Returns:
    
    A Tensor. Has the same type as input. Has the shape of tensor.shape * repeats
    """
    expanded_tensor = tf.expand_dims(tensor, -1)
    multiples = [1] + repeats
    tiled_tensor = tf.tile(expanded_tensor, multiples = multiples)
    repeated_tesnor = tf.reshape(tiled_tensor, tf.shape(tensor) * repeats)
    return repeated_tesnor

# data aug
seq = iaa.Sequential([
    iaa.Sometimes(0.5,
        iaa.Affine(
            translate_percent={"x": (-0.3, 0.3), "y": (-0.3, 0.3)},
            rotate=(-10, 10),
            scale={"x": (0.5, 1.1), "y": (0.5, 1.1)},
        )
    ),
    iaa.Fliplr(1.0), # Horizonatl flips
], random_order=True) # apply augmenters in random order

# class
class CNN():
    
    def __init__(self,k,inc,out,stddev):
        self.w = tf.Variable(tf.random_normal([k,k,inc,out],stddev=stddev))
        self.m,self.v_prev = tf.Variable(tf.zeros_like(self.w)),tf.Variable(tf.zeros_like(self.w))
        self.v_hat_prev = tf.Variable(tf.zeros_like(self.w))

    def getw(self): return self.w
Ejemplo n.º 2
0
def get_operation_pool():
    """ Get list of operations """
    def equalize_wrap(images, random_state, parents, hooks):
        return equalize(images)

    def color_wrap(images, random_state, parents, hooks):
        return color(images)

    def solarize_60_wrap(images, random_state, parents, hooks):
        return solarize(images, threshold=60)

    def solarize_80_wrap(images, random_state, parents, hooks):
        return solarize(images, threshold=80)

    def posterize_wrap_3(images, random_state, parents, hooks):
        return posterize(images, bit=3)

    def posterize_wrap_6(
        images,
        random_state,
        parents,
        hooks,
    ):
        return posterize(images, bit=6)

    return [
        iaa.Fliplr(.5, name="fliplr_0.5"),
        iaa.Sometimes(.3,
                      iaa.Lambda(func_images=equalize_wrap,
                                 func_keypoints=None),
                      name="equalize_0.3"),
        iaa.Sometimes(
            .7,
            iaa.Lambda(func_images=equalize_wrap,
                       func_keypoints=None,
                       name="euqalize_0.7")),
        iaa.Sometimes(.3, iaa.Affine(rotate=(-30, 30)), name="rotate_30_0.3"),
        iaa.Sometimes(.7, iaa.Affine(rotate=(-30, 30)), name="rotate_30_0.7"),
        iaa.Sometimes(.3, iaa.Affine(shear=(-16, 16)), name="shear_16_0.3"),
        iaa.Sometimes(.7, iaa.Affine(shear=(-16, 16)), name="shear_16_0.7"),
        iaa.Sometimes(.3,
                      iaa.Lambda(func_images=color_wrap, func_keypoints=None),
                      name="color_0.3"),
        iaa.Sometimes(.7,
                      iaa.Lambda(func_images=color_wrap, func_keypoints=None),
                      name="color_0.7"),
        iaa.Sometimes(.3,
                      iaa.Lambda(func_images=solarize_60_wrap,
                                 func_keypoints=None),
                      name="solarize_60_0.3"),
        iaa.Sometimes(.7,
                      iaa.Lambda(func_images=solarize_60_wrap,
                                 func_keypoints=None),
                      name="solarize_60_0.7"),
        iaa.Sometimes(.3,
                      iaa.Lambda(func_images=solarize_80_wrap,
                                 func_keypoints=None),
                      name="solarize_80_0.3"),
        iaa.Sometimes(.7,
                      iaa.Lambda(func_images=solarize_80_wrap,
                                 func_keypoints=None),
                      name="solarize_80_0.7"),
        iaa.Sometimes(.3,
                      iaa.Lambda(func_images=posterize_wrap_3,
                                 func_keypoints=None),
                      name="posterize_3_0.3"),
        iaa.Sometimes(.7,
                      iaa.Lambda(func_images=posterize_wrap_3,
                                 func_keypoints=None),
                      name="posterize_3_0.7"),
        iaa.Sometimes(.3,
                      iaa.Lambda(func_images=posterize_wrap_6,
                                 func_keypoints=None),
                      name="posterize_6_0.3"),
        iaa.Sometimes(.7,
                      iaa.Lambda(func_images=posterize_wrap_6,
                                 func_keypoints=None),
                      name="posterize_6_0.7"),
        iaa.Sometimes(.3,
                      iaa.Lambda(func_images=cutout_wrap, func_keypoints=None),
                      name="cutout_0.3"),
        iaa.Sometimes(.7,
                      iaa.Lambda(func_images=cutout_wrap, func_keypoints=None),
                      name="cutout_0.7")
    ]
Ejemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser(description="Check augmenters visually.")
    parser.add_argument(
        "--only",
        default=None,
        help=
        "If this is set, then only the results of an augmenter with this name will be shown. "
        "Optionally, comma-separated list.",
        required=False)
    args = parser.parse_args()

    images = [
        ia.quokka_square(size=(128, 128)),
        ia.imresize_single_image(data.astronaut(), (128, 128))
    ]

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=50, y=40, vis=None, label=None),
            ia.Keypoint(x=70, y=38, vis=None, label=None),
            ia.Keypoint(x=62, y=52, vis=None, label=None)
        ],
                            shape=images[0].shape),
        ia.KeypointsOnImage([
            ia.Keypoint(x=55, y=32, vis=None, label=None),
            ia.Keypoint(x=42, y=95, vis=None, label=None),
            ia.Keypoint(x=75, y=89, vis=None, label=None)
        ],
                            shape=images[1].shape)
    ]

    bounding_boxes = [
        ia.BoundingBoxesOnImage([
            ia.BoundingBox(x1=10, y1=10, x2=20, y2=20),
            ia.BoundingBox(x1=40, y1=50, x2=70, y2=60)
        ],
                                shape=images[0].shape),
        ia.BoundingBoxesOnImage([
            ia.BoundingBox(x1=10, y1=10, x2=20, y2=20),
            ia.BoundingBox(x1=40, y1=50, x2=70, y2=60)
        ],
                                shape=images[1].shape)
    ]

    augmenters = [
        iaa.Sequential([
            iaa.CoarseDropout(p=0.5, size_percent=0.05),
            iaa.AdditiveGaussianNoise(scale=0.1 * 255),
            iaa.Crop(percent=0.1)
        ],
                       name="Sequential"),
        iaa.SomeOf(2,
                   children=[
                       iaa.CoarseDropout(p=0.5, size_percent=0.05),
                       iaa.AdditiveGaussianNoise(scale=0.1 * 255),
                       iaa.Crop(percent=0.1)
                   ],
                   name="SomeOf"),
        iaa.OneOf(children=[
            iaa.CoarseDropout(p=0.5, size_percent=0.05),
            iaa.AdditiveGaussianNoise(scale=0.1 * 255),
            iaa.Crop(percent=0.1)
        ],
                  name="OneOf"),
        iaa.Sometimes(0.5,
                      iaa.AdditiveGaussianNoise(scale=0.1 * 255),
                      name="Sometimes"),
        iaa.WithColorspace("HSV",
                           children=[iaa.Add(20)],
                           name="WithColorspace"),
        iaa.WithChannels([0], children=[iaa.Add(20)], name="WithChannels"),
        iaa.AddToHueAndSaturation((-20, 20),
                                  per_channel=True,
                                  name="AddToHueAndSaturation"),
        iaa.Noop(name="Noop"),
        iaa.Resize({
            "width": 64,
            "height": 64
        }, name="Resize"),
        iaa.CropAndPad(px=(-8, 8), name="CropAndPad-px"),
        iaa.Pad(px=(0, 8), name="Pad-px"),
        iaa.Crop(px=(0, 8), name="Crop-px"),
        iaa.Crop(percent=(0, 0.1), name="Crop-percent"),
        iaa.Fliplr(0.5, name="Fliplr"),
        iaa.Flipud(0.5, name="Flipud"),
        iaa.Superpixels(p_replace=0.75, n_segments=50, name="Superpixels"),
        iaa.Grayscale(0.5, name="Grayscale0.5"),
        iaa.Grayscale(1.0, name="Grayscale1.0"),
        iaa.GaussianBlur((0, 3.0), name="GaussianBlur"),
        iaa.AverageBlur(k=(3, 11), name="AverageBlur"),
        iaa.MedianBlur(k=(3, 11), name="MedianBlur"),
        iaa.BilateralBlur(d=10, name="BilateralBlur"),
        iaa.Sharpen(alpha=(0.1, 1.0), lightness=(0, 2.0), name="Sharpen"),
        iaa.Emboss(alpha=(0.1, 1.0), strength=(0, 2.0), name="Emboss"),
        iaa.EdgeDetect(alpha=(0.1, 1.0), name="EdgeDetect"),
        iaa.DirectedEdgeDetect(alpha=(0.1, 1.0),
                               direction=(0, 1.0),
                               name="DirectedEdgeDetect"),
        iaa.Add((-50, 50), name="Add"),
        iaa.Add((-50, 50), per_channel=True, name="AddPerChannel"),
        iaa.AddElementwise((-50, 50), name="AddElementwise"),
        iaa.AdditiveGaussianNoise(loc=0,
                                  scale=(0.0, 0.1 * 255),
                                  name="AdditiveGaussianNoise"),
        iaa.Multiply((0.5, 1.5), name="Multiply"),
        iaa.Multiply((0.5, 1.5), per_channel=True, name="MultiplyPerChannel"),
        iaa.MultiplyElementwise((0.5, 1.5), name="MultiplyElementwise"),
        iaa.Dropout((0.0, 0.1), name="Dropout"),
        iaa.CoarseDropout(p=0.05,
                          size_percent=(0.05, 0.5),
                          name="CoarseDropout"),
        iaa.Invert(p=0.5, name="Invert"),
        iaa.Invert(p=0.5, per_channel=True, name="InvertPerChannel"),
        iaa.ContrastNormalization(alpha=(0.5, 2.0),
                                  name="ContrastNormalization"),
        iaa.SaltAndPepper(p=0.05, name="SaltAndPepper"),
        iaa.Salt(p=0.05, name="Salt"),
        iaa.Pepper(p=0.05, name="Pepper"),
        iaa.CoarseSaltAndPepper(p=0.05,
                                size_percent=(0.01, 0.1),
                                name="CoarseSaltAndPepper"),
        iaa.CoarseSalt(p=0.05, size_percent=(0.01, 0.1), name="CoarseSalt"),
        iaa.CoarsePepper(p=0.05, size_percent=(0.01, 0.1),
                         name="CoarsePepper"),
        iaa.Affine(scale={
            "x": (0.8, 1.2),
            "y": (0.8, 1.2)
        },
                   translate_px={
                       "x": (-16, 16),
                       "y": (-16, 16)
                   },
                   rotate=(-45, 45),
                   shear=(-16, 16),
                   order=ia.ALL,
                   cval=(0, 255),
                   mode=ia.ALL,
                   name="Affine"),
        iaa.PiecewiseAffine(scale=0.03,
                            nb_rows=(2, 6),
                            nb_cols=(2, 6),
                            name="PiecewiseAffine"),
        iaa.PerspectiveTransform(scale=0.1, name="PerspectiveTransform"),
        iaa.ElasticTransformation(alpha=(0.5, 8.0),
                                  sigma=1.0,
                                  name="ElasticTransformation"),
        iaa.Alpha(factor=(0.0, 1.0),
                  first=iaa.Add(100),
                  second=iaa.Dropout(0.5),
                  per_channel=False,
                  name="Alpha"),
        iaa.Alpha(factor=(0.0, 1.0),
                  first=iaa.Add(100),
                  second=iaa.Dropout(0.5),
                  per_channel=True,
                  name="AlphaPerChannel"),
        iaa.Alpha(factor=(0.0, 1.0),
                  first=iaa.Affine(rotate=(-45, 45)),
                  per_channel=True,
                  name="AlphaAffine"),
        iaa.AlphaElementwise(factor=(0.0, 1.0),
                             first=iaa.Add(50),
                             second=iaa.ContrastNormalization(2.0),
                             per_channel=False,
                             name="AlphaElementwise"),
        iaa.AlphaElementwise(factor=(0.0, 1.0),
                             first=iaa.Add(50),
                             second=iaa.ContrastNormalization(2.0),
                             per_channel=True,
                             name="AlphaElementwisePerChannel"),
        iaa.AlphaElementwise(factor=(0.0, 1.0),
                             first=iaa.Affine(rotate=(-45, 45)),
                             per_channel=True,
                             name="AlphaElementwiseAffine"),
        iaa.SimplexNoiseAlpha(first=iaa.EdgeDetect(1.0),
                              per_channel=False,
                              name="SimplexNoiseAlpha"),
        iaa.FrequencyNoiseAlpha(first=iaa.EdgeDetect(1.0),
                                per_channel=False,
                                name="FrequencyNoiseAlpha")
    ]

