def test_canny_edge():
    """
    canny边缘检测。
    :return:
    """
    image_file = os.path.join(image_dir, "demo1.png")
    img = cv2.imread(image_file)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # 高斯模糊,降低噪声
    blurred = cv2.GaussianBlur(img, (3, 3), 0)
    # 灰度图像
    gray = cv2.cvtColor(blurred, cv2.COLOR_RGB2GRAY)
    # 图像梯度
    x_grad = cv2.Sobel(gray, cv2.CV_16SC1, 1, 0)
    y_grad = cv2.Sobel(gray, cv2.CV_16SC1, 0, 1)
    # 计算边缘
    # 50和150参数必须符合1:3或者1:2
    edge_output = cv2.Canny(x_grad, y_grad, 50, 150)
    cv2.imshow("edge", edge_output)

    dst = cv2.bitwise_and(img, img, mask=edge_output)
    cv2.imshow('cedge', dst)

    images = [img, blurred, gray, edge_output, dst]
    pil_image_demo.plt_images(images)
def test_filter():
    """
    模糊/平滑。
    :return:
    """
    lena_img = misc.imread(os.path.join(image_dir, "lena_gray.jpg"))
    # print_image_pixel(lena_img)
    # lena_img = Image.fromarray(lena_img)
    # lena_img.show()
    # 高斯滤镜
    blurred_lena_none = ndimage.gaussian_filter(lena_img, sigma=0)
    blurred_lena = ndimage.gaussian_filter(lena_img, sigma=3)
    very_blurred = ndimage.gaussian_filter(lena_img, sigma=5)
    # 均匀滤镜
    local_mean = ndimage.uniform_filter(lena_img, size=11)
    # 锐化处理,通过增加拉普拉斯近似增加边缘权重
    blurred_l = ndimage.gaussian_filter(lena_img, 3)
    filter_blurred_l = ndimage.gaussian_filter(blurred_l, 1)
    alpha = 30
    sharpened = blurred_l + alpha * (blurred_l - filter_blurred_l)
    # 消噪处理
    noisy = lena_img + 0.4 * lena_img.std() * np.random.random(lena_img.shape)
    gauss_denoised = ndimage.gaussian_filter(noisy, 2)
    med_denoised = ndimage.median_filter(noisy, 3)

    # 显示图像
    image_arrays = [
        lena_img, blurred_lena_none, blurred_lena, very_blurred, local_mean,
        sharpened, noisy, gauss_denoised, med_denoised
    ]
    images = ndarray_2_image(image_arrays)
    pil_image_demo.plt_images(images, 3)
def test_threshold():
    """
    测试图像阈值。
    :return:
    """
    image_file1 = os.path.join(image_dir, "demo1.png")
    image1 = cv2.imread(image_file1)
    # 把输入图像灰度化
    image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
    gray = cv2.cvtColor(image1, cv2.COLOR_RGB2GRAY)
    # gray = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
    # show_image(gray)

    # 直接阈值化是对输入的单通道矩阵逐像素进行阈值分割。
    ret, binary1 = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_TRIANGLE)
    # show_image(binary)

    # 自适应阈值化能够根据图像不同区域亮度分布,改变阈值
    binary2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 25, 10)
    # show_image(binary)

    # 根据平均像素值
    h, w = gray.shape[:2]
    m = np.reshape(gray, [1, w*h])
    mean = m.sum()/(w*h)
    common_logger.info("mean:{0}".format(mean))
    ret, binary3 = cv2.threshold(gray, mean, 255, cv2.THRESH_BINARY)
    # show_image(binary)
    images = [image1, gray, binary1, binary2, binary3]
    pil_image_demo.plt_images(images)
Ejemplo n.º 4
0
def plt_image_test():
    """
    显示图像。
    :return:
    """
    im_nums = np.arange(8)
    im = np.zeros([8, 8])
    images = []

    for im_num in im_nums:
        im = im.copy()
        im[im_num, im_num] = im_num
        images.append(im)
    pil_image_demo.plt_images(images, 3, interpolation='nearest')
def convert_image_color():
    """
    图像颜色转换。
    :return:
    """
    image_file1 = os.path.join(image_dir, "demo1.png")
    image1 = cv2.imread(image_file1)
    image_cvt1 = cv2.cvtColor(image1, cv2.COLOR_BGR2HSV)
    image_cvt2 = cv2.cvtColor(image1, cv2.COLOR_RGB2HSV)
    image_cvt3 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
    image_cvt4 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
    image_cvt5 = cv2.cvtColor(image_cvt3, cv2.COLOR_RGB2GRAY)

    images = [image1, image_cvt1, image_cvt2, image_cvt3, image_cvt4, image_cvt5]
    pil_image_demo.plt_images(images)
def gray_dilation():
    """
    灰度图的形态修改
    :return:
    """
    # 灰度值图像
    im = np.zeros((64, 64))
    np.random.seed(2)
    x, y = (63 * np.random.random((2, 8))).astype(np.int)
    im[x, y] = np.arange(8)
    # print_image_pixel(im)
    # 灰度膨胀
    bigger_points = ndimage.grey_dilation(im,
                                          size=(5, 5),
                                          structure=np.ones((5, 5)))
    # print_image_pixel(bigger_points)

