Ejemplo n.º 1
0
    def __init__(
            self,
            instances,
            anchors,  # for Feature Pyramid Networks we need 9 anchors, 3 for each scale
            labels,
            downsample=32,  # ratio between network input's size and network output's size, 32 for YOLOv1-3
            max_box_per_image=30,
            batch_size=1,
            # min_net_size=224,
            # max_net_size=224,
            shuffle=True,
            jitter=True,
            norm=None):
        self.instances = instances
        self.batch_size = batch_size
        self.labels = labels
        self.downsample = downsample
        self.max_box_per_image = max_box_per_image
        # self.min_net_size = (min_net_size // self.downsample) * self.downsample
        # self.max_net_size = (max_net_size // self.downsample) * self.downsample
        self.shuffle = shuffle
        self.jitter = jitter
        self.norm = norm
        self.anchors = [
            BoundBox(0, 0, anchors[2 * i], anchors[2 * i + 1])
            for i in range(len(anchors) // 2)
        ]
        self.net_h = 224
        self.net_w = 224

        # augmentors by https://github.com/aleju/imgaug
        sometimes = lambda aug: iaa.Sometimes(0.5, aug)

        # Define our sequence of augmentation steps that will be applied to every image
        # All augmenters with per_channel=0.5 will sample one value _per image_
        # in 50% of all cases. In all other cases they will sample new values
        # _per channel_.
        self.aug_pipe = iaa.Sequential(
            [
                sometimes(iaa.Affine()),
                # execute 0 to 5 of the following (less important) augmenters per image
                # don't execute all of them, as that would often be way too strong
                iaa.SomeOf(
                    (0, 5),
                    [
                        iaa.OneOf([
                            iaa.GaussianBlur(
                                (0, 3.0)
                            ),  # blur images with a sigma between 0 and 3.0
                            iaa.AverageBlur(k=(2, 7)),
                            # blur image using local means with kernel sizes between 2 and 7
                            iaa.MedianBlur(k=(3, 11)),
                            # blur image using local medians with kernel sizes between 2 and 7
                        ]),
                        iaa.Sharpen(alpha=(0, 1.0),
                                    lightness=(0.75, 1.5)),  # sharpen images
                        iaa.AdditiveGaussianNoise(
                            loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),
                        # add gaussian noise to images
                        iaa.OneOf([
                            iaa.Dropout(
                                (0.01, 0.1), per_channel=0.5
                            ),  # randomly remove up to 10% of the pixels
                            # iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                        ]),
                        # iaa.Invert(0.05, per_channel=True), # invert color channels
                        iaa.Add((-10, 10), per_channel=0.5),
                        # change brightness of images (by -10 to 10 of original value)
                        iaa.Multiply((0.5, 1.5), per_channel=0.5),
                        # change brightness of images (50-150% of original value)
                        iaa.ContrastNormalization(
                            (0.5, 2.0),
                            per_channel=0.5),  # improve or worsen the contrast
                    ],
                    random_order=True)
            ],
            random_order=True)

        if shuffle:
            np.random.shuffle(self.instances)
Ejemplo n.º 2
0
             "y": (-0.1, 0.1)
         },
         rotate=(-45, 45),  # rotate by -45 to +45 degrees
         shear=(-5, 5),
         order=[
             0,
             1
         ],  # use nearest neighbour or bilinear interpolation (fast)
         mode=['reflect'])),
 lesssometimes(
     iaa.SomeOf(
         (0, 5),
         [
             iaa.OneOf([
                 iaa.GaussianBlur((0, 3.0)),
                 iaa.AverageBlur(k=(2, 7)),
                 iaa.MedianBlur(k=(3, 5)),
             ]),
             iaa.Sharpen(alpha=(0, 1.0),
                         lightness=(0.75, 1.5)),
             iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),
             sometimes(
                 iaa.OneOf([
                     iaa.EdgeDetect(alpha=(0, 0.7)),
                     iaa.DirectedEdgeDetect(
                         alpha=(0, 0.7),
                         direction=(0.0, 1.0)),
                 ])),
             iaa.AdditiveGaussianNoise(
                 loc=0,
                 scale=(0.0, 0.05 * 255),
Ejemplo n.º 3
0
        sometimes(iaa.Affine(
            scale={"x": (0.65, 1.15), "y": (0.65, 1.15)}, # scale images to 80-120% of their size, individually per axis
            translate_percent={"x": (-0.15, 0.15), "y": (-0.15, 0.15)}, # translate by -20 to +20 percent (per axis)
            rotate=(-30, 30), # rotate by -45 to +45 degrees
            shear=(-5, 5), # shear by -16 to +16 degrees
            order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
            cval=(0, 255), # if mode is constant, use a cval between 0 and 255
            mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
        )),
        # execute 0 to 5 of the following (less important) augmenters per image
        # don't execute all of them, as that would often be way too strong
        iaa.SomeOf((0, 3),
            [
                iaa.OneOf([
                    iaa.GaussianBlur((0, 2.0)), # blur images with a sigma between 0 and 3.0
                    iaa.AverageBlur(k=(1, 5)), # blur image using local means with kernel sizes between 2 and 7
                    iaa.MedianBlur(k=(1, 5)), # blur image using local medians with kernel sizes between 2 and 7
                ]),

                iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.03*255), per_channel=0.5), # add gaussian noise to images
                iaa.OneOf([
                    iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                    iaa.CoarseDropout((0.03, 0.15), size_percent=(0.01, 0.03), per_channel=0.2),
                ]),
                iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)

                iaa.ContrastNormalization((0.3, 1.0), per_channel=0.5), # improve or worsen the contrast
                iaa.Grayscale(alpha=(0.0, 1.0)),
                sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))), # sometimes move parts of the image around
            ],
Ejemplo n.º 4
0
def black_and_white_aug():
    alpha_seconds = iaa.OneOf([
        iaa.Affine(rotate=(-3, 3)),
        iaa.Affine(translate_percent={
            "x": (0.95, 1.05),
            "y": (0.95, 1.05)
        }),
        iaa.Affine(scale={
            "x": (0.95, 1.05),
            "y": (0.95, 1.05)
        }),
        iaa.Affine(shear=(-2, 2)),
        iaa.CoarseDropout(p=0.1, size_percent=(0.08, 0.02)),
    ])

    first_set = iaa.OneOf([
        iaa.Multiply(iap.Choice([0.5, 1.5]), per_channel=True),
        iaa.EdgeDetect((0.1, 1)),
    ])

    second_set = iaa.OneOf([
        iaa.AddToHueAndSaturation((-40, 40)),
        iaa.ContrastNormalization((0.5, 2.0), per_channel=True)
    ])

    color_aug = iaa.Sequential(
        [
            # Original Image Domain ==================================================

            # Geometric Rigid
            iaa.Fliplr(0.5),
            iaa.OneOf([
                iaa.Noop(),
                iaa.Affine(rotate=90),
                iaa.Affine(rotate=180),
                iaa.Affine(rotate=270),
            ]),
            iaa.OneOf([
                iaa.Noop(),
                iaa.Crop(percent=(0, 0.1)),  # Random Crops
                iaa.PerspectiveTransform(scale=(0.05, 0.15)),
            ]),

            # Affine
            sometimes(
                iaa.PiecewiseAffine(
                    scale=(0.01, 0.07), nb_rows=(3, 6), nb_cols=(3, 6))),
            fewtimes(
                iaa.Affine(scale={
                    "x": (0.8, 1.2),
                    "y": (0.8, 1.2)
                },
                           translate_percent={
                               "x": (-0.2, 0.2),
                               "y": (-0.2, 0.2)
                           },
                           rotate=(-45, 45),
                           shear=(-16, 16),
                           order=[0, 1],
                           cval=0)),

            # Transformations outside Image domain ==============================================

            # COLOR, CONTRAST, HUE
            iaa.Invert(0.5, name='Invert'),
            fewtimes(iaa.Add((-10, 10), per_channel=0.5, name='Add')),
            fewtimes(
                iaa.AddToHueAndSaturation(
                    (-40, 40), per_channel=0.5, name='AddToHueAndSaturation')),

            # Intensity / contrast
            fewtimes(
                iaa.ContrastNormalization(
                    (0.8, 1.1), name='ContrastNormalization')),

            # Add to hue and saturation
            fewtimes(
                iaa.Multiply(
                    (0.5, 1.5), per_channel=0.5, name='HueAndSaturation')),

            # Noise ===========================================================================
            fewtimes(
                iaa.AdditiveGaussianNoise(loc=0,
                                          scale=(0.0, 0.15 * 255),
                                          per_channel=0.5,
                                          name='AdditiveGaussianNoise')),
            fewtimes(
                iaa.Alpha(factor=(0.5, 1),
                          first=iaa.ContrastNormalization(
                              (0.5, 2.0), per_channel=True),
                          second=alpha_seconds,
                          per_channel=0.5,
                          name='AlphaNoise'), ),
            fewtimes(
                iaa.SimplexNoiseAlpha(first=first_set,
                                      second=second_set,
                                      per_channel=0.5,
                                      aggregation_method="max",
                                      sigmoid=False,
                                      upscale_method='cubic',
                                      size_px_max=(2, 12),
                                      name='SimplexNoiseAlpha'), ),
            fewtimes(
                iaa.FrequencyNoiseAlpha(first=first_set,
                                        second=second_set,
                                        per_channel=0.5,
                                        aggregation_method="max",
                                        sigmoid=False,
                                        upscale_method='cubic',
                                        size_px_max=(2, 12),
                                        name='FrequencyNoiseAlpha'), ),

            # Blur
            fewtimes(
                iaa.OneOf([
                    iaa.GaussianBlur((0, 3.0)),
                    iaa.AverageBlur(k=(2, 7)),
                    iaa.MedianBlur(k=(3, 11)),
                    iaa.BilateralBlur(d=(3, 10),
                                      sigma_color=(10, 250),
                                      sigma_space=(10, 250))
                ],
                          name='Blur')),