    augmenters.append(
        iaa.Sequential([iaa.Sometimes(0.2, aug.copy()) for aug in augmenters],
                       name="Sequential"))
    augmenters.append(
        iaa.Sometimes(0.5, [aug.copy() for aug in augmenters],
                      name="Sometimes"))

    for augmenter in augmenters:
        if args.only is None or augmenter.name in [
                v.strip() for v in args.only.split(",")
        ]:
            print("Augmenter: %s" % (augmenter.name, ))
            grid = []
            for image, kps, bbs in zip(images, keypoints, bounding_boxes):
                aug_det = augmenter.to_deterministic()
                imgs_aug = aug_det.augment_images(
                    np.tile(image[np.newaxis, ...], (16, 1, 1, 1)))
                kps_aug = aug_det.augment_keypoints([kps] * 16)
                bbs_aug = aug_det.augment_bounding_boxes([bbs] * 16)
                imgs_aug_drawn = [
                    kps_aug_one.draw_on_image(img_aug)
                    for img_aug, kps_aug_one in zip(imgs_aug, kps_aug)
                ]
                imgs_aug_drawn = [
                    bbs_aug_one.draw_on_image(img_aug)
                    for img_aug, bbs_aug_one in zip(imgs_aug_drawn, bbs_aug)
                ]
                grid.append(np.hstack(imgs_aug_drawn))
            ia.imshow(np.vstack(grid))
Ejemplo n.º 4
0
def pan(image):
  pan = iaa.Affine(translate_percent= {"x" : (-0.1, 0.1), "y": (-0.1, 0.1)})
  image = pan.augment_image(image)
  return image
Ejemplo n.º 5
0
def main():
    parser = argparse.ArgumentParser(description="Check augmenters visually.")
    parser.add_argument(
        '--only',
        default=None,
        help=
        "If this is set, then only the results of an augmenter with this name will be shown.",
        required=False)
    args = parser.parse_args()

    images = [
        ia.quokka_square(size=(128, 128)),
        misc.imresize(data.astronaut(), (128, 128))
    ]

    augmenters = [
        iaa.Noop(name="Noop"),
        iaa.OneOf(children=[
            iaa.CoarseDropout(p=0.5, size_percent=0.05),
            iaa.AdditiveGaussianNoise(scale=0.1 * 255),
            iaa.Crop(percent=0.1)
        ],
                  name="OneOf"),
        iaa.AddToHueAndSaturation((-20, 20),
                                  per_channel=True,
                                  name="AddHueAndSaturation"),
        iaa.Crop(px=(0, 8), name="Crop-px"),
        iaa.Crop(percent=(0, 0.1), name="Crop-percent"),
        iaa.Fliplr(0.5, name="Fliplr"),
        iaa.Flipud(0.5, name="Flipud"),
        iaa.Superpixels(p_replace=0.75, n_segments=50, name="Superpixels"),
        iaa.Grayscale(0.5, name="Grayscale0.5"),
        iaa.Grayscale(1.0, name="Grayscale1.0"),
        iaa.AverageBlur(k=(3, 11), name="AverageBlur"),
        iaa.GaussianBlur((0, 3.0), name="GaussianBlur"),
        iaa.MedianBlur(k=(3, 11), name="MedianBlur"),
        iaa.Sharpen(alpha=(0.1, 1.0), lightness=(0, 2.0), name="Sharpen"),
        iaa.Emboss(alpha=(0.1, 1.0), strength=(0, 2.0), name="Emboss"),
        iaa.EdgeDetect(alpha=(0.1, 1.0), name="EdgeDetect"),
        iaa.DirectedEdgeDetect(alpha=(0.1, 1.0),
                               direction=(0, 1.0),
                               name="DirectedEdgeDetect"),
        iaa.AdditiveGaussianNoise(loc=0,
                                  scale=(0.0, 0.1 * 255),
                                  name="AdditiveGaussianNoise"),
        iaa.Dropout((0.0, 0.1), name="Dropout"),
        iaa.CoarseDropout(p=0.05,
                          size_percent=(0.05, 0.5),
                          name="CoarseDropout"),
        iaa.Invert(p=0.5, name="Invert"),
        iaa.Invert(p=0.5, per_channel=True, name="InvertPerChannel"),
        iaa.Add((-50, 50), name="Add"),
        iaa.Add((-50, 50), per_channel=True, name="AddPerChannel"),
        iaa.AddElementwise((-50, 50), name="AddElementwise"),
        iaa.Multiply((0.5, 1.5), name="Multiply"),
        iaa.Multiply((0.5, 1.5), per_channel=True, name="MultiplyPerChannel"),
        iaa.MultiplyElementwise((0.5, 1.5), name="MultiplyElementwise"),
        iaa.ContrastNormalization(alpha=(0.5, 2.0),
                                  name="ContrastNormalization"),
        iaa.Affine(scale={
            "x": (0.8, 1.2),
            "y": (0.8, 1.2)
        },
                   translate_px={
                       "x": (-16, 16),
                       "y": (-16, 16)
                   },
                   rotate=(-45, 45),
                   shear=(-16, 16),
                   order=ia.ALL,
                   cval=(0, 255),
                   mode=ia.ALL,
                   name="Affine"),
        iaa.PiecewiseAffine(scale=0.03,
                            nb_rows=(2, 6),
                            nb_cols=(2, 6),
                            name="PiecewiseAffine"),
        iaa.ElasticTransformation(alpha=(0.5, 8.0),
                                  sigma=1.0,
                                  name="ElasticTransformation")
    ]

    augmenters.append(
        iaa.Sequential([iaa.Sometimes(0.2, aug.copy()) for aug in augmenters],
                       name="Sequential"))
    augmenters.append(
        iaa.Sometimes(0.5, [aug.copy() for aug in augmenters],
                      name="Sometimes"))

    for augmenter in augmenters:
        if args.only is None or augmenter.name == args.only:
            print("Augmenter: %s" % (augmenter.name, ))
            grid = augmenter.draw_grid(images, rows=1, cols=16)
            misc.imshow(grid)
Ejemplo n.º 6
0
        # - rotate by -45 to +45 degrees
        # - shear by -16 to +16 degrees
        # - order: use nearest neighbour or bilinear interpolation (fast)
        # - mode: use any available mode to fill newly created pixels
        #         see API or scikit-image for which modes are available
        # - cval: if the mode is constant, then use a random brightness
        #         for the newly created pixels (e.g. sometimes black,
        #         sometimes white)
        sometimes(
            iaa.Affine(scale={
                "x": (0.8, 1.2),
                "y": (0.8, 1.2)
            },
                       translate_percent={
                           "x": (-0.2, 0.2),
                           "y": (-0.2, 0.2)
                       },
                       rotate=(-45, 45),
                       shear=(-16, 16),
                       order=[0, 1],
                       cval=(0, 255),
                       mode=ia.ALL)),

        #
        # Execute 0 to 5 of the following (less important) augmenters per
        # image. Don't execute all of them, as that would often be way too
        # strong.
        #
        iaa.SomeOf(
            (0, 5),
            [
    #                      iaa.Sequential([iaa.size.Scale(0.9),iaa.size.Scale(1/0.9)]),])),

