Ejemplo n.º 1
0
    def test_run_training_cloud_1(self, mocker):
        mp_init = mocker.patch('imageatm.components.cloud.AWS.init')
        mp_apply = mocker.patch('imageatm.components.cloud.AWS.apply')
        mp_train = mocker.patch('imageatm.components.cloud.AWS.train')
        mp_destroy = mocker.patch('imageatm.components.cloud.AWS.destroy')
        mocker.patch('imageatm.components.cloud.AWS.__init__')
        AWS.__init__.return_value = None

        run_training_cloud(
            image_dir=TEST_IMAGE_DIR,
            job_dir=TEST_JOB_DIR,
            provider='aws',
            tf_dir=TEST_TF_DIR,
            region=TEST_REGION,
            instance_type=TEST_INSTANCE_TYPE,
            vpc_id=TEST_VPC_ID,
            bucket=TEST_S3_BUCKET,
            destroy=False,
            cloud_tag=TEST_CLOUD_TAG,
        )
        mp_init.assert_called_once()
        mp_apply.assert_called_once()
        mp_train.assert_called_with(job_dir=TEST_JOB_DIR, image_dir=TEST_IMAGE_DIR)
        mp_destroy.assert_not_called()

        AWS.__init__.assert_called_with(
            tf_dir=TEST_TF_DIR,
            region=TEST_REGION,
            instance_type=TEST_INSTANCE_TYPE,
            vpc_id=TEST_VPC_ID,
            s3_bucket=TEST_S3_BUCKET,
            job_dir=TEST_JOB_DIR,
            cloud_tag=TEST_CLOUD_TAG,
        )
Ejemplo n.º 2
0
def train(
    config,
    config_file: Optional[Path] = None,
    job_dir: Optional[Path] = None,
    image_dir: Optional[Path] = None,
    provider: Optional[str] = None,
    instance_type: Optional[str] = None,
    region: Optional[str] = None,
    vpc_id: Optional[str] = None,
    bucket: Optional[str] = None,
    tf_dir: Optional[Path] = None,
    train_cloud: Optional[bool] = None,
    destroy: Optional[bool] = None,
    batch_size: Optional[int] = None,
    learning_rate_dense: Optional[float] = None,
    learning_rate_all: Optional[float] = None,
    epochs_train_dense: Optional[int] = None,
    epochs_train_all: Optional[int] = None,
    base_model_name: Optional[str] = None,
    cloud_tag: Optional[str] = None,
):
    config = update_config(
        config=config,
        config_file=config_file,
        job_dir=job_dir,
        image_dir=image_dir,
        provider=provider,
        instance_type=instance_type,
        region=region,
        vpc_id=vpc_id,
        bucket=bucket,
        tf_dir=tf_dir,
        train_cloud=train_cloud,
        destroy=destroy,
        batch_size=batch_size,
        learning_rate_dense=learning_rate_dense,
        learning_rate_all=learning_rate_all,
        epochs_train_dense=epochs_train_dense,
        epochs_train_all=epochs_train_all,
        base_model_name=base_model_name,
        cloud_tag=cloud_tag,
    )

    config.train['run'] = True

    validate_config(config, ['train'])

    if config.train.get('cloud'):
        from imageatm.scripts import run_training_cloud

        run_training_cloud(**{**config.cloud, **config.train})
    else:
        from imageatm.scripts import run_training

        run_training(**config.train)
Ejemplo n.º 3
0
    def test_run_training_cloud_2(self, mocker):
        mp_init = mocker.patch('imageatm.components.cloud.AWS.init')
        mp_apply = mocker.patch('imageatm.components.cloud.AWS.apply')
        mp_train = mocker.patch('imageatm.components.cloud.AWS.train')
        mp_destroy = mocker.patch('imageatm.components.cloud.AWS.destroy')
        mocker.patch('imageatm.components.cloud.AWS.__init__')
        AWS.__init__.return_value = None