            # Regularization ======================================================================
            unlikely(
                iaa.OneOf([
                    iaa.Dropout((0.01, 0.1), per_channel=0.5, name='Dropout'),
                    iaa.CoarseDropout((0.03, 0.15),
                                      size_percent=(0.02, 0.05),
                                      per_channel=0.5,
                                      name='CoarseDropout'),
                ], )),
        ],
        random_order=True)

    seq = iaa.Sequential(
        [
            iaa.Sequential(
                [
                    # Texture
                    rarely(
                        iaa.Superpixels(p_replace=(0.3, 1.0),
                                        n_segments=(500, 1000),
                                        name='Superpixels')),
                    rarely(
                        iaa.Sharpen(alpha=(0, 0.5),
                                    lightness=(0.75, 1.0),
                                    name='Sharpen')),
                    rarely(
                        iaa.Emboss(
                            alpha=(0, 1.0), strength=(0, 1.0), name='Emboss')),
                    rarely(
                        iaa.OneOf([
                            iaa.EdgeDetect(alpha=(0, 0.5)),
                            iaa.DirectedEdgeDetect(alpha=(0, 0.5),
                                                   direction=(0.0, 1.0)),
                        ],
                                  name='EdgeDetect')),
                    rarely(
                        iaa.ElasticTransformation(
                            alpha=(0.5, 3.5),
                            sigma=0.25,
                            name='ElasticTransformation')),
                ],
                random_order=True),
            color_aug,
            iaa.Grayscale(alpha=1.0, name='Grayscale')
        ],
        random_order=False)

    def activator_masks(images, augmenter, parents, default):
        if 'Unnamed' not in augmenter.name:
            return False
        else:
            return default

    hooks_masks = ia.HooksImages(activator=activator_masks)
    return seq, hooks_masks
Ejemplo n.º 5
0
    def __init__(self, images, 
                       config, 
                       shuffle=True, 
                       jitter=True, 
                       norm=True):

        self.images = images
        self.config = config

        self.shuffle = shuffle
        self.jitter  = jitter
        self.norm    = norm

        self.anchors = [BoundBox(0, 0, config['ANCHORS'][2*i], config['ANCHORS'][2*i+1]) for i in range(len(config['ANCHORS'])/2)]

        ### augmentors by https://github.com/aleju/imgaug
        sometimes = lambda aug: iaa.Sometimes(0.5, aug)

        # Define our sequence of augmentation steps that will be applied to every image
        # All augmenters with per_channel=0.5 will sample one value _per image_
        # in 50% of all cases. In all other cases they will sample new values
        # _per channel_.
        self.aug_pipe = iaa.Sequential(
            [
                # apply the following augmenters to most images
                #iaa.Fliplr(0.5), # horizontally flip 50% of all images
                #iaa.Flipud(0.2), # vertically flip 20% of all images
                #sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
                sometimes(iaa.Affine(
                    #scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                    #translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
                    #rotate=(-5, 5), # rotate by -45 to +45 degrees
                    #shear=(-5, 5), # shear by -16 to +16 degrees
                    #order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
                    #cval=(0, 255), # if mode is constant, use a cval between 0 and 255
                    #mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
                )),
                # execute 0 to 5 of the following (less important) augmenters per image
                # don't execute all of them, as that would often be way too strong
                iaa.SomeOf((0, 5),
                    [
                        #sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
                        iaa.OneOf([
                            iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
                            iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
                            iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
                        ]),
                        iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
                        #iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
                        # search either for all edges or for directed edges
                        #sometimes(iaa.OneOf([
                        #    iaa.EdgeDetect(alpha=(0, 0.7)),
                        #    iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
                        #])),
                        iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
                        iaa.OneOf([
                            iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                            #iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                        ]),
                        #iaa.Invert(0.05, per_channel=True), # invert color channels
                        iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                        iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
                        iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                        #iaa.Grayscale(alpha=(0.0, 1.0)),
                        #sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                        #sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
                    ],
                    random_order=True
                )
            ],
            random_order=True
        )

        if shuffle: np.random.shuffle(self.images)
Ejemplo n.º 6
0
 def __image_augmentation(image, markup):
     """
     Искажения изображения без разметки
     """
     seq = iaa.SomeOf(
         (0, 5),
         [
             # (может очень сильно испортить текст на изображении, поэтому лучше не использовать)
             # была гипотеза что включением следующей строчки увеличивается recall ценой precision
             # но НЕТ - на последнем тесте это не подтвердилось, впрочем, окончательно сказать нельзя
             # так что строчка оставлена, если recall низкий - можно попробовать раскомментить
             # sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))),
             # # convert images into their superpixel representation
             # # p_replace-вероятность объединения соседних superpixel
             # # n_segments-количество superpixel
             iaa.OneOf([
                 iaa.GaussianBlur(
                     (0,
                      3.0)),  # blur images with a sigma between 0 and 3.0
                 iaa.AverageBlur(k=(2, 7)),
                 # blur image using local means with kernel sizes between 2 and 7
                 iaa.MedianBlur(k=(3, 11)),
                 # blur image using local medians with kernel sizes between 2 and 7
             ]),
             iaa.Sharpen(alpha=(0, 1.0),
                         lightness=(0.75, 1.5)),  # sharpen images
             iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),  # emboss images
             # search either for all edges or for directed edges,
             # blend the result with the original image using a blobby mask
             iaa.SimplexNoiseAlpha(
                 iaa.OneOf([
                     iaa.EdgeDetect(alpha=(0.5, 1.0)),
                     iaa.DirectedEdgeDetect(alpha=(0.5, 1.0),
                                            direction=(0.0, 1.0)),
                 ])),
             # добавляет черные капли на картинку
             iaa.AdditiveGaussianNoise(
                 loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),
             # add gaussian noise to images
             iaa.OneOf([
                 iaa.Dropout((0.01, 0.1), per_channel=0.5
                             ),  # randomly remove up to 10% of the pixels
             ]),
             iaa.Invert(0.05, per_channel=True),  # invert color channels
             iaa.Add((-10, 10), per_channel=0.5),
             # change brightness of images (by -10 to 10 of original value)
             iaa.AddToHueAndSaturation(
                 (-20, 20)),  # change hue and saturation
             # either change the brightness of the whole image (sometimes
             # per channel) or change the brightness of subareas
             iaa.OneOf([
                 iaa.Multiply((0.5, 1.5), per_channel=0.5),
                 iaa.FrequencyNoiseAlpha(exponent=(-4, 0),
                                         first=iaa.Multiply(
                                             (0.5, 1.5), per_channel=True),
                                         second=iaa.ContrastNormalization(
                                             (0.5, 2.0)))
             ]),
             iaa.ContrastNormalization(
                 (0.5, 2.0),
                 per_channel=0.5),  # improve or worsen the contrast
             iaa.Grayscale(alpha=(0.0, 1.0)),
             sometimes(
                 iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25))
         ],
         random_order=True)
     images_aug = Image.fromarray(
         seq.augment_image(np.array(image, dtype=np.uint8)))
     return images_aug, markup
Ejemplo n.º 7
0
def Augmentation(input_image):

    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))

        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, './npy')

    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    aug_name = input_image.split("/")[-1].split(".")[0]

    minsize = 35  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor
    margin = 44
    image_size = 200

    nb_batches = 16

    aug_faces = []
    batches = []
    seq = iaa.Sequential(
        [
            iaa.Fliplr(0.5),
            sometimes(
                iaa.CropAndPad(
                    percent=(-0.05, 0.1), pad_mode=ia.ALL, pad_cval=(0, 255))),
            sometimes(
                iaa.Affine(scale={
                    "x": (0.8, 1.0),
                    "y": (0.8, 1.0)
                },
                           translate_percent={
                               "x": (-0.2, 0.2),
                               "y": (0, 0.2)
                           },
                           rotate=(-10, 10),
                           shear=(-16, 16),
                           order=[0, 1],
                           cval=(0, 255))),
            iaa.SomeOf(
                (0, 4),
                [
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)),
                        iaa.AverageBlur(k=(2, 7)),
                        iaa.MedianBlur(k=(3, 11)),
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0),
                                lightness=(0.75, 1.5)),  # sharpen images
                    iaa.Emboss(alpha=(0, 1.0),
                               strength=(0, 1.0)),  # emboss images
                    iaa.SimplexNoiseAlpha(
                        iaa.OneOf([
                            iaa.EdgeDetect(alpha=(0.2, 0.5)),
                            iaa.DirectedEdgeDetect(alpha=(0.2, 0.5),
                                                   direction=(0.0, 1.0)),
                        ])),
                    iaa.AdditiveGaussianNoise(
                        loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),
                    iaa.Dropout((0.01, 0.1), per_channel=0.5),
                    iaa.Add((-10, 10), per_channel=0.5),
                    iaa.AddToHueAndSaturation((-20, 20)),
                    iaa.ContrastNormalization((0.5, 1.5), per_channel=0.5),
                    iaa.Grayscale(alpha=(0.0, 1.0)),
                    sometimes(
                        iaa.ElasticTransformation(alpha=(0.5, 2), sigma=0.25)),
                    sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.03))),
                    sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1)))
                ],
                random_order=True)
        ],
        random_order=True)
    img = misc.imread(input_image)
    if img.ndim < 2:
        print("Unable !")
    elif img.ndim == 2:
        img = facenet.to_rgb(img)
    img = img[:, :, 0:3]

    batches.append(np.array([img for _ in range(nb_batches)], dtype=np.uint8))

    aug_images = seq.augment_images(batches[0])

    for aug_img in aug_images:
        bounding_boxes, _ = detect_face.detect_face(aug_img, minsize, pnet,
                                                    rnet, onet, threshold,
                                                    factor)
        nrof_faces = bounding_boxes.shape[0]

        if nrof_faces > 0:
            det = bounding_boxes[:, 0:4]
            img_size = np.asarray(img.shape)[0:2]

            if nrof_faces > 1:
                bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                               det[:, 1])
                img_center = img_size / 2
                offsets = np.vstack([
                    (det[:, 0] + det[:, 2]) / 2 - img_center[1],
                    (det[:, 1] + det[:, 3]) / 2 - img_center[0]
                ])

                offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
                index = np.argmax(bounding_box_size -
                                  offset_dist_squared * 2.0)
                det = det[index, :]

            det = np.squeeze(det)
            bb_temp = np.zeros(4, dtype=np.int32)

            bb_temp[0] = det[0]
            bb_temp[1] = det[1]
            bb_temp[2] = det[2]
            bb_temp[3] = det[3]

            cropped_temp = aug_img[bb_temp[1]:bb_temp[3],
                                   bb_temp[0]:bb_temp[2], :]
            scaled_temp = misc.imresize(cropped_temp, (image_size, image_size),
                                        interp='bilinear')
            aug_faces.append(scaled_temp)

    return aug_faces
Ejemplo n.º 8
0
                           'y': (-0.1, 0.1)
                       },
                       shear=(-10, 10),
                       rotate=(-30, 30))),
        iaa.OneOf([
            iaa.GammaContrast((0.5, 1.5)),
            iaa.LinearContrast((0.5, 1.5)),
            iaa.ContrastNormalization((0.70, 1.30)),
        ])
    ],
    random_order=True)