    #This inverts completely inverts the text ( make black white etc.)
    sometimes_1(iaa.Invert(1, per_channel=True)),

    #This does some affine transformations
    sometimes_2(
        iaa.Affine(
            scale={
                "x": (0.8, 1),
                "y": (0.8, 1)
            },  # scale images to 80-120% of their size, individually per axis
            translate_percent={
                "x": (-0, 0),
                "y": (-0.1, 0.1)
            },  # translate by -20 to +20 percent (per axis)
            rotate=(-2, 2),  # rotate by -45 to +45 degrees
            shear=(-2, 2),  # shear by -16 to +16 degrees
            order=[0, 1
                   ],  # use nearest neighbour or bilinear interpolation (fast)
            cval=(0, 255),  # if mode is constant, use a cval between 0 and 255
            mode=[
                "edge"
            ]  # use any of scikit-image's warping modes (see 2nd image from the top for examples)
        )),
    sometimes_2(
        iaa.OneOf([
            iaa.GaussianBlur(
                (0, 1.0)),  # blur images with a sigma between 0 and 3.0
            iaa.AverageBlur(
                k=(2, 3)
            ),  # blur image using local means with kernel sizes between 2 and 7
Ejemplo n.º 8
0
from collections import defaultdict
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
import cv2
from PIL import Image
from imgaug import augmenters as iaa

from config import *

train_seq = iaa.Sequential(
    [
        iaa.Fliplr(0.5),  # horizontal flips
        iaa.Flipud(0.5),
        iaa.Affine(scale={
            "x": (1.0, 1.2),
            "y": (1.0, 1.2)
        }, )
    ],
    random_order=True)  # apply augmenters in random order


class sample_gen(object):
    def __init__(self, file_class_mapping):
        self.file_class_mapping = file_class_mapping
        self.class_to_list_files = defaultdict(list)

        self.list_all_files = file_class_mapping.keys()
        self.range_all_files = range(len(self.list_all_files))

        for file, class_ in file_class_mapping.items():
Ejemplo n.º 9
0
with open(os.path.join(DATA_DIR, "label_descriptions.json"), "r") as fh:
    label_description = json.load(fh)
    fh.close()
n_classes = len(label_description['categories'])
n_attributes = len(label_description['attributes'])
print("Number of Classes: %d, Attributes: %d" % (n_classes, n_attributes))

DATA_AUG = iaa.Sequential([
    ## ref. Kaggle starter code
    ## Image rotation, translation, flipping:
    iaa.OneOf([
        iaa.Fliplr(0.2),
        iaa.Affine(scale={
            "x": (0.99, 1.01),
            "y": (0.98, 1.03)
        },
                   translate_percent={
                       "x": (-0.025, 0.025),
                       "y": (-0.05, 0.05)
                   }),
    ]),
    ## Adjustment of contrast or resolution:
    iaa.OneOf([
        iaa.ContrastNormalization((0.75, 1.05)),
        iaa.GaussianBlur(sigma=(0.0, 0.1)),
    ]),
])


def train_val_test_split(data, seed=SEED, val_size=0.10, test_size=3200):
    """ Shared wrapper to split data """
    AGG_FUNC = lambda vec: list(vec)
Ejemplo n.º 10
0
for index in range(6):  # 한장당 늘리려는 개수

    print(len(images))
    for idx in range(len(images)):
        image = images[idx]

        # 이 옵션들이 다 랜덤 범위값으로 모두 랜덤하게 생겨서 한장을 복제함
        seq = iaa.Sequential([
            iaa.Fliplr(0.5),  # horizontally flip 50% of all images, 좌우반전 확률
            # iaa.Flipud(0.5),  # vertically flip 20% of all images, 상하반전 확률
            # iaa.LinearContrast((0.95, 1.05)), #대조 범위 약간 색감 찐하게하거나 흐리게 색을 변형
            iaa.Multiply((0.75, 1), per_channel=0.1),  #밝기 범위
            iaa.Affine(
                scale={
                    "x": (0.75, 1.0),
                    "y": (0.75, 1.0)
                },  #줌 아웃
                # translate_percent={"x": (-0.01, 0.01), "y": (-0.01 ,0.01)}, #줌 아웃시 px 이동, scale이랑 같게줘야함
                rotate=(-10, 10)  # 회전 >> 이걸 크게주면 없어지는 이미지의 범위 있을수잇음, 모서리

                # shear=(-20, 20)
            )
        ])

        seq_det = seq.to_deterministic()
        image_aug = seq_det.augment_images([image])[0]

        new_image_file = save_data_dir + 'after_' + str(index) + '.jpg'
        cv2.imwrite(new_image_file, image_aug)
def dataAugment(origimgfilepath, annofilepath, objectList, numImgGen, destdir):
    try:
        images = []
        image = cv2.imread(origimgfilepath)
        imgpath, imgname = os.path.split(origimgfilepath)
        annopath, annoname = os.path.split(annofilepath)
        keypoints_on_images = []
        keypoints = []
        objclassprocessed = []

        #Add keypoints for all Objects
        for labelItem in objectList:
            key = str(labelItem.label)
            xmin = float(labelItem.xmin)
            ymin = float(labelItem.ymin)
            xmax = float(labelItem.xmax)
            ymax = float(labelItem.ymax)
            objclassprocessed.append(key)
            x = xmin
            y = ymin
            keypoints.append(ia.Keypoint(x=x, y=y))
            x = xmax
            y = ymax
            keypoints.append(ia.Keypoint(x=x, y=y))
            x = xmin
            y = ymax
            keypoints.append(ia.Keypoint(x=x, y=y))
            x = xmax
            y = ymin
            keypoints.append(ia.Keypoint(x=x, y=y))
        keypoints_on_images.append(
            ia.KeypointsOnImage(keypoints, shape=image.shape))
        # Generate required number of Images
        for i in range(0, numImgGen):
            images.append(image)
            keypoints_on_images.append(
                ia.KeypointsOnImage(keypoints, shape=image.shape))
        # Add Image Augmentation Properties
        seq = iaa.Sequential([
            # iaa.Multiply((1.2,1.5)), # Adds Brightness, Doesn't Affect Keypoints
            # iaa.Grayscale(alpha=(0.0, 1.0)), # , Doesn't Affect Keypoints
            # iaa.Dropout((0.01, 0.1), per_channel=0.5)
            iaa.GaussianBlur(
                (0, 3.0)),  #Adds Gausian Blur, Doesn't Affect keypoints
            iaa.Affine(
                scale=(0.9,
                       1.1),  #Transforms to 50 % to 110%, Affects keypoints
                rotate=(-1, 0))
        ])
        # Make our sequence deterministic.
        # We can now apply it to the image and then to the keypoints and it will
        # lead to the same augmentations.
        # IMPORTANT: Call this once PER BATCH, otherwise you will always get the
        # exactly same augmentations for every batch!
        seq_det = seq.to_deterministic()

        # Augment keypoints and images
        images_aug = seq_det.augment_images(images)
        keypoints_aug = seq_det.augment_keypoints(keypoints_on_images)
        # print("images_aug", images_aug)
        # print("keypoints_aug", keypoints_aug)

        # Globally Modified keypoints and Index
        # gblmodifiedkeypoints = {}
        # gblidx = 1

        # Example code to show each image and print the new keypoints coordinates
        for img_idx, (image_before, image_after, keypoints_before,
                      keypoints_after) in enumerate(
                          zip(images, images_aug, keypoints_on_images,
                              keypoints_aug)):
            image_before = keypoints_before.draw_on_image(image_before)
            image_after = keypoints_after.draw_on_image(image_after)

            # Write Augmented Image to a file
            image_after_name = '_Augmented_' + str(img_idx) + imgname
            image_after_path = os.path.join(destdir, image_after_name)
            cv2.imwrite(image_after_path, image_after)
            # Image File Props
            imgSize = os.path.getsize(image_after_path)
            imgHeight, imgWidth, imgChannel = image_after.shape
            fileProps = fileProperties(image_after_name, destdir,
                                       image_after_path, imgWidth, imgHeight,
                                       imgChannel, imgSize)

            # Show Image Before And After Augmentation
            # ia.imshow(np.concatenate((image_before, image_after), axis=1)) # before and after

            # Print All the Keypoints for each of the images
            # for kp_idx, keypoint in enumerate(keypoints_after.keypoints):
            # 	keypoint_old = keypoints_on_images[img_idx].keypoints[kp_idx]
            # 	x_old, y_old = keypoint_old.x, keypoint_old.y
            # 	x_new, y_new = keypoint.x, keypoint.y
            # 	print("[Keypoints for image #%d] before aug: x=%d y=%d | after aug: x=%d y=%d" % (img_idx, x_old, y_old, x_new, y_new))

            #Convert Keypoints back to Image Co-ordinates to be written to XML
            modifiedrect = []
            modifiedkeypoints = {}
            idx = 1
            cntr = 1
            print("Generating Augmented Image {} of {} for {}".format(
                img_idx + 1, len(images), imgname))
            for kp_idx, keypoint in enumerate(keypoints_after.keypoints):
                x_new, y_new = keypoint.x, keypoint.y
                modifiedrect.append([int(x_new), int(y_new)])
                cntr += 1
                if (cntr > 4):
                    modifiedkeypoints[idx] = modifiedrect
                    modifiedrect = []
                    cntr = 1
                    idx += 1
            # objclassidx = 0
            objectList = []
            # print("Total Processed",len(objclassprocessed))
            for key, modkey in modifiedkeypoints.items():
                newimgrect = getImgRect(image_after_path, modkey)
                # objclassidx += 1
                # objclassidex = int(objclassidx) % len(objclassprocessed)
                # objclass = objclassprocessed[objclassidex]
                objclass = objclassprocessed[key - 1]
                # print("Label", objclass,"Rectangle", newimgrect)
                labelObject = returnObject(objclass, newimgrect[0],
                                           newimgrect[1], newimgrect[2],
                                           newimgrect[3])
                objectList.append(labelObject)
            setAugAnnotationXML(fileProps, objectList)
    except Exception as e:
        print("Error" + str(e))
        print('Error on line {}'.format(sys.exc_info()[-1].tb_lineno))
Ejemplo n.º 12
0
import cv2
from PIL import Image
from imgaug import augmenters as iaa

ap = argparse.ArgumentParser()

ap.add_argument("-i", "--image", required=True, help="Image path")

args = vars(ap.parse_args())

imagepath = args["image"]

if not os.path.exists(imagepath):
    print("Not found {}...".format(imagepath))
    exit(1)

image = cv2.imread(imagepath)

seq = iaa.Sequential(
    [iaa.Affine(rotate=[0], shear={
        'x': 5,
        'y': 15
    }, mode='edge')])

image = seq.augment_image(image)

