarityU):
         print('S')
Ejemplo n.º 3
0
def unittest(data_path, temp_path):
    import image
    gs = image.rgb_to_grayscale((120, 200, 120))
    return (gs == 182)
Ejemplo n.º 4
0
REGRESSION_GRAY = False
REGRESSION_SEGMENTED = True
# Setting upp thresholds function

# find_line_segments instead of get_line_regression?

while True:
    clock.tick()
    fps = clock.fps()

    img = sensor.snapshot().histeq()

    if REGRESSION_COLOR:
        line = img.get_regression((COLOR_THRESHOLD), pixels_threshold = PIXELS_THRESHOLD, area_threshold = AREA_THRESHOLD, robust = True, roi = LANE_ROI)
    elif REGRESSION_GRAY:
        line = image.rgb_to_grayscale(img).get_regression((GRAYSCALE_THRESHOLDS), pixels_threshold = PIXELS_THRESHOLD, area_threshold = AREA_THRESHOLD, robust = True, roi = LANE_ROI)
    elif REGRESSION_SEGMENTED:
        Lines = []
        for l in img.find_line_segments(merge_distance=0 max_theta_difference=15):
            img.draw_line(l.line(), color=(255, 0, 0), thickness=2)
            parameters = np.polyfit((l.line(x1),l.line(x2)), (l.line(y1),l.line(y2)), 1)
            slope = parameters[0]
            intercept = parameters[1]
            Lines.append((slope, intercept))
        LinesAverage = np.average(Lines, axis=0)

        # slope, intercept = l.line()
        # # y1 = IMG_HEIGHT
        # # y2 = int(IMG_HEIGHT*(3.25/5))
        # x1 = int((IMG_HEIGHT-intercept)/slope)
        # x2 = int((0-intercept)/slope)
def unittest(data_path, temp_path):
    import image
    gs = image.rgb_to_grayscale((120, 200, 120))
    return  (gs == 182)
Ejemplo n.º 6
0
#time.sleep(100)

#roi = (10,10,10,10)
#thres = (49,174)
while (True):

    #clock.tick()

    #img_gray = sensor.snapshot()
    #a = img.get_pixel(10,10)
    #i = rgb2gray(img)
    #time.sleep(100)
    #img.draw_rectangle(roi)
    #img = image.Image(path,copy_to_fb = True)
    #a = img.get_pixel(10,10)
    #b = image.rgb_to_grayscale(a)
    #bloc = img.find_blobs(thres)
    #roi = blob.rect()
    #img.draw_rectangle(roi)
    #a = img.width()

    for i in range(0, img.width()):
        for j in range(0, img.height()):
            a = img.get_pixel(i, j)
            g = image.rgb_to_grayscale(a)
            img_gray.set_pixel(i, j, g)

    iii = image.copy(img_gray)
    b = img_gray.get_pixel(10, 10)
    print(b)