Aug3 = iaa.Sequential([
    iaa.Fliplr(0.5),
    iaa.Sometimes(
        0.5, iaa.OneOf([iaa.AverageBlur(k=(3, 5)),
                        iaa.MotionBlur(k=(3, 5))])),
    iaa.Add((-15, 15), per_channel=0.5),
    iaa.Multiply((0.8, 1.2), per_channel=0.5),
    iaa.Sometimes(
        0.5,
        iaa.Affine(scale={
            'x': (0.8, 1.2),
            'y': (0.8, 1.2)
        },
                   translate_percent={
                       'x': (-0.15, 0.15),
                       'y': (-0.15, 0.15)
                   },
                   shear=(-15, 15),
                   rotate=(-30, 30))),
Ejemplo n.º 9
0
def get_train_augmenters_seq1(mode='constant'):
    # Define our sequence of augmentation steps that will be applied to every image.
    seq = iaa.Sequential(
        [
            #
            # Apply the following augmenters to most images.
            #
            iaa.Fliplr(0.5),  # horizontally flip 50% of all images
            iaa.Flipud(0.2),  # vertically flip 20% of all images

            # Apply affine transformations to some of the images
            # - scale to 80-120% of image height/width (each axis independently)
            # - translate by -20 to +20 relative to height/width (per axis)
            # - rotate by -90 to +90 degrees
            # - shear by -16 to +16 degrees
            # - order: use nearest neighbour or bilinear interpolation (fast)
            # - mode: use any available mode to fill newly created pixels
            #         see API or scikit-image for which modes are available
            # - cval: if the mode is constant, then use a random brightness
            #         for the newly created pixels (e.g. sometimes black,
            #         sometimes white)
            sometimes(
                iaa.Affine(scale={
                    "x": (0.8, 1.2),
                    "y": (0.8, 1.2)
                },
                           translate_percent={
                               "x": (-0.2, 0.2),
                               "y": (-0.2, 0.2)
                           },
                           rotate=(-90, 90),
                           shear=(-16, 16),
                           order=[0, 1],
                           cval=0,
                           mode=mode)),

            # In some images distort local areas with varying strength.
            sometimes(
                iaa.PiecewiseAffine(
                    scale=(0.01, 0.1), order=[0, 1], cval=0, mode=mode)),

            # Execute 0 to 2 of the following (less important) augmenters per
            # image. Don't execute all of them, as that would often be way too
            # strong.
            iaa.SomeOf(
                (0, 2),
                [
                    # Blur each image with varying strength using
                    # gaussian blur (sigma between 0 and 2.0),
                    # average/uniform blur (kernel size between 2x2 and 5x5)
                    # median blur (kernel size between 3x3 and 7x7).
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 2.0), name='GaussianBlur'),
                        iaa.AverageBlur(k=(2, 5), name='AverageBlur'),
                        iaa.MedianBlur(k=(3, 7), name='MedianBlur'),
                    ]),

                    # Sharpen or emboss each image, overlay the result with the original
                    # image using an alpha between 0 (no sharpening) and 0.25.
                    iaa.OneOf([
                        iaa.Sharpen(alpha=(0, 0.25), name='Sharpen'),
                        iaa.Emboss(alpha=(0, 0.25),
                                   strength=(0, 0.75),
                                   name='Emboss'),
                    ]),

                    # Add gaussian noise to some images.
                    # The noise is randomly sampled per pixel.
                    # (i.e. brightness change).
                    iaa.AdditiveGaussianNoise(loc=0,
                                              scale=(0.0, 0.05 * 255),
                                              name='AdditiveGaussianNoise'),

                    # Add a value of -10 to 10 to each pixel for
                    # multiply them to a number between 0.8 to 1.2.
                    iaa.OneOf([
                        iaa.Add((-10, 10), name='Add_Value_to_each_Pixel'),
                        iaa.Multiply((0.8, 1.2), name='Change_Brightness'),
                    ]),

                    # Improve or worsen the contrast of images.
                    iaa.ContrastNormalization(
                        (0.8, 1.2), name='ContrastNormalization'),
                ],
                # do all of the above augmentations in random order
                random_order=True)
        ],
        # do all of the above augmentations in random order
        random_order=True)

    return seq
Ejemplo n.º 10
0
            for i in range(len(bbs_aug.bounding_boxes)):
                bb_box = bbs_aug.bounding_boxes[i]
                x_min = bb_box.x1
                y_min = bb_box.y1
                x_max = bb_box.x2
                y_max = bb_box.y2
                cls_id = bb_box.label
                x_cen, y_cen, w, h = xyxy2xywh(x_min, y_min, x_max, y_max)
                f.write("%d %.06f %.06f %.06f %.06f\n" %
                        (cls_id, x_cen, y_cen, w, h))


Width = 640
Height = 640

blur = iaa.AverageBlur(k=(2, 11))  #! 2~11 random
emboss = iaa.Emboss(alpha=(1.0, 1.0), strength=(2.0, 2.0))
gray = iaa.RemoveSaturation(from_colorspace=iaa.CSPACE_BGR)
contrast = iaa.AllChannelsCLAHE(clip_limit=(10, 10), per_channel=True)
bright = iaa.MultiplyAndAddToBrightness(mul=(0.5, 1.5), add=(-30, 30))
color = iaa.pillike.EnhanceColor()
sharpen = iaa.Sharpen(alpha=(0.5, 1.0))  #! 0.5 ~ 1.0 random
edge = iaa.pillike.FilterEdgeEnhance()

augmentations = [[bright], [emboss], [color],
                 [edge]]  #! choice augmentation ##
rotates = [[iaa.Affine(rotate=90)], [iaa.Affine(rotate=180)],
           [iaa.Affine(rotate=270)]]
flip = iaa.Fliplr(1.0)  #! 100% left & right

dir = "C:\\Users\\jeongseokoon\\AI-hub\\data\\original\\"
    def heavy_aug_batch(self, imgpath, n):
        if isinstance(imgpath, str):
            img = cv2.imread(imgpath)
        else:
            img = imgpath

        images = np.array([img for _ in range(n)], dtype=np.uint8)

        sometimes = lambda aug: iaa.Sometimes(0.3, aug)
        seq = iaa.Sequential(
            [
                #
                # Apply the following augmenters to most images.
                #
                iaa.Fliplr(0.5),  # horizontally flip 50% of all images
                iaa.Flipud(0.2),  # vertically flip 20% of all images

                # crop some of the images by 0-10% of their height/width
                sometimes(iaa.Crop(percent=(0, 0.1))),

                # Apply affine transformations to some of the images
                # - scale to 80-120% of image height/width (each axis independently)
                # - translate by -20 to +20 relative to height/width (per axis)
                # - rotate by -45 to +45 degrees
                # - shear by -16 to +16 degrees
                # - order: use nearest neighbour or bilinear interpolation (fast)
                # - mode: use any available mode to fill newly created pixels
                #         see API or scikit-image for which modes are available
                # - cval: if the mode is constant, then use a random brightness
                #         for the newly created pixels (e.g. sometimes black,
                #         sometimes white)
                sometimes(
                    iaa.Affine(scale={
                        "x": (0.8, 1.2),
                        "y": (0.8, 1.2)
                    },
                               translate_percent={
                                   "x": (-0.2, 0.2),
                                   "y": (-0.2, 0.2)
                               },
                               rotate=(-45, 45),
                               shear=(-16, 16),
                               order=[0, 1],
                               cval=(0, 255),
                               mode=ia.ALL)),

                #
                # Execute 0 to 5 of the following (less important) augmenters per
                # image. Don't execute all of them, as that would often be way too
                # strong.
                #
                iaa.SomeOf(
                    (0, 5),
                    [
                        # Convert some images into their superpixel representation,
                        # sample between 20 and 200 superpixels per image, but do
                        # not replace all superpixels with their average, only
                        # some of them (p_replace).
                        sometimes(
                            iaa.Superpixels(p_replace=(0, 1.0),
                                            n_segments=(20, 200))),

                        # Blur each image with varying strength using
                        # gaussian blur (sigma between 0 and 3.0),
                        # average/uniform blur (kernel size between 2x2 and 7x7)
                        # median blur (kernel size between 3x3 and 11x11).
                        iaa.OneOf([
                            iaa.GaussianBlur((0, 3.0)),
                            iaa.AverageBlur(k=(2, 7)),
                            iaa.MedianBlur(k=(3, 11)),
                        ]),

                        # Sharpen each image, overlay the result with the original
                        # image using an alpha between 0 (no sharpening) and 1
                        # (full sharpening effect).
                        iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),

                        # Same as sharpen, but for an embossing effect.
                        iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),

                        # Search in some images either for all edges or for
                        # directed edges. These edges are then marked in a black
                        # and white image and overlayed with the original image
                        # using an alpha of 0 to 0.7.
                        sometimes(
                            iaa.OneOf([
                                iaa.EdgeDetect(alpha=(0, 0.7)),
                                iaa.DirectedEdgeDetect(alpha=(0, 0.7),
                                                       direction=(0.0, 1.0)),
                            ])),