Image.fromarray(image).show()

if input("Save? ") in ["yes", "y", "yep"]:
    cv2.imwrite("shear-" + os.path.basename(imagepath), image)
Ejemplo n.º 13
0
def compute_cluster(image_path):
    """each cluster can be computed independently"""
    image_path_data = Path(image_path)
    stem = image_path_data.stem
    basename = image_path_data.name
    image_annotation_path = get_image_annotation_path(stem)
    image_annotation_path_data = Path(image_annotation_path)

    print("Processing {}...".format(stem))
    if image_annotation_path:
        labels_df = decode_image_annotation(image_annotation_path)

        shutil.copy(image_path, "{}/{}".format(DATASET_AUGM_IMAGES_DIR,
                                               basename))
        shutil.copy(
            image_annotation_path,
            "{}/{}".format(DATASET_AUGM_ANNOTS_DIR,
                           image_annotation_path_data.name))
        for i in range(0, AUG_NB_AUGMENTATION_PER_IMAGE):
            # This setup of augmentation parameters will pick 1 to 4
            # of the given augmenters and apply them in random order.
            sometimes = lambda aug: augmenters.Sometimes(0.5, aug)
            aug_config = augmenters.SomeOf(
                (1, 4),
                [
                    augmenters.Affine(scale=(0.1, 1.5)),
                    augmenters.Affine(rotate=(-45, 45)),
                    augmenters.Affine(translate_percent={
                        "x": (-0.3, 0.3),
                        "y": (-0.3, 0.3)
                    }),
                    # augmenters.Affine(shear=(-16, 16)),
                    augmenters.OneOf([
                        augmenters.Fliplr(1),
                        augmenters.Flipud(1),
                    ]),
                    augmenters.Rot90(1),
                    # sometimes(
                    #     augmenters.Superpixels(
                    #         p_replace=(0, 1.0),
                    #         n_segments=(20, 200)
                    #     )
                    # ),
                    augmenters.OneOf([
                        augmenters.GaussianBlur((0, 3.0)),
                        augmenters.AverageBlur(k=(2, 7)),
                        augmenters.MedianBlur(k=(3, 11)),
                        augmenters.MotionBlur(k=3),
                    ]),
                    augmenters.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
                    # sometimes(augmenters.OneOf([
                    #     augmenters.EdgeDetect(alpha=(0, 0.7)),
                    #     augmenters.DirectedEdgeDetect(
                    #         alpha=(0, 0.7), direction=(0.0, 1.0)
                    #     ),
                    # ])),
                    augmenters.AdditiveGaussianNoise(
                        loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),
                    augmenters.OneOf([
                        augmenters.Dropout((0.05, 0.3), per_channel=0.5),
                        augmenters.CoarseDropout((0.02, 0.05),
                                                 size_percent=(0.01, 0.02),
                                                 per_channel=0.2),
                    ]),
                    augmenters.OneOf([
                        augmenters.pillike.EnhanceColor(),
                        augmenters.Add((-10, 10)),
                        augmenters.Multiply((0.5, 1.5)),
                        augmenters.LinearContrast((0.5, 2.0), per_channel=0.5),
                        augmenters.MultiplyAndAddToBrightness(mul=(0.5, 1.5),
                                                              add=(-30, 30)),
                        # augmenters.Grayscale(alpha=(0.0, 1.0)),
                    ]),
                    sometimes(
                        augmenters.ElasticTransformation(alpha=(0.2, 1.5),
                                                         sigma=0.25)),
                    sometimes(augmenters.PiecewiseAffine(scale=(0.01, 0.05)))
                ],
                random_order=True)
            aug_file_suffix = '_aug_{}'.format(i)
            try:
                augmented_image_df = augment_image(labels_df,
                                                   DATASET_IMAGES_DIR,
                                                   DATASET_AUGM_IMAGES_DIR,
                                                   aug_file_suffix, aug_config)
                image_annotation_dest_path = "{}/{}{}{}".format(
                    DATASET_AUGM_ANNOTS_DIR, stem, aug_file_suffix,
                    image_annotation_path_data.suffix)
                if (len(augmented_image_df.index)):
                    xml_annotations_et = get_xml_from_dataframe(
                        image_annotation_path, augmented_image_df)
                    xml_annotations_et.write(image_annotation_dest_path)
            except:
                print("Failed to augment {}".format(aug_file_suffix))

        os.remove(image_annotation_path)
        os.remove(image_path)
        print("Removed: {}".format(image_path.split('/')[-1]))
import os
import random
import numpy as np
import cv2
from imgaug import augmenters as iaa

seq = iaa.Sequential([
    iaa.Fliplr(0.5),
    iaa.OneOf([
        iaa.GaussianBlur((0, 3.0)),
        iaa.AverageBlur(k=(2, 7)),
    ]),
    iaa.Flipud(0.2),  # horizontally flip
    iaa.SomeOf(2, [
        iaa.Affine(rotate=(-40, 40),
                   translate_percent={"x": (-0.25, 0.25)},
                   mode='symmetric',
                   cval=(0)),
        iaa.PerspectiveTransform(scale=(0.06, 0.12)),
        iaa.PiecewiseAffine(scale=(0.02, 0.04), mode='edge', cval=(0)),
    ]),
])
seq_det = seq.to_deterministic()


def do_augmentation(sequent, image):
    augimage = np.array(sequent.augment_image(image))
    return np.reshape(augimage, (-1, 299, 299, 3))


def getimagefrompath(path, imgbyclass):
    classnumb = len(os.listdir(path))

seed_everything(SEED)

# ---
# ### data

# #### augmentation

# In[3]:

augs = iaa.SomeOf((0, 3), [
    iaa.OneOf([
        iaa.Affine(scale={
            "x": (0.8, 1.),
            "y": (0.8, 1.)
        },
                   rotate=(-15, 15),
                   shear=(-15, 15)),
        iaa.PerspectiveTransform(scale=.08, keep_size=True),
    ]),
    iaa.PiecewiseAffine(scale=(0.02, 0.04)),
    iaa.CoarseDropout(p=(.1, .15), size_percent=(0.07, 0.1))
],
                  random_order=True)

# augs =  iaa.OneOf(
#     [
#         iaa.Affine(scale={"x": (0.8, 1.), "y": (0.8, 1.)}, rotate=(-15, 15), shear=(-15, 15)),
#         iaa.PerspectiveTransform(scale=.08, keep_size=True),
#         iaa.PiecewiseAffine(scale=(0.02, 0.04)),
#         iaa.CoarseDropout(p=(.1, .2), size_percent=(0.05, 0.1))
Ejemplo n.º 16
0
###################
def keypoint_func(keypoints_on_images, random_state, parents, hooks):
    return keypoints_on_images


### Common Usage Setting ###
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
seq = iaa.Sequential([
    iaa.Fliplr(0.5, name="FlipLR"),
    iaa.Flipud(0.5, name="FlipUD"),
    iaa.Multiply((0.8, 1.2), name="Multiply"),
    iaa.ContrastNormalization((0.8, 1.1), name="Contrast"),
    iaa.AddToHueAndSaturation((-30, 30), name="Hue"),
    iaa.OneOf([
        iaa.AdditiveGaussianNoise(scale=0.02 * 255, name="Noise"),
        iaa.CoarseDropout((0.01, 0.05),
                          size_percent=(0.01, 0.025),
                          name='Cdrop')
    ]),
    iaa.Affine(scale=(0.75, 1.25), cval=0, mode='constant'),  # wrap
    iaa.OneOf([
        iaa.Affine(rotate=90),
        iaa.Affine(rotate=180),
        iaa.Affine(rotate=270)
    ]),
    sometimes(iaa.GaussianBlur((0, 1.5), name="GaussianBlur")),
    iaa.Lambda(img_func, keypoint_func, name='channel_swap'),
    sometimes(iaa.PerspectiveTransform(scale=(0.025, 0.100)))
])
Ejemplo n.º 17
0
def generate_clip_from_image(raw_frame, raw_mask, temporal_window, **kwargs):
    """

  :param raw_frame: The frame to be augmented: h x w x 3
  :param raw_mask: h x w x 1
  :param temporal_window: Number of frames in the output clip
  :return: clip_frames - list of frames with values 0-255
           clip_masks - corresponding masks
  """
    global TRANSLATION, ROTATION, SHEAR
    if 'translation' in kwargs:
        TRANSLATION = kwargs['translation']
    if 'rotation' in kwargs:
        ROTATION = kwargs['rotation']
    if 'shear' in kwargs:
        SHEAR = kwargs['shear']

    clip_frames = np.repeat(raw_frame[np.newaxis], temporal_window, axis=0)
    clip_masks = np.repeat(raw_mask[np.newaxis], temporal_window, axis=0)
    # Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
    # e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second
    # image.
    sometimes = lambda aug: iaa.Sometimes(0.05, aug)
    blur = sometimes(
        iaa.OneOf([
            iaa.GaussianBlur((0.0, 0.5)),
            # iaa.AverageBlur(k=(2, 7)),
            # iaa.MedianBlur(k=(3, 11)),
        ]))
    seq = iaa.Sequential(
        [
            # iaa.Fliplr(FLIP / 100.),  # horizontal flips
            sometimes(
                iaa.ElasticTransformation(alpha=(200, 220), sigma=(17.0, 19.0))
            ),
            iaa.Affine(
                scale={
                    "x": (0.7, 1.3),
                    "y": (0.7, 1.3)
                },
                translate_percent={
                    "x": (-TRANSLATION, TRANSLATION),
                    "y": (-TRANSLATION, TRANSLATION)
                },
                rotate=(-ROTATION, ROTATION),
                shear=(-SHEAR, SHEAR),
                mode='edge',
            )
        ],
        random_order=True)

    frame_aug = raw_frame[np.newaxis]
    mask_aug = raw_mask[np.newaxis]
    # create sequence of transformations of the current image
    for t in range(temporal_window - 1):
        frame_aug, mask_aug = seq(images=frame_aug.astype(np.uint8),
                                  segmentation_maps=mask_aug.astype(np.uint8))
        frame_aug = blur(images=frame_aug)
        clip_frames[t + 1] = frame_aug[0]
        clip_masks[t + 1] = mask_aug[0]

    return clip_frames, clip_masks
Ejemplo n.º 18
0
    A Tensor. Has the same type as input. Has the shape of tensor.shape * repeats
    """
    expanded_tensor = tf.expand_dims(tensor, -1)
    multiples = [1] + repeats
    tiled_tensor = tf.tile(expanded_tensor, multiples=multiples)
    repeated_tesnor = tf.reshape(tiled_tensor, tf.shape(tensor) * repeats)
    return repeated_tesnor


