Ejemplo n.º 1
0
def make_srcnn_rgb_dataset_based_on_cifar10():
    print('making SRCNN-RGB dataset using CIFAR-10...')
    (Y_train, _), (Y_test, _) = get_dataset_part(cifar10.load_data(),
                                                 train_part=0.2)

    from image_handler import get_image, get_image_data, zoom_out_image, zoom_up_image

    # X_train
    print('making X_train list...')
    X_train = []
    for item in Y_train:
        image_data = item.tolist()
        image = get_image(image_data, mode='RGB')
        zoomed_out_image = zoom_out_image(image, times=2)
        zoomed_up_image = zoom_up_image(zoomed_out_image, times=2)
        zoomed_up_image_data = get_image_data(zoomed_up_image)
        X_train.append(zoomed_up_image_data)

    # X_test
    print('making X_test list...')
    X_test = []
    for item in Y_test:
        image_data = item.tolist()
        image = get_image(image_data, mode='RGB')
        zoomed_out_image = zoom_out_image(image, times=2)
        zoomed_up_image = zoom_up_image(zoomed_out_image, times=2)
        zoomed_up_image_data = get_image_data(zoomed_up_image)
        X_test.append(zoomed_up_image_data)

    dtype = 'uint8'
    dataset = (np.array(X_train, dtype=dtype), np.array(Y_train, dtype=dtype)), \
              (np.array(X_test, dtype=dtype), np.array(Y_test, dtype=dtype))
    print('saving dataset to srcnn-rgb-cifar10-dataset.npz...')
    np.savez('datasets/srcnn-rgb-cifar10-dataset.npz', dataset)
Ejemplo n.º 2
0
def make_pasadena_dataset():
    print('making PASADENA dataset...')

    from image_handler import get_image_data, get_image, zoom_out_image, zoom_up_image

    path = 'saved_images/Pasadena Dataset/'
    filename_prefix = path + 'dcp_24'
    size = 10
    result = []

    for i in range(size):
        filename = filename_prefix + str(12 + i) + '.jpg'
        image = Image.open(filename)
        print('Image', filename.rpartition('/')[2], 'opened')
        image_data = get_image_data(image)
        result.append(image_data)

    print('making Y_train and Y_test...')
    train_size = 7
    Y_train, Y_test = result[:train_size], result[train_size:]

    # X_train
    print('making X_train list...')
    X_train = []
    for item in Y_train:
        image_data = item  # .tolist()
        image = get_image(image_data, mode='RGB')
        zoomed_out_image = zoom_out_image(image, times=2)
        zoomed_up_image = zoom_up_image(zoomed_out_image, times=2)
        zoomed_up_image_data = get_image_data(zoomed_up_image)
        X_train.append(zoomed_up_image_data)

    # X_test
    print('making X_test list...')
    X_test = []
    for item in Y_test:
        image_data = item  # .tolist()
        image = get_image(image_data, mode='RGB')
        zoomed_out_image = zoom_out_image(image, times=2)
        zoomed_up_image = zoom_up_image(zoomed_out_image, times=2)
        zoomed_up_image_data = get_image_data(zoomed_up_image)
        X_test.append(zoomed_up_image_data)

    dtype = 'uint8'
    dataset = (np.array(X_train, dtype=dtype), np.array(Y_train, dtype=dtype)), \
              (np.array(X_test, dtype=dtype), np.array(Y_test, dtype=dtype))
    print('saving dataset to pasadena-dataset.npz...')
    np.savez_compressed('datasets/pasadena-dataset.npz', dataset)
    print('pasadena-dataset.npz saved')
Ejemplo n.º 3
0
def make_hundred_dataset():
    print('making HUNDRED dataset...')

    from image_handler import get_image_data, get_image, zoom_out_image, zoom_up_image

    path = 'images/Hundred Dataset/images/'
    size = 53
    result = []

    for i in range(size):
        filename = path + str(1 + i) + '.png'
        image = Image.open(filename)
        print('Image', filename.rpartition('/')[2], 'opened')
        image_data = get_image_data(image)
        result.append(image_data)

    print('making Y_train and Y_test...')
    train_size = 40
    Y_train, Y_test = result[:train_size], result[train_size:]

    # X_train
    print('making X_train list...')
    X_train = []
    for item in Y_train:
        image_data = item  # .tolist()
        image = get_image(image_data, mode='RGB')
        zoomed_out_image = zoom_out_image(image, times=2)
        zoomed_up_image = zoom_up_image(zoomed_out_image, times=2)
        zoomed_up_image_data = get_image_data(zoomed_up_image)
        X_train.append(zoomed_up_image_data)

    # X_test
    print('making X_test list...')
    X_test = []
    for item in Y_test:
        image_data = item  # .tolist()
        image = get_image(image_data, mode='RGB')
        zoomed_out_image = zoom_out_image(image, times=2)
        zoomed_up_image = zoom_up_image(zoomed_out_image, times=2)
        zoomed_up_image_data = get_image_data(zoomed_up_image)
        X_test.append(zoomed_up_image_data)

    dtype = 'uint8'
    dataset = (np.array(X_train, dtype=dtype), np.array(Y_train, dtype=dtype)), \
              (np.array(X_test, dtype=dtype), np.array(Y_test, dtype=dtype))
    print('saving dataset to hundred-dataset.npz...')
    np.savez('datasets/hundred-dataset.npz', dataset)  # _compressed
    print('hundred-dataset.npz saved')
Ejemplo n.º 4
0
def make_srcnn_dataset_based_on_mnist():
    print('making SRCNN dataset using MNIST...')

    from image_handler import get_image, get_image_data, zoom_out_image, zoom_up_image

    (Y_train, _), (Y_test, _) = mnist.load_data()  # 60000, 10000

    # making X_train list
    print('making X_train list...')
    X_train = []
    for item in Y_train:
        image_data = item.tolist()
        image = get_image(image_data, mode='L')
        zoomed_out_image = zoom_out_image(image, times=2)
        zoomed_up_image = zoom_up_image(zoomed_out_image, times=2)
        zoomed_up_image_data = get_image_data(zoomed_up_image)
        X_train.append(zoomed_up_image_data)

    # making X_test list
    print('making X_test list...')
    X_test = []
    for item in Y_test:
        image_data = item.tolist()
        image = get_image(image_data, mode='L')
        zoomed_out_image = zoom_out_image(image, times=2)
        zoomed_up_image = zoom_up_image(zoomed_out_image, times=2)
        zoomed_up_image_data = get_image_data(zoomed_up_image)
        X_test.append(zoomed_up_image_data)

    # X_train, X_test = [], []
    # for X, Y in [(X_train, Y_train), (X_test, Y_test)]:
    #     for item in Y:
    #         image_data = item.tolist()
    #         image = get_image(image_data, mode='L')
    #         zoomed_out_image = zoom_out_image(image, times=2)
    #         zoomed_up_image = zoom_up_image(zoomed_out_image, times=2)
    #         zoomed_up_image_data = get_image_data(zoomed_up_image)
    #         X.append(zoomed_up_image_data)

    dtype = 'uint8'
    dataset = (np.array(X_train, dtype=dtype), np.array(Y_train, dtype=dtype)), \
              (np.array(X_test, dtype=dtype), np.array(Y_test, dtype=dtype))
    print('saving dataset to srcnn-mnist-dataset.npz...')
    np.savez('datasets/srcnn-mnist-dataset.npz', dataset)