                        # Add gaussian noise to some images.
                        # In 50% of these cases, the noise is randomly sampled per
                        # channel and pixel.
                        # In the other 50% of all cases it is sampled once per
                        # pixel (i.e. brightness change).
                        iaa.AdditiveGaussianNoise(
                            loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),

                        # Either drop randomly 1 to 10% of all pixels (i.e. set
                        # them to black) or drop them on an image with 2-5% percent
                        # of the original size, leading to large dropped
                        # rectangles.
                        iaa.OneOf([
                            iaa.Dropout((0.01, 0.1), per_channel=0.5),
                            iaa.CoarseDropout((0.03, 0.15),
                                              size_percent=(0.02, 0.05),
                                              per_channel=0.2),
                        ]),

                        # Invert each image's channel with 5% probability.
                        # This sets each pixel value v to 255-v.
                        iaa.Invert(0.05,
                                   per_channel=True),  # invert color channels

                        # Add a value of -10 to 10 to each pixel.
                        iaa.Add((-10, 10), per_channel=0.5),

                        # Change brightness of images (50-150% of original value).
                        iaa.Multiply((0.5, 1.5), per_channel=0.5),

                        # Improve or worsen the contrast of images.
                        iaa.LinearContrast((0.5, 2.0), per_channel=0.5),

                        # Convert each image to grayscale and then overlay the
                        # result with the original with random alpha. I.e. remove
                        # colors with varying strengths.
                        iaa.Grayscale(alpha=(0.0, 1.0)),

                        # In some images move pixels locally around (with random
                        # strengths).
                        sometimes(
                            iaa.ElasticTransformation(alpha=(0.5, 3.5),
                                                      sigma=0.25)),

                        # In some images distort local areas with varying strength.
                        sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05)))
                    ],
                    # do all of the above augmentations in random order
                    random_order=True)
            ],
            # do all of the above augmentations in random order
            random_order=True)
        return seq(images=images)


#Example on how to use this code:
#import matplotlib.pyplot as plt
# (import this code)
#datagen = DataAugmentor()
#resimg = datagen.perform_rotate("C:\\Users\\Jared Habermehl\\Documents\\2020-Image-Super-Resolution\\big_im_SR.png")
#resimg = datagen.perform_flip(resimg)
#plt.axis("off")
#plt.imshow(cv2.cvtColor(resimg, cv2.COLOR_BGR2RGB))
#plt.show()
Ejemplo n.º 12
0
			if not line:
				break
			line = line.strip("\n") + ".png"
			lo = float(f.readline().strip("\n"))
			la = float(f.readline().strip("\n"))
			ret[line] = np.array([lo, la], dtype=np.float32)
	return ret

imgaugment = iaa.SomeOf((0, 5), [
	iaa.Noop(),
	iaa.Sometimes(0.2,
		iaa.CropAndPad(percent=(-0.05, 0.05)),  # random crops
	),
	iaa.GaussianBlur(sigma=(0, 1.8)),
	iaa.Sometimes(0.2,
				  iaa.AverageBlur(k=(1, 3))
	),
	iaa.Sometimes(0.05,
		iaa.Sharpen(alpha=(0.0, 0.3), lightness=(0.9, 1.1))
	),
	iaa.ContrastNormalization((0.8, 1.22)),
	iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255)),
], random_order=True)

imgflip = iaa.Fliplr(1)


def gazeImageLoader(img_list, root_dir='data/train', batch_size=BATCH_SIZE, img_size=224, train_mode=False,
					imgaug=False):
	gaze_label = None
	if train_mode:
Ejemplo n.º 13
0
import imgaug as ia


NUMBER = 7   #画像1枚当たりの牌の枚数

size_x = 512
size_y = 512

dict={"0":"1m","1":"2m","2":"3m","3":"4m","4":"5m","5":"6m","6":"7m","7":"8m","8":"9m","9":"1p","10":"2p","11":"3p","12":"4p","13":"5p","14":"6p","15":"7p","16":"8p","17":"9p","18":"1s","19":"2s","20":"3s","21":"4s","22":"5s","23":"6s","24":"7s","25":"8s","26":"9s","27":"east","28":"south","29":"west","30":"north","31":"white","32":"hatsu","33":"tyun"}


# In[2]:


aug1 = iaa.Dropout(p=0.2)
aug2 = iaa.AverageBlur(k=(5, 20))
aug3 = iaa.Add((-40, 40), per_channel=0.5)
aug4 = iaa.ContrastNormalization((0.5, 1.5), per_channel=0.5)
aug5 = iaa.Affine(rotate=(0,20))


# In[3]:


#画像のロバスト
def augment( img , bb , aug ):
    # 画像とバウンディングボックスを変換
    aug_img = aug.augment_image( img ) 
    aug_bb = aug.augment_bounding_boxes([bb])[0].remove_out_of_image().cut_out_of_image()
    
    '''
Ejemplo n.º 14
0
    def __init__(self, config, split, batch_size, shuffle=True, jitter=False):
        'Initialization'
        self.config = config
        self.split = split
        self.batch_size = batch_size

        self.image_h = config.DATA.IMG_H
        self.image_w = config.DATA.IMG_W
        self.n_channels = 3 ## TODO changed to config

        fold_df = pd.read_csv(self.config.FOLD_DF, engine='python')
        self.dataset = fold_df.loc[fold_df['split'] == self.split].reset_index(drop=True)

        if config.DEBUG:
            self.fold_df = self.fold_df[:100]
        print(self.split, 'set:', len(self.dataset))
        self.shuffle = shuffle

        self.on_epoch_end()
        self.jitter = jitter
        sometimes = lambda aug: iaa.Sometimes(0.5, aug)

        self.aug_pipe = iaa.Sequential(
            [
                # apply the following augmenters to most images
                # iaa.Fliplr(0.5), # horizontally flip 50% of all images
                # iaa.Flipud(0.2), # vertically flip 20% of all images
                # sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
                #sometimes(iaa.Affine(
                    # scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                    # translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
                    # rotate=(-5, 5), # rotate by -45 to +45 degrees
                    # shear=(-5, 5), # shear by -16 to +16 degrees
                    # order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
                    # cval=(0, 255), # if mode is constant, use a cval between 0 and 255
                    # mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
                #)),
                # execute 0 to 5 of the following (less important) augmenters per image
                # don't execute all of them, as that would often be way too strong
                iaa.SomeOf((0, 3),
                           [
                               # sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
                               iaa.OneOf([
                                   iaa.GaussianBlur((0, 3.0)),  # blur images with a sigma between 0 and 3.0
                                   iaa.AverageBlur(k=(2, 7)),
                                   # blur image using local means with kernel sizes between 2 and 7
                                   iaa.MedianBlur(k=(3, 11)),
                                   # blur image using local medians with kernel sizes between 2 and 7
                               ]),
                               iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),  # sharpen images
                               # iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
                               # search either for all edges or for directed edges
                               # sometimes(iaa.OneOf([
                               #    iaa.EdgeDetect(alpha=(0, 0.7)),
                               #    iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
                               # ])),
                               iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),
                               # add gaussian noise to images
                               iaa.OneOf([
                                   iaa.Dropout((0.01, 0.1), per_channel=0.5),  # randomly remove up to 10% of the pixels
                                   # iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                               ]),
                               # iaa.Invert(0.05, per_channel=True), # invert color channels
                               iaa.Add((-10, 10), per_channel=0.5),
                               # change brightness of images (by -10 to 10 of original value)
                               iaa.Multiply((0.5, 1.5), per_channel=0.5),
                               # change brightness of images (50-150% of original value)
                               iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5),  # improve or worsen the contrast
                               # iaa.Grayscale(alpha=(0.0, 1.0)),
                               # sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                               # sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
                           ],
                           random_order=True
                           )
            ],
            random_order=True
        )
def test_dtype_preservation():
    reseed()

    size = (4, 16, 16, 3)
    images = [
        np.random.uniform(0, 255, size).astype(np.uint8),
        np.random.uniform(0, 65535, size).astype(np.uint16),
        np.random.uniform(0, 4294967295, size).astype(np.uint32),
        np.random.uniform(-128, 127, size).astype(np.int16),
        np.random.uniform(-32768, 32767, size).astype(np.int32),
        np.random.uniform(0.0, 1.0, size).astype(np.float32),
        np.random.uniform(-1000.0, 1000.0, size).astype(np.float16),
        np.random.uniform(-1000.0, 1000.0, size).astype(np.float32),
        np.random.uniform(-1000.0, 1000.0, size).astype(np.float64)
    ]

    default_dtypes = set([arr.dtype for arr in images])