# data aug
seq = iaa.Sequential(
    [
        iaa.Sometimes(
            0.1,
            iaa.Affine(translate_percent={
                "x": (-0.2, 0.2),
                "y": (-0.2, 0.2)
            }, )),
        iaa.Sometimes(0.1, iaa.Affine(rotate=(-25, 25), )),
        iaa.Sometimes(0.1,
                      iaa.Affine(scale={
                          "x": (0.8, 1.2),
                          "y": (0.8, 1.2)
                      }, )),
        iaa.Fliplr(1.0),  # Horizonatl flips
    ],
    random_order=True)  # apply augmenters in random order


# class
class CNN():
    def __init__(self, k, inc, out):
Ejemplo n.º 19
0
        # load the validation dataset
        valDataset = LesionBoundaryDataset(IMAGE_PATHS, CLASS_NAMES)
        valDataset.load_lesions(valIdxs)
        valDataset.prepare()

        # initialize the training configuration
        config = LesionBoundaryConfig()
        config.display()

        # initialize the image augmentation process
        aug = iaa.SomeOf(
            (0, 2),
            [iaa.Fliplr(0.5),
             iaa.Flipud(0.5),
             iaa.Affine(rotate=(-10, 10))])

        # initialize the model and load the COCO weights so we can
        # perform fine-tuning
        model = modellib.MaskRCNN(mode="training",
                                  config=config,
                                  model_dir=LOGS_AND_MODEL_DIR)
        model.load_weights(COCO_PATH,
                           by_name=True,
                           exclude=[
                               "mrcnn_class_logits", "mrcnn_bbox_fc",
                               "mrcnn_bbox", "mrcnn_mask"
                           ])

        # train *just* the layer heads
        model.train(trainDataset,
Ejemplo n.º 20
0

train = carlaDataset()
train.load_images(dir=RGB_TRAIN_DIR, type='train')


# mask, a = train.load_mask(50)
# print(a)
train.prepare()
val = carlaDataset()
val.load_images(RGB_VAL_DIR, type='valid')
val.prepare()
augmentation = aug.SomeOf((0, None), [
        aug.Fliplr(0.5),
        aug.Flipud(0.5),
        aug.OneOf([aug.Affine(rotate=90),
                   aug.Affine(rotate=180),
                   aug.Affine(rotate=270)]),
        aug.Multiply((0.8, 1.5)),
        aug.GaussianBlur(sigma=(0.0, 5.0)),
        aug.Affine(scale=(0.5, 1.5)),
        aug.Affine(scale={"x": (0.5, 1.5), "y": (0.5, 1.5)}),
    ])

config = CarlaConfig()
config.STEPS_PER_EPOCH = NUMBER_OF_TRAIN_DATA//config.BATCH_SIZE
config.VALIDATION_STEPS = NUMBER_OF_VAL_DATA//config.BATCH_SIZE
config.display()

model = modellib.MaskRCNN(mode="training", config=config,
                          model_dir=MODEL_DIR)
Ejemplo n.º 21
0
def imgaug_img(img):
    # Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
    # e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second
    # image.
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image.
    seq = iaa.Sequential(
        [
            #
            # Apply the following augmenters to most images.
            #
            iaa.Fliplr(0.5),  # horizontally flip 50% of all images
            # iaa.Flipud(0.2),  # vertically flip 20% of all images

            # crop some of the images by 0-10% of their height/width
            sometimes(iaa.Crop(percent=(0, 0.1))),

            # Apply affine transformations to some of the images
            # - scale to 80-120% of image height/width (each axis independently)
            # - translate by -20 to +20 relative to height/width (per axis)
            # - rotate by -45 to +45 degrees
            # - shear by -16 to +16 degrees
            # - order: use nearest neighbour or bilinear interpolation (fast)
            # - mode: use any available mode to fill newly created pixels
            #         see API or scikit-image for which modes are available
            # - cval: if the mode is constant, then use a random brightness
            #         for the newly created pixels (e.g. sometimes black,
            #         sometimes white)
            sometimes(iaa.Affine(
                scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
                translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
                rotate=(-45, 45),
                shear=(-16, 16),
                order=[0, 1],
                cval=(0, 255),
                mode=ia.ALL
            )),

            #
            # Execute 0 to 5 of the following (less important) augmenters per
            # image. Don't execute all of them, as that would often be way too
            # strong.
            #
            iaa.SomeOf((0, 5),
                       [
                           # Convert some images into their superpixel representation,
                           # sample between 20 and 200 superpixels per image, but do
                           # not replace all superpixels with their average, only
                           # some of them (p_replace).
                           sometimes(
                               iaa.Superpixels(
                                   p_replace=(0, 1.0),
                                   n_segments=(20, 200)
                               )
                           ),

                           # Blur each image with varying strength using
                           # gaussian blur (sigma between 0 and 3.0),
                           # average/uniform blur (kernel size between 2x2 and 7x7)
                           # median blur (kernel size between 3x3 and 11x11).
                           iaa.OneOf([
                               iaa.GaussianBlur((0, 3.0)),
                               iaa.AverageBlur(k=(2, 7)),
                               iaa.MedianBlur(k=(3, 11)),
                           ]),

                           # Sharpen each image, overlay the result with the original
                           # image using an alpha between 0 (no sharpening) and 1
                           # (full sharpening effect).
                           iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),

                           # Same as sharpen, but for an embossing effect.
                           iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),

                           # Search in some images either for all edges or for
                           # directed edges. These edges are then marked in a black
                           # and white image and overlayed with the original image
                           # using an alpha of 0 to 0.7.
                           sometimes(iaa.OneOf([
                               iaa.EdgeDetect(alpha=(0, 0.7)),
                               iaa.DirectedEdgeDetect(
                                   alpha=(0, 0.7), direction=(0.0, 1.0)
                               ),
                           ])),

                           # Add gaussian noise to some images.
                           # In 50% of these cases, the noise is randomly sampled per
                           # channel and pixel.
                           # In the other 50% of all cases it is sampled once per
                           # pixel (i.e. brightness change).
                           iaa.AdditiveGaussianNoise(
                               loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5
                           ),

                           # Either drop randomly 1 to 10% of all pixels (i.e. set
                           # them to black) or drop them on an image with 2-5% percent
                           # of the original size, leading to large dropped
                           # rectangles.
                           iaa.OneOf([
                               iaa.Dropout((0.01, 0.1), per_channel=0.5),
                               iaa.CoarseDropout(
                                   (0.03, 0.15), size_percent=(0.02, 0.05),
                                   per_channel=0.2
                               ),
                           ]),

                           # Invert each image's channel with 5% probability.
                           # This sets each pixel value v to 255-v.
                           iaa.Invert(0.05, per_channel=True),  # invert color channels

                           # Add a value of -10 to 10 to each pixel.
                           iaa.Add((-10, 10), per_channel=0.5),

                           # Change brightness of images (50-150% of original value).
                           iaa.Multiply((0.5, 1.5), per_channel=0.5),

                           # Improve or worsen the contrast of images.
                           iaa.LinearContrast((0.5, 2.0), per_channel=0.5),

                           # Convert each image to grayscale and then overlay the
                           # result with the original with random alpha. I.e. remove
                           # colors with varying strengths.
                           iaa.Grayscale(alpha=(0.0, 1.0)),

                           # In some images move pixels locally around (with random
                           # strengths).
                           sometimes(
                               iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)
                           ),

                           # In some images distort local areas with varying strength.
                           sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05)))
                       ],
                       # do all of the above augmentations in random order
                       random_order=True
                       )
        ],
        # do all of the above augmentations in random order
        random_order=True
    )

    images_aug = seq.augment_images([img])
    return images_aug[0]
Ejemplo n.º 22
0
                        help="Path to weights .h5 file")
    parser.add_argument('--logs', required=False,
                        default=DEFAULT_LOGS_DIR,
                        metavar="/path/to/logs/",
                        help='Logs and checkpoints directory (default=logs/)')
    parser.add_argument('--limit', required=False,
                        default=500,
                        metavar="<image count>",
                        help='Images to use for evaluation (default=500)')
    parser.add_argument('--augment', required=False, action='store_true', help='add augmentations')
    parser.add_argument('--stage', required=False, default=1, type=int, help='Choose stage of training (1-heads, 2-4+, 3-full)')
    parser.add_argument('--num_gpus', default=1, type=int, help='Number of GPUs available')
    args = parser.parse_args()
    
    if args.augment:
        aug = iaa.OneOf([iaa.CropAndPad(percent=(-0.5, 0.5)), iaa.Fliplr(0.5), iaa.Affine(translate_percent={"x": (-0.4, 0.4), "y": (-0.4, 0.4)})])
    else:
        aug = None
    ############################################################
    #  Configurations
    ############################################################

    with open(args.json_file, 'r') as f:
        obj = json.load(f)
    