    square = np.zeros((16, 16))
    square[4:-4, 4:-4] = 1
    dist = ndimage.distance_transform_bf(square)
    dilate_dist = ndimage.grey_dilation(dist,
                                        size=(3, 3),
                                        structure=np.ones((3, 3)))

    images = [im, bigger_points, square, dist, dilate_dist]
    pil_image_demo.plt_images(images, 3)

    plt.figure(figsize=(12.5, 3))
    plt.subplot(141)
    plt.imshow(im, interpolation='nearest')
    plt.axis('off')
    plt.subplot(142)
    plt.imshow(bigger_points, interpolation='nearest')
    plt.axis('off')
    plt.subplot(143)
    plt.imshow(dist, interpolation='nearest')
    plt.axis('off')
    plt.subplot(144)
    plt.imshow(dilate_dist, interpolation='nearest')
    plt.axis('off')

    plt.subplots_adjust(wspace=0,
                        hspace=0.02,
                        top=0.99,
                        bottom=0.01,
                        left=0.01,
                        right=0.99)
    plt.show()
def test_histogram():
    """
    测试直方图。
    :return:
    """
    # 构造图像
    n = 10
    length = 256
    np.random.seed(1)
    im = np.zeros((length, length))
    points = length * np.random.random((2, n**2))
    im[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    im = ndimage.gaussian_filter(im, sigma=length / (4. * n))

    mask = (im > im.mean()).astype(np.float)
    mask += 0.1 * im
    img = mask + 0.2 * np.random.randn(*mask.shape)
    print("max:{0},min:{1}".format(np.max(img), np.min(img)))

    hist, bin_edges = np.histogram(img, bins=60)
    print("hist:{0}".format(hist))
    print("bin_edges:{0}".format(bin_edges))
    bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:])

    binary_img = img > 0.5
    images = [im, mask, binary_img]
    pil_image_demo.plt_images(images, 3)

    # 图像直方图
    plt.figure(figsize=(11, 4))
    plt.subplot(111)
    plt.plot(bin_centers, hist, lw=2)
    plt.axvline(0.5, color='r', ls='--', lw=2)
    plt.text(0.57,
             0.8,
             'histogram',
             fontsize=20,
             transform=plt.gca().transAxes)
    plt.yticks([])
    plt.subplots_adjust(wspace=0.02,
                        hspace=0.3,
                        top=1,
                        bottom=0.1,
                        left=0,
                        right=1)
    plt.show()
def edge_detect():
    """
    边缘检测
    :return:
    """
    # 合成数据
    im = np.zeros((256, 256))
    im[64:-64, 64:-64] = 1
    im = ndimage.rotate(im, 15, mode='constant')
    im_gf = ndimage.gaussian_filter(im, 8)

    # sobel检测
    sx = ndimage.sobel(im_gf, axis=0, mode='constant')
    sy = ndimage.sobel(im_gf, axis=1, mode='constant')
    sob = np.hypot(sx, sy)

    images = [im, im_gf, sx, sy, sob]
    pil_image_demo.plt_images(images, 3)
def test_image_flip():
    """
    翻转图像。
    使用函数cv2.flip(img,flipcode)翻转图像,flipcode控制翻转效果。
    flipcode = 0:沿x轴翻转
    flipcode > 0:沿y轴翻转
    flipcode < 0:x,y轴同时翻转
    :return:
    """
    image_file = os.path.join(image_dir, "demo1.png")
    img = cv2.imread(image_file)

    img_copy = img.copy()
    img_flip1 = cv2.flip(img, 0)
    img_flip2 = cv2.flip(img, 1)
    img_flip3 = cv2.flip(img, -1)

    images = [img_copy, img_flip1, img_flip2, img_flip3]
    pil_image_demo.plt_images(images)
def test_measurement():
    """
    测试测量对象属性。
    :return:
    """
    # 合成图像
    n = 10
    length = 256
    im = np.zeros((length, length))
    points = length * np.random.random((2, n**2))
    im[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
    im = ndimage.gaussian_filter(im, sigma=length / (4. * n))
    mask = im > im.mean()

    # 标记连接成分
    label_im, nb_labels = ndimage.label(mask)
    print("区域数量:{0}".format(nb_labels))

    # 计算每个区域的尺寸,均值等等
    sizes = ndimage.sum(mask, label_im, range(nb_labels + 1))
    mean_vals = ndimage.sum(im, label_im, range(1, nb_labels + 1))
    print("各个区域的尺寸:{0}".format(sizes))
    print("各个区域的平均尺寸:{0}".format(mean_vals))

    # 计算尺寸小的连接成分
    mask_size = sizes < 1000
    remove_pixel = mask_size[label_im]
    print(remove_pixel.shape)
    label_im2 = label_im.copy()
    label_im2[remove_pixel] = 0