    # Some dtypes are here removed per augmenter, because the respective
    # augmenter does not support them. This test currently only checks whether
    # dtypes are preserved from in- to output for all dtypes that are supported
    # per augmenter.
    # dtypes are here removed via list comprehension instead of
    # `default_dtypes - set([dtype])`, because the latter one simply never
    # removed the dtype(s) for some reason

    def _not_dts(dts):
        return [dt for dt in default_dtypes if dt not in dts]

    augs = [
        (iaa.Add((-5, 5),
                 name="Add"), _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.AddElementwise((-5, 5), name="AddElementwise"),
         _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.AdditiveGaussianNoise(0.01 * 255, name="AdditiveGaussianNoise"),
         _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.Multiply((0.95, 1.05), name="Multiply"),
         _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.Dropout(0.01, name="Dropout"),
         _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.CoarseDropout(0.01, size_px=6, name="CoarseDropout"),
         _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.Invert(0.01, per_channel=True, name="Invert"), default_dtypes),
        (iaa.GaussianBlur(sigma=(0.95, 1.05),
                          name="GaussianBlur"), _not_dts([np.float16])),
        (iaa.AverageBlur((3, 5), name="AverageBlur"),
         _not_dts([np.uint32, np.int32, np.float16])),
        (iaa.MedianBlur((3, 5), name="MedianBlur"),
         _not_dts([np.uint32, np.int32, np.float16, np.float64])),
        (iaa.BilateralBlur((3, 5), name="BilateralBlur"),
         _not_dts([
             np.uint16, np.uint32, np.int16, np.int32, np.float16, np.float64
         ])),
        (iaa.Sharpen((0.0, 0.1), lightness=(1.0, 1.2), name="Sharpen"),
         _not_dts([np.uint32, np.int32, np.float16, np.uint32])),
        (iaa.Emboss(alpha=(0.0, 0.1), strength=(0.5, 1.5), name="Emboss"),
         _not_dts([np.uint32, np.int32, np.float16, np.uint32])),
        (iaa.EdgeDetect(alpha=(0.0, 0.1), name="EdgeDetect"),
         _not_dts([np.uint32, np.int32, np.float16, np.uint32])),
        (iaa.DirectedEdgeDetect(alpha=(0.0, 0.1),
                                direction=0,
                                name="DirectedEdgeDetect"),
         _not_dts([np.uint32, np.int32, np.float16, np.uint32])),
        (iaa.Fliplr(0.5, name="Fliplr"), default_dtypes),
        (iaa.Flipud(0.5, name="Flipud"), default_dtypes),
        (iaa.Affine(translate_px=(-5, 5), name="Affine-translate-px"),
         _not_dts([np.uint32, np.int32])),
        (iaa.Affine(translate_percent=(-0.05, 0.05),
                    name="Affine-translate-percent"),
         _not_dts([np.uint32, np.int32])),
        (iaa.Affine(rotate=(-20, 20),
                    name="Affine-rotate"), _not_dts([np.uint32, np.int32])),
        (iaa.Affine(shear=(-20, 20),
                    name="Affine-shear"), _not_dts([np.uint32, np.int32])),
        (iaa.Affine(scale=(0.9, 1.1),
                    name="Affine-scale"), _not_dts([np.uint32, np.int32])),
        (iaa.PiecewiseAffine(scale=(0.001, 0.005),
                             name="PiecewiseAffine"), default_dtypes),
        (iaa.ElasticTransformation(alpha=(0.1, 0.2),
                                   sigma=(0.1, 0.2),
                                   name="ElasticTransformation"),
         _not_dts([np.float16])),
        (iaa.Sequential([iaa.Identity(), iaa.Identity()],
                        name="SequentialNoop"), default_dtypes),
        (iaa.SomeOf(1, [iaa.Identity(), iaa.Identity()],
                    name="SomeOfNoop"), default_dtypes),
        (iaa.OneOf([iaa.Identity(), iaa.Identity()],
                   name="OneOfNoop"), default_dtypes),
        (iaa.Sometimes(0.5, iaa.Identity(),
                       name="SometimesNoop"), default_dtypes),
        (iaa.Sequential([iaa.Add(
            (-5, 5)), iaa.AddElementwise((-5, 5))],
                        name="Sequential"),
         _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.SomeOf(1, [iaa.Add(
            (-5, 5)), iaa.AddElementwise((-5, 5))],
                    name="SomeOf"), _not_dts([np.uint32, np.int32,
                                              np.float64])),
        (iaa.OneOf([iaa.Add(
            (-5, 5)), iaa.AddElementwise((-5, 5))],
                   name="OneOf"), _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.Sometimes(0.5, iaa.Add((-5, 5)), name="Sometimes"),
         _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.Identity(name="Identity"), default_dtypes),
        (iaa.BlendAlpha((0.0, 0.1), iaa.Identity(),
                        name="BlendAlphaIdentity"), default_dtypes),
        (iaa.BlendAlphaElementwise(
            (0.0, 0.1), iaa.Identity(),
            name="BlendAlphaElementwiseIdentity"), default_dtypes),
        (iaa.BlendAlphaSimplexNoise(iaa.Identity(),
                                    name="BlendAlphaSimplexNoiseIdentity"),
         default_dtypes),
        (iaa.BlendAlphaFrequencyNoise(exponent=(-2, 2),
                                      foreground=iaa.Identity(),
                                      name="BlendAlphaFrequencyNoiseIdentity"),
         default_dtypes),
        (iaa.BlendAlpha((0.0, 0.1), iaa.Add(10), name="BlendAlpha"),
         _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.BlendAlphaElementwise((0.0, 0.1),
                                   iaa.Add(10),
                                   name="BlendAlphaElementwise"),
         _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.BlendAlphaSimplexNoise(iaa.Add(10),
                                    name="BlendAlphaSimplexNoise"),
         _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.BlendAlphaFrequencyNoise(exponent=(-2, 2),
                                      foreground=iaa.Add(10),
                                      name="BlendAlphaFrequencyNoise"),
         _not_dts([np.uint32, np.int32, np.float64])),
        (iaa.Superpixels(p_replace=0.01, n_segments=64),
         _not_dts([np.float16, np.float32, np.float64])),
        (iaa.Resize({
            "height": 4,
            "width": 4
        }, name="Resize"),
         _not_dts([
             np.uint16, np.uint32, np.int16, np.int32, np.float32, np.float16,
             np.float64
         ])),
        (iaa.CropAndPad(px=(-10, 10), name="CropAndPad"),
         _not_dts([
             np.uint16, np.uint32, np.int16, np.int32, np.float32, np.float16,
             np.float64
         ])),
        (iaa.Pad(px=(0, 10), name="Pad"),
         _not_dts([
             np.uint16, np.uint32, np.int16, np.int32, np.float32, np.float16,
             np.float64
         ])),
        (iaa.Crop(px=(0, 10), name="Crop"),
         _not_dts([
             np.uint16, np.uint32, np.int16, np.int32, np.float32, np.float16,
             np.float64
         ]))
    ]

    for (aug, allowed_dtypes) in augs:
        for images_i in images:
            if images_i.dtype in allowed_dtypes:
                images_aug = aug.augment_images(images_i)
                assert images_aug.dtype == images_i.dtype
intensity_seq = iaa.Sequential([
    #iaa.Invert(0.3),
    iaa.Sometimes(0.3, iaa.ContrastNormalization((0.5, 1.5))),
    iaa.OneOf([
        iaa.Noop(),
        iaa.Sequential([
            iaa.OneOf([
                iaa.Add((-10, 10)),
                iaa.AddElementwise((-10, 10)),
                iaa.Multiply((0.95, 1.05)),
                iaa.MultiplyElementwise((0.95, 1.05)),
            ]),
        ]),
        iaa.OneOf([
            iaa.GaussianBlur(sigma=(0.0, 1.0)),
            iaa.AverageBlur(k=(2, 5)),
            #iaa.MedianBlur(k=(3, 5))
        ])
    ])
], random_order=False)

tta_intensity_seq = iaa.Sequential([
    iaa.Noop()
], random_order=False)

def compute_random_pad(limit=(-4,4)):
    dy  = IMG_TAR_SIZE - IMG_ORI_SIZE*SCALE
    dy0 = dy//2 + np.random.randint(limit[0],limit[1]) # np.random.choice(dy)
    dy1 = dy - dy0
    dx0 = dy//2 + np.random.randint(limit[0],limit[1]) # np.random.choice(dy)
    dx1 = dy - dx0
Ejemplo n.º 17
0
    def __init__(self,
                 list_file,
                 train,
                 transform,
                 device,
                 little_train=False,
                 S=7):
        print('data init')

        self.train = train
        self.transform = transform
        self.fnames = []
        self.boxes = []
        self.labels = []
        self.S = S
        self.B = 2
        self.C = 20
        self.device = device

        self.augmentation = iaa.Sometimes(
            0.5,
            iaa.SomeOf(
                (1, 6),
                [
                    iaa.Dropout([0.05, 0.2]),  # drop 5% or 20% of all pixels
                    iaa.Sharpen((0.1, 1.0)),  # sharpen the image
                    iaa.GaussianBlur(sigma=(2., 3.5)),
                    iaa.OneOf([
                        iaa.GaussianBlur(sigma=(2., 3.5)),
                        iaa.AverageBlur(k=(2, 5)),
                        iaa.BilateralBlur(d=(7, 12),
                                          sigma_color=(10, 250),
                                          sigma_space=(10, 250)),
                        iaa.MedianBlur(k=(3, 7)),
                    ]),
                    # iaa.Fliplr(1.0),
                    # iaa.Flipud(1.0),
                    iaa.AddElementwise((-50, 50)),
                    iaa.AdditiveGaussianNoise(scale=(0, 0.1 * 255)),
                    iaa.JpegCompression(compression=(80, 95)),
                    iaa.Multiply((0.5, 1.5)),
                    iaa.MultiplyElementwise((0.5, 1.5)),
                    iaa.ReplaceElementwise(0.05, [0, 255]),
                    iaa.WithColorspace(to_colorspace="HSV",
                                       from_colorspace="RGB",
                                       children=iaa.WithChannels(
                                           2, iaa.Add((-10, 50)))),
                    iaa.OneOf([
                        iaa.WithColorspace(to_colorspace="HSV",
                                           from_colorspace="RGB",
                                           children=iaa.WithChannels(
                                               1, iaa.Add((-10, 50)))),
                        iaa.WithColorspace(to_colorspace="HSV",
                                           from_colorspace="RGB",
                                           children=iaa.WithChannels(
                                               2, iaa.Add((-10, 50)))),
                    ]),
                ],
                random_order=True))

        torch.manual_seed(23)
        with open(list_file) as f:
            lines = f.readlines()

        if little_train:
            lines = lines[:64]

        for line in lines:
            splited = line.strip().split()
            self.fnames.append(splited[0])

        self.num_samples = len(self.fnames)
Ejemplo n.º 18
0
def apply_transform(matrix, image, params, cpara):