    # Configurations
    if args.command == "train":
        config = BagsConfig(len(obj['classes']), args.num_gpus)
    else:
        class InferenceConfig():
            # Set batch size to 1 since we'll be running inference on
Ejemplo n.º 23
0
def zoom(image):
  zoom = iaa.Affine(scale=(1, 1.3))
  image = zoom.augment_image(image)
  return image
def load_aug():

    import imgaug as ia
    from imgaug import augmenters as iaa

    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    seq[0] = iaa.Sequential(
        [
            # apply the following augmenters to most images
            iaa.Fliplr(0.5),  # horizontally flip 50% of all images
            iaa.Flipud(0.2),  # vertically flip 20% of all images
            # crop images by -5% to 10% of their height/width
            sometimes(
                iaa.CropAndPad(
                    percent=(-0.05, 0.1), pad_mode=ia.ALL, pad_cval=(0, 255))),
            sometimes(
                iaa.Affine(
                    scale={
                        "x": (0.8, 1.2),
                        "y": (0.8, 1.2)
                    },  # scale images to 80-120% of their size, individually per axis
                    translate_percent={
                        "x": (-0.2, 0.2),
                        "y": (-0.2, 0.2)
                    },  # translate by -20 to +20 percent (per axis)
                    rotate=(-45, 45),  # rotate by -45 to +45 degrees
                    shear=(-16, 16),  # shear by -16 to +16 degrees
                    order=[
                        0,
                        1
                    ],  # use nearest neighbour or bilinear interpolation (fast)
                    cval=(
                        0, 255
                    ),  # if mode is constant, use a cval between 0 and 255
                    mode=ia.
                    ALL  # use any of scikit-image's warping modes (see 2nd image from the top for examples)
                )),
            # execute 0 to 5 of the following (less important) augmenters per image
            # don't execute all of them, as that would often be way too strong
            iaa.SomeOf(
                (0, 5),
                [
                    sometimes(
                        iaa.Superpixels(p_replace=(0, 1.0),
                                        n_segments=(20, 200))
                    ),  # convert images into their superpixel representation
                    iaa.OneOf([
                        iaa.GaussianBlur(
                            (0, 3.0
                             )),  # blur images with a sigma between 0 and 3.0
                        iaa.AverageBlur(
                            k=(2, 7)
                        ),  # blur image using local means with kernel sizes between 2 and 7
                        iaa.MedianBlur(
                            k=(3, 11)
                        ),  # blur image using local medians with kernel sizes between 2 and 7
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0),
                                lightness=(0.75, 1.5)),  # sharpen images
                    iaa.Emboss(alpha=(0, 1.0),
                               strength=(0, 2.0)),  # emboss images
                    # search either for all edges or for directed edges,
                    # blend the result with the original image using a blobby mask
                    iaa.SimplexNoiseAlpha(
                        iaa.OneOf([
                            iaa.EdgeDetect(alpha=(0.5, 1.0)),
                            iaa.DirectedEdgeDetect(alpha=(0.5, 1.0),
                                                   direction=(0.0, 1.0)),
                        ])),
                    iaa.AdditiveGaussianNoise(
                        loc=0, scale=(0.0, 0.05 * 255),
                        per_channel=0.5),  # add gaussian noise to images
                    iaa.OneOf([
                        iaa.Dropout(
                            (0.01, 0.1), per_channel=0.5
                        ),  # randomly remove up to 10% of the pixels
                        iaa.CoarseDropout((0.03, 0.15),
                                          size_percent=(0.02, 0.05),
                                          per_channel=0.2),
                    ]),
                    iaa.Invert(0.05,
                               per_channel=True),  # invert color channels
                    iaa.Add(
                        (-10, 10), per_channel=0.5
                    ),  # change brightness of images (by -10 to 10 of original value)
                    iaa.AddToHueAndSaturation(
                        (-20, 20)),  # change hue and saturation
                    # either change the brightness of the whole image (sometimes
                    # per channel) or change the brightness of subareas
                    iaa.OneOf([
                        iaa.Multiply((0.5, 1.5), per_channel=0.5),
                        iaa.FrequencyNoiseAlpha(
                            exponent=(-4, 0),
                            first=iaa.Multiply((0.5, 1.5), per_channel=True),
                            second=iaa.contrast.LinearContrast((0.5, 2.0)))
                    ]),
                    iaa.contrast.LinearContrast(
                        (0.5, 2.0),
                        per_channel=0.5),  # improve or worsen the contrast
                    iaa.Grayscale(alpha=(0.0, 1.0)),
                    sometimes(
                        iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)
                    ),  # move pixels locally around (with random strengths)
                    sometimes(iaa.PiecewiseAffine(scale=(
                        0.01,
                        0.05))),  # sometimes move parts of the image around
                    sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1)))
                ],
                random_order=True)
        ],
        random_order=True)
Ejemplo n.º 25
0
    val_fns = [f for f in val_fns if val_fns not in exclude_list]

    logger.info('Prepare train dataset')
    dataset_train = DetectorDataset(
        trn_fns, df_trn, TRAIN_PATH, ORIG_SZ, ORIG_SZ)
    dataset_train.prepare()

    logger.info('Prepare validation dataset')
    dataset_val = DetectorDataset(
        val_fns, df_val, TRAIN_PATH, ORIG_SZ, ORIG_SZ)
    dataset_val.prepare()

    # Image augmentation (light but constant)
    augmentation = iaa.Sequential([
        iaa.OneOf([  # rotate
            iaa.Affine(rotate=0),
            iaa.Affine(rotate=90),
            iaa.Affine(rotate=180),
            iaa.Affine(rotate=270),
        ]),
        iaa.Fliplr(0.5),
        iaa.Flipud(0.5),
        iaa.OneOf([  # brightness or contrast
            iaa.Multiply((0.9, 1.1)),
            iaa.ContrastNormalization((0.9, 1.1)),
        ]),
        iaa.OneOf([  # blur or sharpen
            iaa.GaussianBlur(sigma=(0.0, 0.1)),
            iaa.Sharpen(alpha=(0.0, 0.1)),
        ]),
    ])
Ejemplo n.º 26
0
def py_decode_mask(counts, mask_h, mask_w):
    mask = map(
        lambda x: maskUtils.decode({
            'size': [mask_h, mask_w],
            'counts': x
        }), counts)
    mask = list(mask)
    mask = np.array(mask)
    mask = mask.astype(np.uint8)
    return mask


seq = iaa.Sequential([
    iaa.Affine(
        rotate=[-45, 45],
        cval=127,
    )  # translate by 40/60px on x/y axis, and scale to 50-70%, affects BBs
])


def rotate(img, bboxes, masks):
    o_img = img
    o_bboxes = bboxes
    o_masks = masks
    seq_det = seq.to_deterministic()

    bbox = [
        ia.BoundingBox(x1=x1, y1=y1, x2=x2, y2=y2, label=l)
        for x1, y1, x2, y2, l in list(bboxes[:, :5])
    ]
    bbs = ia.BoundingBoxesOnImage(bbox, shape=img.shape)
Ejemplo n.º 27
0
def Augmentation(input_image, label):

    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))

        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, './npy')

    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    aug_name = input_image.split("/")[-1].split(".")[0]

    minsize = 35  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor
    margin = 44
    image_size = 200

    nb_batches = 16

    aug_label = [label] * nb_batches
    aug_faces = []
    batches = []
    seq = iaa.Sequential(
        [
            iaa.Fliplr(0.5),
            sometimes(
                iaa.CropAndPad(
                    percent=(-0.05, 0.1), pad_mode=ia.ALL, pad_cval=(0, 255))),
            sometimes(
                iaa.Affine(scale={
                    "x": (0.8, 1.0),
                    "y": (0.8, 1.0)
                },
                           translate_percent={
                               "x": (-0.2, 0.2),
                               "y": (0, 0.2)
                           },
                           rotate=(-10, 10),
                           shear=(-16, 16),
                           order=[0, 1],
                           cval=(0, 255))),
            iaa.SomeOf(
                (0, 4),
                [
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)),
                        iaa.AverageBlur(k=(2, 7)),
                        iaa.MedianBlur(k=(3, 11)),
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0),
                                lightness=(0.75, 1.5)),  # sharpen images
                    iaa.Emboss(alpha=(0, 1.0),
                               strength=(0, 1.0)),  # emboss images
                    iaa.SimplexNoiseAlpha(
                        iaa.OneOf([
                            iaa.EdgeDetect(alpha=(0.2, 0.5)),
                            iaa.DirectedEdgeDetect(alpha=(0.2, 0.5),
                                                   direction=(0.0, 1.0)),
                        ])),
                    iaa.AdditiveGaussianNoise(
                        loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),
                    iaa.Dropout((0.01, 0.1), per_channel=0.5),
                    iaa.Add((-10, 10), per_channel=0.5),
                    iaa.AddToHueAndSaturation((-20, 20)),
                    iaa.ContrastNormalization((0.5, 1.5), per_channel=0.5),
                    iaa.Grayscale(alpha=(0.0, 1.0)),
                    sometimes(
                        iaa.ElasticTransformation(alpha=(0.5, 2), sigma=0.25)),
                    sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.03))),
                    sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1)))
                ],
                random_order=True)
        ],
        random_order=True)
    img = misc.imread(input_image)
    if img.ndim < 2:
        print("Unable !")
    elif img.ndim == 2:
        img = facenet.to_rgb(img)
    img = img[:, :, 0:3]

    batches.append(np.array([img for _ in range(nb_batches)], dtype=np.uint8))

    aug_images = seq.augment_images(batches[0])

    for aug_img in aug_images:
        bounding_boxes, _ = detect_face.detect_face(aug_img, minsize, pnet,
                                                    rnet, onet, threshold,
                                                    factor)
        nrof_faces = bounding_boxes.shape[0]

        if nrof_faces > 0:
            det = bounding_boxes[:, 0:4]
            img_size = np.asarray(img.shape)[0:2]

            if nrof_faces > 1:
                bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                               det[:, 1])
                img_center = img_size / 2
                offsets = np.vstack([
                    (det[:, 0] + det[:, 2]) / 2 - img_center[1],
                    (det[:, 1] + det[:, 3]) / 2 - img_center[0]
                ])

                offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
                index = np.argmax(bounding_box_size -
                                  offset_dist_squared * 2.0)
                det = det[index, :]