    # 使用np.searchsorted重新分配标签
    labels = np.unique(label_im2)
    label_im3 = np.searchsorted(labels, label_im2)

    # 找到关注的封闭对象区域
    slice_x, slice_y = ndimage.find_objects(label_im3 == 4)[0]
    roi = im[slice_x, slice_y]

    images = [im, mask, label_im, label_im2, label_im3, roi]
    pil_image_demo.plt_images(images, 3)
def transform_shape():
    """
    形状转换,剪裁,上下翻转,旋转。
    :return:
    """
    lena_img = imageio.imread(os.path.join(image_dir, "lena_gray.jpg"))
    width, height = lena_img.shape
    print("width:{0}, height:{1}".format(width, height))
    # Cropping
    crop_lena = lena_img[round(width / 4):round(-width / 4),
                         round(height / 4):round(-height / 4)]
    # up <-> down flip
    flip_ud_lena = np.flipud(lena_img)
    # rotation
    rotate_lena = ndimage.rotate(lena_img, 45)
    rotate_lena_noreshape = ndimage.rotate(lena_img, 45, reshape=False)

    images = [
        lena_img, crop_lena, flip_ud_lena, rotate_lena, rotate_lena_noreshape
    ]
    pil_image_demo.plt_images(images)
Ejemplo n.º 12
0
def test_image_trans():
    """
    测试图像变换
    :return:
    """
    image_file = os.path.join(image_dir, "demo1.png")
    img = cv2.imread(image_file)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    height, width, dim = img.shape
    # 执行Gamma矫正,小于1的值让暗部细节大量提升,同时亮部细节少量提升
    img_gamma = ImageEnhanceCV.gamma_transform(img, 0.5)

    # 沿着横纵轴放大1.6倍,然后平移(-150,-240),最后沿原图大小截取,等效于裁剪并放大
    m_crop = np.array([
        [1.6, 0, -150],
        [0, 1.6, -240]
    ], dtype=np.float32)

    img_crop = cv2.warpAffine(img, m_crop, (width, height))

    # x轴的剪切变换,角度15°
    theta = 15 * np.pi / 180
    m_shear = np.array([
        [1, np.tan(theta), 0],
        [0, 1, 0]
    ], dtype=np.float32)

    img_sheared = cv2.warpAffine(img, m_shear, (width, height))

    # 顺时针旋转,角度15°
    m_rotate = np.array([
        [np.cos(theta), -np.sin(theta), 0],
        [np.sin(theta), np.cos(theta), 0]
    ], dtype=np.float32)

    img_rotated = cv2.warpAffine(img, m_rotate, (width, height))

    # show images
    images = [img, img_gamma, img_crop, img_sheared, img_rotated]
    pil_image_demo.plt_images(images)
def test_morphology():
    """
    测试图像的数学形态学。
    :return:
    """
    show_content = False
    show_images = False

    el = ndimage.generate_binary_structure(2, 1)
    el_int = el.astype(np.int)
    if show_content:
        print(el)
        print(el_int)

    # 腐蚀:最小化滤镜
    a = np.zeros((7, 7), dtype=np.int)
    a[1:6, 2:5] = 1
    a_erosion1 = ndimage.binary_erosion(a).astype(a.dtype)
    a_erosion2 = ndimage.binary_erosion(a, structure=np.ones(
        (5, 5))).astype(a.dtype)
    if show_content:
        print(a)
        print(a_erosion1)
        print(a_erosion2)
    if show_images:
        image_arrays = [a, a_erosion1, a_erosion2]
        image_arrays = bin2gray(image_arrays)
        images = ndarray_2_image(image_arrays)
        pil_image_demo.plt_images(images, 3)

    # 膨胀:最大化滤镜
    a = np.zeros((5, 5))
    a[2, 2] = 1
    a_dilation = ndimage.binary_dilation(a).astype(a.dtype)
    if show_content:
        print(a)
        print(a_dilation)
    if show_images:
        image_arrays = [a, a_dilation]
        image_arrays = bin2gray(image_arrays)
        images = ndarray_2_image(image_arrays)
        pil_image_demo.plt_images(images, 3)

    # 开操作:腐蚀 + 膨胀
    square = np.zeros((32, 32))
    square[10:-10, 10:-10] = 1
    np.random.seed(2)
    x, y = (32 * np.random.random((2, 20))).astype(np.int)
    square[x, y] = 1

    # 图像开操作
    open_square = ndimage.binary_opening(square)
    # 先腐蚀后膨胀
    eroded_square = ndimage.binary_erosion(square)
    reconstruction = ndimage.binary_propagation(eroded_square, mask=square)

    if show_images:
        image_arrays = [square, open_square, eroded_square, reconstruction]
        image_arrays = bin2gray(image_arrays)
        images = ndarray_2_image(image_arrays)
        pil_image_demo.plt_images(images, 2)