    # rgb
    # seq describes an object for rgb image augmentation using aleju/imgaug
    seq = iaa.Sequential(
        [
            # blur
            iaa.SomeOf((0, 2), [
                iaa.GaussianBlur((0.0, 2.0)),
                iaa.AverageBlur(k=(3, 7)),
                iaa.MedianBlur(k=(3, 7)),
                iaa.BilateralBlur(d=(1, 7)),
                iaa.MotionBlur(k=(3, 7))
            ]),
            # color
            iaa.SomeOf(
                (0, 2),
                [
                    # iaa.WithColorspace(),
                    iaa.AddToHueAndSaturation((-15, 15)),
                    # iaa.ChangeColorspace(to_colorspace[], alpha=0.5),
                    iaa.Grayscale(alpha=(0.0, 0.2))
                ]),
            # brightness
            iaa.OneOf([
                iaa.Sequential([
                    iaa.Add((-10, 10), per_channel=0.5),
                    iaa.Multiply((0.75, 1.25), per_channel=0.5)
                ]),
                iaa.Add((-10, 10), per_channel=0.5),
                iaa.Multiply((0.75, 1.25), per_channel=0.5),
                iaa.FrequencyNoiseAlpha(exponent=(-4, 0),
                                        first=iaa.Multiply(
                                            (0.75, 1.25), per_channel=0.5),
                                        second=iaa.LinearContrast(
                                            (0.7, 1.3), per_channel=0.5))
            ]),
            # contrast
            iaa.SomeOf((0, 2), [
                iaa.GammaContrast((0.75, 1.25), per_channel=0.5),
                iaa.SigmoidContrast(
                    gain=(0, 10), cutoff=(0.25, 0.75), per_channel=0.5),
                iaa.LogContrast(gain=(0.75, 1), per_channel=0.5),
                iaa.LinearContrast(alpha=(0.7, 1.3), per_channel=0.5)
            ]),
        ],
        random_order=True)
    image = seq.augment_image(image)
    '''
    seq = iaa.Sequential([
                        iaa.Sometimes(0.5, iaa.CoarseDropout(p=0.2, size_percent=(0.1, 0.25))),
                        iaa.Sometimes(0.5, iaa.GaussianBlur(1.2*np.random.rand())),
                        iaa.Sometimes(0.5, iaa.Add((-25, 25), per_channel=0.3)),
                        iaa.Sometimes(0.5, iaa.Invert(0.2, per_channel=True)),
                        iaa.Sometimes(0.5, iaa.Multiply((0.6, 1.4), per_channel=0.5)),
                        iaa.Sometimes(0.5, iaa.Multiply((0.6, 1.4))),
                        iaa.Sometimes(0.5, iaa.ContrastNormalization((0.5, 2.2), per_channel=0.3))
                ], random_order=False)
    image = seq.augment_image(image)
    '''
    image = cv2.warpAffine(
        image,
        matrix[:2, :],
        dsize=(image.shape[1], image.shape[0]),
        flags=params.cvInterpolation(),
        borderMode=params.cvBorderMode(),
        borderValue=params.cval,
    )

    return image
def imgAugmentor(images):

    # Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
    # e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second
    # image.
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image.
    seq = iaa.Sequential(
        [
            #
            # Apply the following augmenters to most images.
            #
            iaa.Fliplr(0.5),  # horizontally flip 50% of all images
            iaa.Flipud(0.2),  # vertically flip 20% of all images

            # crop some of the images by 0-10% of their height/width
            sometimes(iaa.Crop(percent=(0, 0.1))),

            # Apply affine transformations to some of the images
            # - scale to 80-120% of image height/width (each axis independently)
            # - translate by -20 to +20 relative to height/width (per axis)
            # - rotate by -45 to +45 degrees
            # - shear by -16 to +16 degrees
            # - order: use nearest neighbour or bilinear interpolation (fast)
            # - mode: use any available mode to fill newly created pixels
            #         see API or scikit-image for which modes are available
            # - cval: if the mode is constant, then use a random brightness
            #         for the newly created pixels (e.g. sometimes black,
            #         sometimes white)
            sometimes(
                iaa.Affine(scale={
                    "x": (0.9, 1.1),
                    "y": (0.9, 1.1)
                },
                           translate_percent={
                               "x": (-0.1, 0.1),
                               "y": (-0.1, 0.1)
                           },
                           rotate=(-45, 45),
                           shear=(-5, 5),
                           order=[0, 1],
                           cval=(0, 255),
                           mode=ia.ALL)),

            #
            # Execute 0 to 5 of the following (less important) augmenters per
            # image. Don't execute all of them, as that would often be way too
            # strong.
            #
            iaa.SomeOf(
                (0, 5),
                [
                    # Convert some images into their superpixel representation,
                    # sample between 20 and 200 superpixels per image, but do
                    # not replace all superpixels with their average, only
                    # some of them (p_replace).
                    sometimes(
                        iaa.Superpixels(p_replace=(0, 1.0),
                                        n_segments=(20, 200))),

                    # Blur each image with varying strength using
                    # gaussian blur (sigma between 0 and 3.0),
                    # average/uniform blur (kernel size between 2x2 and 7x7)
                    # median blur (kernel size between 3x3 and 11x11).
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 1.0)),
                        iaa.AverageBlur(k=(3, 5)),
                        iaa.MedianBlur(k=(3, 5)),
                    ]),

                    # Sharpen each image, overlay the result with the original
                    # image using an alpha between 0 (no sharpening) and 1
                    # (full sharpening effect).
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.8, 1.2)),

                    # Same as sharpen, but for an embossing effect.
                    iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),

                    # Search in some images either for all edges or for
                    # directed edges. These edges are then marked in a black
                    # and white image and overlayed with the original image
                    # using an alpha of 0 to 0.7.
                    sometimes(
                        iaa.OneOf([
                            iaa.EdgeDetect(alpha=(0.5, 1.0)),
                            iaa.DirectedEdgeDetect(alpha=(0.5, 1.0),
                                                   direction=(0.5, 1.0)),
                        ])),

                    # Add gaussian noise to some images.
                    # In 50% of these cases, the noise is randomly sampled per
                    # channel and pixel.
                    # In the other 50% of all cases it is sampled once per
                    # pixel (i.e. brightness change).
                    iaa.AdditiveGaussianNoise(
                        loc=0, scale=(0.0, 0.01 * 255), per_channel=0.5),

                    # Either drop randomly 1 to 10% of all pixels (i.e. set
                    # them to black) or drop them on an image with 2-5% percent
                    # of the original size, leading to large dropped
                    # rectangles.
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.05), per_channel=0.5),
                        iaa.CoarseDropout((0.01, 0.05),
                                          size_percent=(0.01, 0.03),
                                          per_channel=0.2),
                    ]),

                    # Invert each image's channel with 5% probability.
                    # This sets each pixel value v to 255-v.
                    iaa.Invert(0.01,
                               per_channel=True),  # invert color channels

                    # Add a value of -10 to 10 to each pixel.
                    iaa.Add((-5, 5), per_channel=0.5),

                    # Change brightness of images (50-150% of original value).
                    iaa.Multiply((0.8, 1.2), per_channel=0.5),

                    # Improve or worsen the contrast of images.
                    iaa.LinearContrast((0.8, 1.2), per_channel=0.5),

                    # Convert each image to grayscale and then overlay the
                    # result with the original with random alpha. I.e. remove
                    # colors with varying strengths.
                    iaa.Grayscale(alpha=(0.0, 1.0)),

                    # In some images move pixels locally around (with random
                    # strengths).
                    sometimes(
                        iaa.ElasticTransformation(alpha=(0.5, 3.0), sigma=0.25)
                    ),

                    # In some images distort local areas with varying strength.
                    sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05)))
                ],
                # do all of the above augmentations in random order
                random_order=True)
        ],
        # do all of the above augmentations in random order
        random_order=True)

    images_aug = seq(images=images)
    return images_aug
Ejemplo n.º 20
0
def simple_imgaug_example():
    image_dir_path = dataset_home_dir_path + '/phenotyping/cvppp2017_lsc_lcc_challenge/package/CVPPP2017_LSC_training/training/A1'
    label_dir_path = dataset_home_dir_path + '/phenotyping/cvppp2017_lsc_lcc_challenge/package/CVPPP2017_LSC_training/training/A1'
    images, labels = prepare_dataset(image_dir_path, label_dir_path)

    image_width, image_height = 200, 200

    # FIXME [decide] >> Before or after random transformation?
    # Preprocessing (normalization, standardization, etc).
    images_pp = images.astype(np.float)
    #images_pp /= 255.0
    images_pp = standardize_samplewise(images_pp)
    #images_pp = standardize_featurewise(images_pp)