            det = np.squeeze(det)
            bb_temp = np.zeros(4, dtype=np.int32)

            bb_temp[0] = det[0]
            bb_temp[1] = det[1]
            bb_temp[2] = det[2]
            bb_temp[3] = det[3]

            cropped_temp = aug_img[bb_temp[1]:bb_temp[3],
                                   bb_temp[0]:bb_temp[2], :]
            scaled_temp = misc.imresize(cropped_temp, (image_size, image_size),
                                        interp='bilinear')
            aug_faces.append(scaled_temp)

    return (aug_label, aug_faces)
Ejemplo n.º 28
0
        print('shape:', xx_train.shape, 'val shape:', xx_val.shape)
        sometimes = lambda aug: iaa.Sometimes(0.5, aug)
        seq = iaa.Sequential(
            [
                iaa.SomeOf(
                    (0, 3),
                    [
                        iaa.Fliplr(0.5),  # horizontally flip 50% of all images
                        iaa.Flipud(0.2),  # vertically flip 20% of all images
                        sometimes(
                            iaa.CropAndPad(percent=(-0.05, 0.1),
                                           pad_mode=['reflect'])),
                        sometimes(
                            iaa.OneOf([
                                iaa.Affine(rotate=0),
                                iaa.Affine(rotate=90),
                                iaa.Affine(rotate=180),
                                iaa.Affine(rotate=270)
                            ])),
                        sometimes(
                            iaa.Affine(
                                scale={
                                    "x": (0.1, 1.1),
                                    "y": (0.9, 1.1)
                                },
                                translate_percent={
                                    "x": (-0.1, 0.1),
                                    "y": (-0.1, 0.1)
                                },
                                rotate=(-45,
def draw_per_augmenter_images():
    print("[draw_per_augmenter_images] Loading image...")
    #image = misc.imresize(ndimage.imread("quokka.jpg")[0:643, 0:643], (128, 128))
    image = ia.quokka_square(size=(128, 128))

    keypoints = [
        ia.Keypoint(x=34, y=15),
        ia.Keypoint(x=85, y=13),
        ia.Keypoint(x=63, y=73)
    ]  # left ear, right ear, mouth
    keypoints = [ia.KeypointsOnImage(keypoints, shape=image.shape)]

    print("[draw_per_augmenter_images] Initializing...")
    rows_augmenters = [
        (0, "Noop", [("", iaa.Noop()) for _ in sm.xrange(5)]),
        (0, "Crop\n(top, right,\nbottom, left)", [
            (str(vals), iaa.Crop(px=vals))
            for vals in [(2, 0, 0, 0), (0, 8, 8, 0), (4, 0, 16,
                                                      4), (8, 0, 0,
                                                           32), (32, 64, 0, 0)]
        ]),
        (0, "Pad\n(top, right,\nbottom, left)", [
            (str(vals), iaa.Pad(px=vals))
            for vals in [(2, 0, 0, 0), (0, 8, 8, 0), (4, 0, 16,
                                                      4), (8, 0, 0,
                                                           32), (32, 64, 0, 0)]
        ]), (0, "Fliplr", [(str(p), iaa.Fliplr(p)) for p in [0, 0, 1, 1, 1]]),
        (0, "Flipud", [(str(p), iaa.Flipud(p)) for p in [0, 0, 1, 1, 1]]),
        (0, "Superpixels\np_replace=1",
         [("n_segments=%d" % (n_segments, ),
           iaa.Superpixels(p_replace=1.0, n_segments=n_segments))
          for n_segments in [25, 50, 75, 100, 125]]),
        (0, "Superpixels\nn_segments=100",
         [("p_replace=%.2f" % (p_replace, ),
           iaa.Superpixels(p_replace=p_replace, n_segments=100))
          for p_replace in [0, 0.25, 0.5, 0.75, 1.0]]),
        (0, "Invert", [("p=%d" % (p, ), iaa.Invert(p=p))
                       for p in [0, 0, 1, 1, 1]]),
        (0, "Invert\n(per_channel)", [("p=%.2f" % (p, ),
                                       iaa.Invert(p=p, per_channel=True))
                                      for p in [0.5, 0.5, 0.5, 0.5, 0.5]]),
        (0, "Add", [("value=%d" % (val, ), iaa.Add(val))
                    for val in [-45, -25, 0, 25, 45]]),
        (0, "Add\n(per channel)", [
            ("value=(%d, %d)" % (
                vals[0],
                vals[1],
            ), iaa.Add(vals, per_channel=True))
            for vals in [(-55, -35), (-35, -15), (-10, 10), (15, 35), (35, 55)]
        ]),
        (0, "AddToHueAndSaturation", [("value=%d" % (val, ),
                                       iaa.AddToHueAndSaturation(val))
                                      for val in [-45, -25, 0, 25, 45]]),
        (0, "Multiply", [("value=%.2f" % (val, ), iaa.Multiply(val))
                         for val in [0.25, 0.5, 1.0, 1.25, 1.5]]),
        (1, "Multiply\n(per channel)",
         [("value=(%.2f, %.2f)" % (
             vals[0],
             vals[1],
         ), iaa.Multiply(vals, per_channel=True))
          for vals in [(0.15, 0.35), (0.4, 0.6), (0.9, 1.1), (1.15,
                                                              1.35), (1.4,
                                                                      1.6)]]),
        (0, "GaussianBlur", [("sigma=%.2f" % (sigma, ),
                              iaa.GaussianBlur(sigma=sigma))
                             for sigma in [0.25, 0.50, 1.0, 2.0, 4.0]]),
        (0, "AverageBlur", [("k=%d" % (k, ), iaa.AverageBlur(k=k))
                            for k in [1, 3, 5, 7, 9]]),
        (0, "MedianBlur", [("k=%d" % (k, ), iaa.MedianBlur(k=k))
                           for k in [1, 3, 5, 7, 9]]),
        (0, "BilateralBlur\nsigma_color=250,\nsigma_space=250",
         [("d=%d" % (d, ),
           iaa.BilateralBlur(d=d, sigma_color=250, sigma_space=250))
          for d in [1, 3, 5, 7, 9]]),
        (0, "Sharpen\n(alpha=1)", [("lightness=%.2f" % (lightness, ),
                                    iaa.Sharpen(alpha=1, lightness=lightness))
                                   for lightness in [0, 0.5, 1.0, 1.5, 2.0]]),
        (0, "Emboss\n(alpha=1)", [("strength=%.2f" % (strength, ),
                                   iaa.Emboss(alpha=1, strength=strength))
                                  for strength in [0, 0.5, 1.0, 1.5, 2.0]]),
        (0, "EdgeDetect", [("alpha=%.2f" % (alpha, ),
                            iaa.EdgeDetect(alpha=alpha))
                           for alpha in [0.0, 0.25, 0.5, 0.75, 1.0]]),
        (0, "DirectedEdgeDetect\n(alpha=1)",
         [("direction=%.2f" % (direction, ),
           iaa.DirectedEdgeDetect(alpha=1, direction=direction))
          for direction in [
              0.0, 1 * (360 / 5) / 360, 2 * (360 / 5) / 360, 3 * (360 / 5) /
              360, 4 * (360 / 5) / 360
          ]]),
        (0, "AdditiveGaussianNoise",
         [("scale=%.2f*255" % (scale, ),
           iaa.AdditiveGaussianNoise(scale=scale * 255))
          for scale in [0.025, 0.05, 0.1, 0.2, 0.3]]),
        (0, "AdditiveGaussianNoise\n(per channel)",
         [("scale=%.2f*255" % (scale, ),
           iaa.AdditiveGaussianNoise(scale=scale * 255, per_channel=True))
          for scale in [0.025, 0.05, 0.1, 0.2, 0.3]]),
        (0, "Dropout", [("p=%.2f" % (p, ), iaa.Dropout(p=p))
                        for p in [0.025, 0.05, 0.1, 0.2, 0.4]]),
        (0, "Dropout\n(per channel)", [("p=%.2f" % (p, ),
                                        iaa.Dropout(p=p, per_channel=True))
                                       for p in [0.025, 0.05, 0.1, 0.2, 0.4]]),
        (3, "CoarseDropout\n(p=0.2)",
         [("size_percent=%.2f" % (size_percent, ),
           iaa.CoarseDropout(p=0.2, size_percent=size_percent, min_size=2))
          for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]),
        (0, "CoarseDropout\n(p=0.2, per channel)",
         [("size_percent=%.2f" % (size_percent, ),
           iaa.CoarseDropout(p=0.2,
                             size_percent=size_percent,
                             per_channel=True,
                             min_size=2))
          for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]),
        (0, "SaltAndPepper", [("p=%.2f" % (p, ), iaa.SaltAndPepper(p=p))
                              for p in [0.025, 0.05, 0.1, 0.2, 0.4]]),
        (0, "Salt", [("p=%.2f" % (p, ), iaa.Salt(p=p))
                     for p in [0.025, 0.05, 0.1, 0.2, 0.4]]),
        (0, "Pepper", [("p=%.2f" % (p, ), iaa.Pepper(p=p))
                       for p in [0.025, 0.05, 0.1, 0.2, 0.4]]),
        (0, "CoarseSaltAndPepper\n(p=0.2)",
         [("size_percent=%.2f" % (size_percent, ),
           iaa.CoarseSaltAndPepper(p=0.2,
                                   size_percent=size_percent,
                                   min_size=2))
          for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]),
        (0, "CoarseSalt\n(p=0.2)",
         [("size_percent=%.2f" % (size_percent, ),
           iaa.CoarseSalt(p=0.2, size_percent=size_percent, min_size=2))
          for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]),
        (0, "CoarsePepper\n(p=0.2)",
         [("size_percent=%.2f" % (size_percent, ),
           iaa.CoarsePepper(p=0.2, size_percent=size_percent, min_size=2))
          for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]),
        (0, "ContrastNormalization",
         [("alpha=%.1f" % (alpha, ), iaa.ContrastNormalization(alpha=alpha))
          for alpha in [0.5, 0.75, 1.0, 1.25, 1.50]]),
        (0, "ContrastNormalization\n(per channel)",
         [("alpha=(%.2f, %.2f)" % (
             alphas[0],
             alphas[1],
         ), iaa.ContrastNormalization(alpha=alphas, per_channel=True))
          for alphas in [(0.4, 0.6), (0.65,
                                      0.85), (0.9, 1.1), (1.15,
                                                          1.35), (1.4, 1.6)]]),
        (0, "Grayscale", [("alpha=%.1f" % (alpha, ),
                           iaa.Grayscale(alpha=alpha))
                          for alpha in [0.0, 0.25, 0.5, 0.75, 1.0]]),
        (6, "PerspectiveTransform",
         [("scale=%.3f" % (scale, ), iaa.PerspectiveTransform(scale=scale))
          for scale in [0.025, 0.05, 0.075, 0.10, 0.125]]),
        (0, "PiecewiseAffine",
         [("scale=%.3f" % (scale, ), iaa.PiecewiseAffine(scale=scale))
          for scale in [0.015, 0.03, 0.045, 0.06, 0.075]]),
        (0, "Affine: Scale", [("%.1fx" % (scale, ), iaa.Affine(scale=scale))
                              for scale in [0.1, 0.5, 1.0, 1.5, 1.9]]),
        (0, "Affine: Translate",
         [("x=%d y=%d" % (x, y), iaa.Affine(translate_px={
             "x": x,
             "y": y
         }))
          for x, y in [(-32, -16), (-16, -32), (-16, -8), (16, 8), (16, 32)]]),
        (0, "Affine: Rotate", [("%d deg" % (rotate, ),
                                iaa.Affine(rotate=rotate))
                               for rotate in [-90, -45, 0, 45, 90]]),
        (0, "Affine: Shear", [("%d deg" % (shear, ), iaa.Affine(shear=shear))
                              for shear in [-45, -25, 0, 25, 45]]),
        (0, "Affine: Modes",
         [(mode, iaa.Affine(translate_px=-32, mode=mode))
          for mode in ["constant", "edge", "symmetric", "reflect", "wrap"]]),
        (0, "Affine: cval", [("%d" % (int(cval * 255), ),
                              iaa.Affine(translate_px=-32,
                                         cval=int(cval * 255),
                                         mode="constant"))
                             for cval in [0.0, 0.25, 0.5, 0.75, 1.0]]),
        (2, "Affine: all", [("",
                             iaa.Affine(scale={
                                 "x": (0.5, 1.5),
                                 "y": (0.5, 1.5)
                             },
                                        translate_px={
                                            "x": (-32, 32),
                                            "y": (-32, 32)
                                        },
                                        rotate=(-45, 45),
                                        shear=(-32, 32),
                                        mode=ia.ALL,
                                        cval=(0.0, 1.0)))
                            for _ in sm.xrange(5)]),
        (1, "ElasticTransformation\n(sigma=0.2)",
         [("alpha=%.1f" % (alpha, ),
           iaa.ElasticTransformation(alpha=alpha, sigma=0.2))
          for alpha in [0.1, 0.5, 1.0, 3.0, 9.0]]),
        (0, "Alpha\nwith EdgeDetect(1.0)",
         [("factor=%.1f" % (factor, ),
           iaa.Alpha(factor=factor, first=iaa.EdgeDetect(1.0)))
          for factor in [0.0, 0.25, 0.5, 0.75, 1.0]]),
        (4, "Alpha\nwith EdgeDetect(1.0)\n(per channel)", [
            ("factor=(%.2f, %.2f)" % (factor[0], factor[1]),
             iaa.Alpha(factor=factor,
                       first=iaa.EdgeDetect(1.0),
                       per_channel=0.5))
            for factor in [(0.0, 0.2), (0.15, 0.35), (0.4,
                                                      0.6), (0.65,
                                                             0.85), (0.8, 1.0)]
        ]),
        (15, "SimplexNoiseAlpha\nwith EdgeDetect(1.0)",
         [("", iaa.SimplexNoiseAlpha(first=iaa.EdgeDetect(1.0)))
          for alpha in [0.0, 0.25, 0.5, 0.75, 1.0]]),
        (9, "FrequencyNoiseAlpha\nwith EdgeDetect(1.0)",
         [("exponent=%.1f" % (exponent, ),
           iaa.FrequencyNoiseAlpha(exponent=exponent,
                                   first=iaa.EdgeDetect(1.0),
                                   size_px_max=16,
                                   upscale_method="linear",
                                   sigmoid=False))
          for exponent in [-4, -2, 0, 2, 4]])
    ]

