Ejemplo n.º 1
0
 def test_ainterface(self):
     """Simple test of the basic feature interface"""
     features = [
         imfeat.ObjectBank(),
         imfeat.GIST(),
         imfeat.HOGLatent(2),
         imfeat.Autocorrelogram(),
         imfeat.GradientHistogram(),
         imfeat.Histogram('gray'),
         imfeat.RHOG(gray=False),
         imfeat.RHOG(gray=True),
         imfeat.Moments('rgb', 2),
         imfeat.Histogram('rgb'),
         imfeat.SpatialHistogram(mode='rgb', num_rows=2, num_cols=2),
         imfeat.TinyImage()
     ]
     feat_sz = {}
     for image_fn in glob.glob('test_images/*'):
         if image_fn in ['test_images/test3.gif']:
             continue
         for feat_num, feature in enumerate(features):
             prev_f = None
             for load_func in [
                     cv.LoadImage, cv.LoadImageM, cv2.imread, Image.open
             ]:
                 f = feature(
                     imfeat.resize_image(load_func(image_fn), 100, 100))
                 self.assertEqual(feat_sz.setdefault(feat_num, f.size),
                                  f.size)
                 if prev_f is None:
                     prev_f = f
                 if load_func != Image.open:  # Skip PIL as the jpeg loading produces different data
                     np.testing.assert_equal(prev_f, f)
Ejemplo n.º 2
0
 def __init__(self, min_diff=.5, **kw):
     super(DecisionTree, self).__init__([('opencv', 'gray', 8)],
                                        min_diff=min_diff,
                                        **kw)
     self._surf = impoint.SURF()
     self._feat = imfeat.Histogram('gray', num_bins=4, norm=False)
     self.rfc = None
Ejemplo n.º 3
0
 def test_gray_hist(self):
     feature = imfeat.Histogram('gray')
     for feat_out, image in self._run_all_images(feature):
         print(feat_out)
         print(len(feat_out))
     self._feat_hist_zero(feature)
     self._feat_hist_norm(feature)
Ejemplo n.º 4
0
 def test_hist(self):
     img = cv.LoadImage('test_images/lena.jpg')
     feat = imfeat.Histogram('rgb', num_bins=8)
     feat2 = imfeat.PyramidHistogram(mode='rgb', num_bins=8, levels=1)
     np.testing.assert_equal(feat(img), feat2(img))
     out = imfeat.PyramidHistogram(mode='lab',
                                   num_bins=[4, 11, 11],
                                   levels=4)(img)
     print(out)
     print(out.shape)
Ejemplo n.º 5
0
 def test_hist_planar(self):
     img = cv.LoadImage('test_images/lena.jpg')
     for i in range(512):
         for j in range(512):
             img[i, j] = (random.randint(0, 255), random.randint(0, 255),
                          random.randint(0, 255))
     for mode in modes:
         print(mode)
         feat = imfeat.Histogram(mode, style='planar')
         b = feat(img)
         print(b)
Ejemplo n.º 6
0
def _hist_joint():
    return imfeat.Histogram('rgb', style='joint')
Ejemplo n.º 7
0
def _lab_hist_joint_8bins():
    return imfeat.Histogram('lab', style='joint', num_bins=8)
Ejemplo n.º 8
0
 def test_meta(self):
     self._histogram(imfeat.MetaFeature(imfeat.Histogram('lab')))
Ejemplo n.º 9
0
 def test_histogram_joint_lab(self):
     self._histogram(imfeat.Histogram('lab'))
Ejemplo n.º 10
0
 def test_histogram_joint_spatial(self):
     img = Image.open('test_images/lena.ppm')
     np.testing.assert_equal(
         imfeat.Histogram(mode='rgb')(img),
         imfeat.SpatialHistogram(mode='rgb')(img))
Ejemplo n.º 11
0
 def test_histogram_joint(self):
     self._histogram(imfeat.Histogram('rgb'))
Ejemplo n.º 12
0
 def __init__(self, min_diff=10, **kw):
     super(Histogram, self).__init__(min_diff=min_diff, **kw)
     self._feat = imfeat.Histogram('gray')
Ejemplo n.º 13
0
 def __init__(self, num_bins=8, *args, **kw):
     super(GradientHistogram, self).__init__({'type': 'numpy', 'dtype': 'float32', 'mode': 'gray'})
     self._hist_feat = imfeat.Histogram('gray', num_bins=num_bins)