    if True:
        augmenter = iaa.SomeOf(
            (1, 2),
            [
                iaa.OneOf([
                    iaa.Affine(
                        scale={
                            'x': (0.8, 1.2),
                            'y': (0.8, 1.2)
                        },  # Scale images to 80-120% of their size, individually per axis.
                        translate_percent={
                            'x': (-0.1, 0.1),
                            'y': (-0.1, 0.1)
                        },  # Translate by -10 to +10 percent (per axis).
                        rotate=(-10, 10),  # Rotate by -10 to +10 degrees.
                        shear=(-5, 5),  # Shear by -5 to +5 degrees.
                        #order=[0, 1],  # Use nearest neighbour or bilinear interpolation (fast).
                        order=
                        0,  # Use nearest neighbour or bilinear interpolation (fast).
                        #cval=(0, 255),  # If mode is constant, use a cval between 0 and 255.
                        #mode=ia.ALL  # Use any of scikit-image's warping modes (see 2nd image from the top for examples).
                        #mode='edge'  # Use any of scikit-image's warping modes (see 2nd image from the top for examples).
                    ),
                    #iaa.PiecewiseAffine(scale=(0.01, 0.05)),  # Move parts of the image around. Slow.
                    iaa.PerspectiveTransform(scale=(0.01, 0.1)),
                    iaa.ElasticTransformation(
                        alpha=(20.0, 50.0), sigma=(6.5, 8.5)
                    ),  # Move pixels locally around (with random strengths).
                ]),
                iaa.OneOf([
                    iaa.GaussianBlur(sigma=(
                        0,
                        3.0)),  # Blur images with a sigma between 0 and 3.0.
                    iaa.AverageBlur(
                        k=(2, 7)
                    ),  # Blur image using local means with kernel sizes between 2 and 7.
                    iaa.MedianBlur(
                        k=(3, 11)
                    ),  # Blur image using local medians with kernel sizes between 2 and 7.
                    iaa.MotionBlur(k=(5, 11),
                                   angle=(0, 360),
                                   direction=(-1.0, 1.0),
                                   order=1),
                ]),
                iaa.OneOf([
                    iaa.AdditiveGaussianNoise(
                        loc=0, scale=(0.1 * 255, 0.5 * 255),
                        per_channel=False),  # Add Gaussian noise to images.
                    iaa.AdditiveLaplaceNoise(loc=0,
                                             scale=(0.1 * 255, 0.4 * 255),
                                             per_channel=False),
                    iaa.AdditivePoissonNoise(lam=(32, 96), per_channel=False),
                    iaa.CoarseSaltAndPepper(p=(0.1, 0.3),
                                            size_percent=(0.2, 0.9),
                                            per_channel=False),
                    iaa.CoarseSalt(p=(0.1, 0.3),
                                   size_percent=(0.2, 0.9),
                                   per_channel=False),
                    iaa.CoarsePepper(p=(0.1, 0.3),
                                     size_percent=(0.2, 0.9),
                                     per_channel=False),
                    iaa.CoarseDropout(p=(0.1, 0.3),
                                      size_percent=(0.05, 0.3),
                                      per_channel=False),
                ]),
                iaa.OneOf([
                    iaa.MultiplyHueAndSaturation(mul=(-10, 10),
                                                 per_channel=False),
                    iaa.AddToHueAndSaturation(value=(-255, 255),
                                              per_channel=False),
                    iaa.LinearContrast(
                        alpha=(0.5, 1.5),
                        per_channel=False),  # Improve or worsen the contrast.
                    iaa.Invert(p=1,
                               per_channel=False),  # Invert color channels.
                    iaa.Sharpen(alpha=(0, 1.0),
                                lightness=(0.75, 1.5)),  # Sharpen images.
                    iaa.Emboss(alpha=(0, 1.0),
                               strength=(0, 2.0)),  # Emboss images.
                ]),
            ],
            random_order=True)
    elif False:
        augmenter = iaa.Sequential(
            [
                # Apply the following augmenters to most images.
                iaa.Fliplr(0.5),  # Horizontally flip 50% of all images.
                iaa.Flipud(0.2),  # Vertically flip 20% of all images.
                # Crop images by -5% to 10% of their height/width.
                iaa.Sometimes(
                    0.5,
                    iaa.CropAndPad(percent=(-0.05, 0.1),
                                   pad_mode=ia.ALL,
                                   pad_cval=(0, 255))),
                iaa.Sometimes(
                    0.5,
                    iaa.Affine(
                        scale={
                            'x': (0.8, 1.2),
                            'y': (0.8, 1.2)
                        },  # Scale images to 80-120% of their size, individually per axis.
                        translate_percent={
                            'x': (-0.2, 0.2),
                            'y': (-0.2, 0.2)
                        },  # Translate by -20 to +20 percent (per axis).
                        rotate=(-45, 45),  # Rotate by -45 to +45 degrees.
                        shear=(-16, 16),  # Shear by -16 to +16 degrees.
                        order=[
                            0,
                            1
                        ],  # Use nearest neighbour or bilinear interpolation (fast).
                        cval=(
                            0, 255
                        ),  # If mode is constant, use a cval between 0 and 255.
                        mode=ia.
                        ALL  # Use any of scikit-image's warping modes (see 2nd image from the top for examples).
                    )),
                # Execute 0 to 5 of the following (less important) augmenters per image.
                # Don't execute all of them, as that would often be way too strong.
                iaa.SomeOf(
                    (0, 5),
                    [
                        iaa.Sometimes(
                            0.5,
                            iaa.Superpixels(p_replace=(0, 1.0),
                                            n_segments=(20, 200))
                        ),  # Convert images into their superpixel representation.
                        iaa.OneOf([
                            iaa.GaussianBlur(
                                (0, 3.0)
                            ),  # Blur images with a sigma between 0 and 3.0.
                            iaa.AverageBlur(
                                k=(2, 7)
                            ),  # Blur image using local means with kernel sizes between 2 and 7.
                            iaa.MedianBlur(
                                k=(3, 11)
                            ),  # Blur image using local medians with kernel sizes between 2 and 7.
                        ]),
                        iaa.Sharpen(alpha=(0, 1.0),
                                    lightness=(0.75, 1.5)),  # Sharpen images.
                        iaa.Emboss(alpha=(0, 1.0),
                                   strength=(0, 2.0)),  # Emboss images.
                        # Search either for all edges or for directed edges, blend the result with the original image using a blobby mask.
                        iaa.SimplexNoiseAlpha(
                            iaa.OneOf([
                                iaa.EdgeDetect(alpha=(0.5, 1.0)),
                                iaa.DirectedEdgeDetect(alpha=(0.5, 1.0),
                                                       direction=(0.0, 1.0)),
                            ])),
                        iaa.AdditiveGaussianNoise(
                            loc=0, scale=(0.0, 0.05 * 255),
                            per_channel=0.5),  # Add gaussian noise to images.
                        iaa.OneOf([
                            iaa.Dropout(
                                (0.01, 0.1), per_channel=0.5
                            ),  # Randomly remove up to 10% of the pixels.
                            iaa.CoarseDropout((0.03, 0.15),
                                              size_percent=(0.02, 0.05),
                                              per_channel=0.2),
                        ]),
                        iaa.Invert(0.05,
                                   per_channel=True),  # Invert color channels.
                        iaa.Add(
                            (-10, 10), per_channel=0.5
                        ),  # Change brightness of images (by -10 to 10 of original value).
                        iaa.AddToHueAndSaturation(
                            (-20, 20)),  # Change hue and saturation.
                        # Either change the brightness of the whole image (sometimes per channel) or change the brightness of subareas.
                        iaa.OneOf([
                            iaa.Multiply((0.5, 1.5), per_channel=0.5),
                            iaa.FrequencyNoiseAlpha(
                                exponent=(-4, 0),
                                first=iaa.Multiply(
                                    (0.5, 1.5), per_channel=True),
                                second=iaa.ContrastNormalization((0.5, 2.0)))
                        ]),
                        iaa.ContrastNormalization(
                            (0.5, 2.0), per_channel=0.5
                        ),  # Improve or worsen the contrast.
                        iaa.Grayscale(alpha=(0.0, 1.0)),
                        iaa.Sometimes(
                            0.5,
                            iaa.ElasticTransformation(alpha=(0.5, 3.5),
                                                      sigma=0.25)
                        ),  # Move pixels locally around (with random strengths).
                        iaa.Sometimes(
                            0.5, iaa.PiecewiseAffine(scale=(0.01, 0.05))
                        ),  # Sometimes move parts of the image around.
                        iaa.Sometimes(
                            0.5, iaa.PerspectiveTransform(scale=(0.01, 0.1)))
                    ],
                    random_order=True)
            ],
            random_order=True)
    else:
        augmenter = iaa.Sequential([
            iaa.SomeOf(
                1,
                [
                    #iaa.Sometimes(0.5, iaa.Crop(px=(0, 100))),  # Crop images from each side by 0 to 16px (randomly chosen).
                    iaa.Sometimes(0.5, iaa.Crop(percent=(
                        0,
                        0.1))),  # Crop images by 0-10% of their height/width.
                    iaa.Fliplr(0.5),  # Horizontally flip 50% of the images.
                    iaa.Flipud(0.5),  # Vertically flip 50% of the images.
                    iaa.Sometimes(
                        0.5,
                        iaa.Affine(
                            scale={
                                'x': (0.8, 1.2),
                                'y': (0.8, 1.2)
                            },  # Scale images to 80-120% of their size, individually per axis.
                            translate_percent={
                                'x': (-0.2, 0.2),
                                'y': (-0.2, 0.2)
                            },  # Translate by -20 to +20 percent (per axis).
                            rotate=(-45, 45),  # Rotate by -45 to +45 degrees.
                            shear=(-16, 16),  # Shear by -16 to +16 degrees.
                            #order=[0, 1],  # Use nearest neighbour or bilinear interpolation (fast).
                            order=
                            0,  # Use nearest neighbour or bilinear interpolation (fast).
                            #cval=(0, 255),  # If mode is constant, use a cval between 0 and 255.
                            #mode=ia.ALL  # Use any of scikit-image's warping modes (see 2nd image from the top for examples).
                            #mode='edge'  # Use any of scikit-image's warping modes (see 2nd image from the top for examples).
                        )),
                    iaa.Sometimes(0.5, iaa.GaussianBlur(
                        sigma=(0,
                               3.0)))  # Blur images with a sigma of 0 to 3.0.
                ]),
            iaa.Scale(size={
                'height': image_height,
                'width': image_width
            })  # Resize.
        ])

    for idx in range(images.shape[0]):
        images_pp[idx] = (images_pp[idx] - np.min(images_pp[idx])) / (
            np.max(images_pp[idx]) - np.min(images_pp[idx])) * 255
    images_pp = images_pp.astype(np.uint8)

    # Test 1 (good).
    augmenter_det = augmenter.to_deterministic(
    )  # Call this for each batch again, NOT only once at the start.
    #images_aug1 = augmenter_det.augment_images(images)
    images_aug1 = augmenter_det.augment_images(images_pp)
    labels_aug1 = augmenter_det.augment_images(labels)
    augmenter_det = augmenter.to_deterministic(
    )  # Call this for each batch again, NOT only once at the start.
    #images_aug2 = augmenter_det.augment_images(images)
    images_aug2 = augmenter_det.augment_images(images_pp)
    labels_aug2 = augmenter_det.augment_images(labels)

    #export_images(images, labels, './augmented1/img', '')
    export_images(images_pp, labels, './augmented1/img', '')
    export_images(images_aug1, labels_aug1, './augmented1/img', '_aug1')
    export_images(images_aug2, labels_aug2, './augmented1/img', '_aug2')

    # Test 2 (bad).
    augmenter_det = augmenter.to_deterministic(
    )  # Call this for each batch again, NOT only once at the start.
    #images_aug1 = augmenter_det.augment_images(images)
    images_aug1 = augmenter_det.augment_images(images_pp)
    labels_aug1 = augmenter_det.augment_images(labels)
    #images_aug2 = augmenter_det.augment_images(images)
    images_aug2 = augmenter_det.augment_images(images_pp)
    labels_aug2 = augmenter_det.augment_images(labels)