    print("[draw_per_augmenter_images] Augmenting...")
    rows = []
    for (row_seed, row_name, augmenters) in rows_augmenters:
        ia.seed(row_seed)
        #for img_title, augmenter in augmenters:
        #    #aug.reseed(1000)
        #    pass

        row_images = []
        row_keypoints = []
        row_titles = []
        for img_title, augmenter in augmenters:
            aug_det = augmenter.to_deterministic()
            row_images.append(aug_det.augment_image(image))
            row_keypoints.append(aug_det.augment_keypoints(keypoints)[0])
            row_titles.append(img_title)
        rows.append((row_name, row_images, row_keypoints, row_titles))

    # matplotlib drawin routine
    """
    print("[draw_per_augmenter_images] Plotting...")
    width = 8
    height = int(1.5 * len(rows_augmenters))
    fig = plt.figure(figsize=(width, height))
    grid_rows = len(rows)
    grid_cols = 1 + 5
    gs = gridspec.GridSpec(grid_rows, grid_cols, width_ratios=[2, 1, 1, 1, 1, 1])
    axes = []
    for i in sm.xrange(grid_rows):
        axes.append([plt.subplot(gs[i, col_idx]) for col_idx in sm.xrange(grid_cols)])
    fig.tight_layout()
    #fig.subplots_adjust(bottom=0.2 / grid_rows, hspace=0.22)
    #fig.subplots_adjust(wspace=0.005, hspace=0.425, bottom=0.02)
    fig.subplots_adjust(wspace=0.005, hspace=0.005, bottom=0.02)

    for row_idx, (row_name, row_images, row_keypoints, row_titles) in enumerate(rows):
        axes_row = axes[row_idx]

        for col_idx in sm.xrange(grid_cols):
            ax = axes_row[col_idx]

            ax.cla()
            ax.axis("off")
            ax.get_xaxis().set_visible(False)
            ax.get_yaxis().set_visible(False)

            if col_idx == 0:
                ax.text(0, 0.5, row_name, color="black")
            else:
                cell_image = row_images[col_idx-1]
                cell_keypoints = row_keypoints[col_idx-1]
                cell_image_kp = cell_keypoints.draw_on_image(cell_image, size=5)
                ax.imshow(cell_image_kp)
                x = 0
                y = 145
                #ax.text(x, y, row_titles[col_idx-1], color="black", backgroundcolor="white", fontsize=6)
                ax.text(x, y, row_titles[col_idx-1], color="black", fontsize=7)


    fig.savefig("examples.jpg", bbox_inches="tight")
    #plt.show()
    """

    # simpler and faster drawing routine
    """
    output_image = ExamplesImage(128, 128, 128+64, 32)
    for (row_name, row_images, row_keypoints, row_titles) in rows:
        row_images_kps = []
        for image, keypoints in zip(row_images, row_keypoints):
            row_images_kps.append(keypoints.draw_on_image(image, size=5))
        output_image.add_row(row_name, row_images_kps, row_titles)
    misc.imsave("examples.jpg", output_image.draw())
    """

    # routine to draw many single files
    seen = defaultdict(lambda: 0)
    markups = []
    for (row_name, row_images, row_keypoints, row_titles) in rows:
        output_image = ExamplesImage(128, 128, 128 + 64, 32)
        row_images_kps = []
        for image, keypoints in zip(row_images, row_keypoints):
            row_images_kps.append(keypoints.draw_on_image(image, size=5))
        output_image.add_row(row_name, row_images_kps, row_titles)
        if "\n" in row_name:
            row_name_clean = row_name[0:row_name.find("\n") + 1]
        else:
            row_name_clean = row_name
        row_name_clean = re.sub(r"[^a-z0-9]+", "_", row_name_clean.lower())
        row_name_clean = row_name_clean.strip("_")
        if seen[row_name_clean] > 0:
            row_name_clean = "%s_%d" % (row_name_clean,
                                        seen[row_name_clean] + 1)
        fp = os.path.join(IMAGES_DIR, "examples_%s.jpg" % (row_name_clean, ))
        #misc.imsave(fp, output_image.draw())
        save(fp, output_image.draw())
        seen[row_name_clean] += 1

        markup_descr = row_name.replace('"', '') \
                               .replace("\n", " ") \
                               .replace("(", "") \
                               .replace(")", "")
        markup = '![%s](%s?raw=true "%s")' % (markup_descr, fp, markup_descr)
        markups.append(markup)

    for markup in markups:
        print(markup)
Ejemplo n.º 30
0
        # For the other 50% of all images, we sample the noise per pixel AND
        # channel. This can change the color (not only brightness) of the
        # pixels.
        iaa.AdditiveGaussianNoise(
            loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),
        # Make some images brighter and some darker.
        # In 20% of all cases, we sample the multiplier once per channel,
        # which can end up changing the color of the images.
        iaa.Multiply((0.8, 1.2), per_channel=0.2),
        # Apply affine transformations to each image.
        # Scale/zoom them, translate/move them, rotate them and shear them.
        iaa.Affine(scale={
            "x": (0.8, 1.2),
            "y": (0.8, 1.2)
        },
                   translate_percent={
                       "x": (-0.2, 0.2),
                       "y": (-0.2, 0.2)
                   },
                   rotate=(-25, 25),
                   shear=(-8, 8)),
        iaa.Multiply((0.8, 1.2), per_channel=0.2),

        #iaa.Sometimes(0.5, iaa.Lambda(func_images=func_images, func_keypoints=func_keypoints)),

        #iaa.Sometimes(0.5, iaa.AverageBlur(k=10, name=None, deterministic=False, random_state=True)),

        # iaa.Sometimes(0.5, iaa.PiecewiseAffine(scale=0,
        #                                        nb_rows=4,
        #                                        nb_cols=4,
        #                                        order=1,
        #                                        cval=0,