        run_training_cloud(
            image_dir=TEST_IMAGE_DIR,
            job_dir=TEST_JOB_DIR,
            provider='aws',
            tf_dir=TEST_TF_DIR,
            region=TEST_REGION,
            instance_type=TEST_INSTANCE_TYPE,
            vpc_id=TEST_VPC_ID,
            bucket=TEST_S3_BUCKET,
            destroy=True,
            cloud_tag=TEST_CLOUD_TAG,
            epochs_train_dense=TEST_EPOCHS_TRAIN_DENSE,
            epochs_train_all=TEST_EPOCHS_TRAIN_ALL,
            learning_rate_dense=TEST_LEARNING_RATE_DENSE,
            learning_rate_all=TEST_LEARNING_RATE_ALL,
            batch_size=TEST_BATCH_SIZE,
            dropout_rate=TEST_DROPOUT_RATE,
            base_model_name=TEST_BASE_MODEL_NAME,
            loss=TEST_LOSS,
        )
        mp_init.assert_called_once()
        mp_apply.assert_called_once()
        mp_train.assert_called_with(
            job_dir=TEST_JOB_DIR,
            image_dir=TEST_IMAGE_DIR,
            epochs_train_dense=TEST_EPOCHS_TRAIN_DENSE,
            epochs_train_all=TEST_EPOCHS_TRAIN_ALL,
            learning_rate_dense=TEST_LEARNING_RATE_DENSE,
            learning_rate_all=TEST_LEARNING_RATE_ALL,
            batch_size=TEST_BATCH_SIZE,
            dropout_rate=TEST_DROPOUT_RATE,
            base_model_name=TEST_BASE_MODEL_NAME,
            loss=TEST_LOSS,
        )
        mp_destroy.assert_called_once()

        AWS.__init__.assert_called_with(
            tf_dir=TEST_TF_DIR,
            region=TEST_REGION,
            instance_type=TEST_INSTANCE_TYPE,
            vpc_id=TEST_VPC_ID,
            s3_bucket=TEST_S3_BUCKET,
            job_dir=TEST_JOB_DIR,
            cloud_tag=TEST_CLOUD_TAG,
        )
Ejemplo n.º 4
0
def pipeline(
    config: Config,
    config_file: Path,
    job_dir: Optional[Path] = None,
    image_dir: Optional[Path] = None,
    samples_file: Optional[Path] = None,
    provider: Optional[str] = None,
    instance_type: Optional[str] = None,
    region: Optional[str] = None,
    vpc_id: Optional[str] = None,
    bucket: Optional[str] = None,
    tf_dir: Optional[Path] = None,
    train_cloud: Optional[bool] = None,
    destroy: Optional[bool] = None,
    resize: Optional[bool] = None,
    batch_size: Optional[int] = None,
    learning_rate_dense: Optional[float] = None,
    learning_rate_all: Optional[float] = None,
    epochs_train_dense: Optional[int] = None,
    epochs_train_all: Optional[int] = None,
    base_model_name: Optional[str] = None,
    cloud_tag: Optional[str] = None,
    create_report: Optional[bool] = None,
    kernel_name: Optional[str] = None,
    export_html: Optional[bool] = None,
    export_pdf: Optional[bool] = None,
):
    """Runs the entire pipeline based on config file."""
    config = update_config(
        config=config,
        config_file=config_file,
        job_dir=job_dir,
        image_dir=image_dir,
        samples_file=samples_file,
        provider=provider,
        instance_type=instance_type,
        region=region,
        vpc_id=vpc_id,
        bucket=bucket,
        tf_dir=tf_dir,
        train_cloud=train_cloud,
        destroy=destroy,
        resize=resize,
        batch_size=batch_size,
        learning_rate_dense=learning_rate_dense,
        learning_rate_all=learning_rate_all,
        epochs_train_dense=epochs_train_dense,
        epochs_train_all=epochs_train_all,
        base_model_name=base_model_name,
        cloud_tag=cloud_tag,
        create_report=create_report,
        kernel_name=kernel_name,
        export_html=export_html,
        export_pdf=export_pdf,
    )

    validate_config(config, config.pipeline)

    Path(config.job_dir).resolve().mkdir(parents=True, exist_ok=True)

    logger = get_logger(__name__, config.job_dir)  # type: ignore

    if 'dataprep' in config.pipeline:
        from imageatm.scripts import run_dataprep

        logger.info('\n********************************\n'
                    '******* Data preparation *******\n'
                    '********************************')

        dp = run_dataprep(**config.dataprep)

        # update image_dir if images were resized
        if config.dataprep.get('resize', False):
            config.image_dir = dp.image_dir  # type: ignore
            config = update_component_configs(config)

    if 'train' in config.pipeline:
        logger.info('\n********************************\n'
                    '*********** Training ***********\n'
                    '********************************')

        if config.train.get('cloud'):
            from imageatm.scripts import run_training_cloud

            run_training_cloud(**{**config.cloud, **config.train})
        else:
            from imageatm.scripts import run_training

            run_training(**config.train)

    if 'evaluate' in config.pipeline:
        from imageatm.scripts import run_evaluation

        logger.info('\n********************************\n'
                    '********** Evaluation **********\n'
                    '********************************')

        run_evaluation(**config.evaluate)

    if 'cloud' in config.pipeline:
        from imageatm.scripts import run_cloud

        run_cloud(**config.cloud)