    #export_images(images, labels, './augmented2/img', '')
    export_images(images_pp, labels, './augmented2/img', '')
    export_images(images_aug1, labels_aug1, './augmented2/img', '_aug1')
    export_images(images_aug2, labels_aug2, './augmented2/img', '_aug2')

    print('*********************************', images_pp.dtype)
Ejemplo n.º 21
0
def get_optimistic_img_aug():
    texture = iaa.OneOf([
        iaa.Superpixels(p_replace=(0.1, 0.3),
                        n_segments=(500, 1000),
                        interpolation="cubic",
                        name='Superpixels'),
        iaa.Sharpen(alpha=(0, 1.0), lightness=(0.5, 1.0), name='Sharpen'),
        iaa.Emboss(alpha=(0, 1.0), strength=(0.1, 0.3), name='Emboss'),
        iaa.OneOf([
            iaa.EdgeDetect(alpha=(0, 0.4)),
            iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
        ],
                  name='EdgeDetect'),
        iaa.ElasticTransformation(alpha=(0.5, 1.0),
                                  sigma=0.2,
                                  name='ElasticTransformation'),
    ])

    blur = iaa.OneOf([
        iaa.GaussianBlur((1, 5.0), name='GaussianBlur'),
        iaa.AverageBlur(k=(2, 15), name='AverageBlur'),
        iaa.MedianBlur(k=(3, 15), name='MedianBlur'),
        iaa.BilateralBlur(d=(3, 15),
                          sigma_color=(10, 250),
                          sigma_space=(10, 250),
                          name='BilaBlur'),
    ])

    affine = iaa.OneOf([
        iaa.Affine(rotate=(-3, 3)),
        iaa.Affine(translate_percent={
            "x": (0.95, 1.05),
            "y": (0.95, 1.05)
        }),
        iaa.Affine(scale={
            "x": (0.95, 1.05),
            "y": (0.95, 1.05)
        }),
        iaa.Affine(shear=(-2, 2)),
    ])

    factors = iaa.OneOf([
        iaa.Multiply(iap.Choice([0.75, 1.25]), per_channel=False),
        iaa.EdgeDetect(1.0),
    ])

    seq = iaa.Sequential(
        [

            # Size and shape ==================================================
            iaa.Sequential([
                iaa.Fliplr(0.5),
                iaa.OneOf([
                    iaa.Noop(),
                    iaa.Affine(rotate=90),
                    iaa.Affine(rotate=180),
                    iaa.Affine(rotate=270),
                ]),
                half_times(
                    iaa.SomeOf(
                        (1, 2),
                        [
                            iaa.Crop(percent=(0.1, 0.4)),  # Random Crops
                            iaa.PerspectiveTransform(scale=(0.10, 0.175)),
                            iaa.PiecewiseAffine(scale=(0.01, 0.06),
                                                nb_rows=(3, 6),
                                                nb_cols=(3, 6)),
                        ])),
            ]),

            # Texture ==================================================
            sometimes(
                iaa.SomeOf((1, 2), [
                    texture,
                    iaa.Alpha((0.0, 1.0), first=texture, per_channel=False)
                ],
                           random_order=True,
                           name='Texture')),
            half_times(
                iaa.SomeOf((1, 2), [
                    blur,
                    iaa.Alpha((0.0, 1.0), first=blur, per_channel=False),
                    iaa.Alpha(factor=(0.2, 0.8),
                              first=iaa.Sequential([
                                  affine,
                                  blur,
                              ]),
                              per_channel=False),
                ],
                           random_order=True,
                           name='Blur')),
            # Noise ==================================================
            sometimes(
                iaa.SomeOf(
                    (1, 2),
                    [
                        # Just noise
                        iaa.AdditiveGaussianNoise(
                            loc=0,
                            scale=(0.0, 0.15 * 255),
                            per_channel=False,
                            name='AdditiveGaussianNoise'),
                        iaa.SaltAndPepper(
                            0.05, per_channel=False, name='SaltAndPepper'),

                        # Regularization
                        iaa.Dropout(
                            (0.01, 0.1), per_channel=False, name='Dropout'),
                        iaa.CoarseDropout((0.03, 0.15),
                                          size_percent=(0.02, 0.05),
                                          per_channel=False,
                                          name='CoarseDropout'),
                        iaa.Alpha(
                            factor=(0.2, 0.8),
                            first=texture,
                            second=iaa.CoarseDropout(
                                p=0.1, size_percent=(0.02, 0.05)),
                            per_channel=False,
                        ),

                        # Perlin style noise
                        iaa.SimplexNoiseAlpha(first=factors,
                                              per_channel=False,
                                              aggregation_method="max",
                                              sigmoid=False,
                                              upscale_method='cubic',
                                              size_px_max=(2, 12),
                                              name='SimplexNoiseAlpha'),
                        iaa.FrequencyNoiseAlpha(first=factors,
                                                per_channel=False,
                                                aggregation_method="max",
                                                sigmoid=False,
                                                upscale_method='cubic',
                                                size_px_max=(2, 12),
                                                name='FrequencyNoiseAlpha'),
                    ],
                    random_order=True,
                    name='Noise')),
        ],
        random_order=False)

    def activator_masks(images, augmenter, parents, default):
        if 'Unnamed' not in augmenter.name:
            return False
        else:
            return default

    hooks_masks = ia.HooksImages(activator=activator_masks)

    return seq, hooks_masks
Ejemplo n.º 22
0
        new_img = Image.fromarray(new_img)
        new_label = Image.fromarray(new_label)
        new_inter = Image.fromarray(new_inter)
        new_img.save("../data/GenData/TrainData/images/" + str("%04d" % j) +
                     "_flip_" + str(i) + "_.png")
        new_label.save("../data/GenData/TrainData/labels/" + str("%04d" % j) +
                       "_flip_" + str(i) + "_.png")
        new_inter.save("../data/GenData/TrainData/watershed/" +
                       str("%04d" % j) + "_flip_" + str(i) + "_.png")
print("Finished augmentations for rotations and cropping..")

# Blur                          = 5
blur = [
    iaa.GaussianBlur(sigma=0.9),
    iaa.GaussianBlur(sigma=2.9),
    iaa.AverageBlur(k=7),
    iaa.AverageBlur(k=9),
    iaa.MedianBlur(k=7),
]

for i in tqdm(range(len(blur)), total=len(blur)):
    for j, sample in tqdm(enumerate(data), total=len(data)):
        img, label, inter = sample
        new_img = blur[i].augment_image(img)
        new_img = Image.fromarray(new_img)
        label = Image.fromarray(label)
        inter = Image.fromarray(inter)
        new_img.save("../data/GenData/TrainData/images/" + str("%04d" % j) +
                     "_blur_" + str(i) + "_.png")
        label.save("../data/GenData/TrainData/labels/" + str("%04d" % j) +
                   "_blur_" + str(i) + "_.png")
Ejemplo n.º 23
0
def main():
    # datapath为存放训练图片的地方
    datapath = '/home/zhex/data/yuncong/'
    # original_file为需要被增强的
    original_file = '/home/zhex/data/yuncong/UCSD_train.txt'  # 需要被增强的训练真值txt
    # aug_file只记录了新增的增强后图片的box,要得到原始+增强的所有label:cat original_file augfile>finalfile(txt拼接)
    # aug_file输出是pdpd需要的格式,pytorch需要另行转换(可以拼接得到finalfile后直接将finalfile转换)
    aug_file = 'augfile_UCSD.txt'
    dict_before = readlist(original_file)
    new_fp = open(aug_file, 'w')
    # augscene = {'Mall': 3, 'Part_B': 10, 'Part_A': 13}  # 需要哪些场景,新增几倍数量的新数据
    augscene = {'UCSD': 2}
    for scene in augscene:
        for i in range(augscene[scene]):
            for img_id in dict_before.keys():
                if scene in img_id:
                    print(img_id)
                    img = Image.open(datapath + img_id)
                    img = np.array(img)
                    bbs = ia.BoundingBoxesOnImage([
                        ia.BoundingBox(x1=x, y1=y, x2=x + w, y2=y + h)
                        for [x, y, w, h] in dict_before[img_id]
                    ],
                                                  shape=img.shape)

                    # 设置数据增强方式
                    seq = iaa.SomeOf(
                        (1, 3),
                        [
                            iaa.Crop(px=(0, 16)),  # 裁剪
                            iaa.Multiply((0.7, 1.3)),  # 改变色调
                            iaa.Affine(scale=(0.5, 0.7)),  # 放射变换
                            iaa.GaussianBlur(sigma=(0, 1.5)),  # 高斯模糊
                            # iaa.AddToHueAndSaturation(value=(25,-25)),
                            iaa.ChannelShuffle(1),  # RGB三通道随机交换
                            iaa.ElasticTransformation(alpha=0.1),
                            # iaa.Grayscale(alpha=(0.2, 0.5)),
                            iaa.Pepper(p=0.03),
                            iaa.AdditiveGaussianNoise(scale=(0.03 * 255,
                                                             0.05 * 255)),
                            iaa.Dropout(p=(0.03, 0.05)),
                            iaa.Salt(p=(0.03, 0.05)),
                            iaa.AverageBlur(k=(1, 3)),
                            iaa.Add((-10, 10)),
                            iaa.CoarseSalt(size_percent=0.01)
                        ])
                    seq_det = seq.to_deterministic(
                    )  # 保持坐标和图像同步改变,每个batch都要调用一次,不然每次的增强都是一样的
                    image_aug = seq_det.augment_images([img])[0]
                    bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]

                    pic_name = img_id.split('/')[-1].split('.')[0]
                    pic_dir = img_id.split(pic_name)[0]
                    if not os.path.exists(datapath + 'myaug/' + pic_dir):
                        os.makedirs(datapath + 'myaug/' + pic_dir)
                    new_img_id = 'myaug/' + pic_dir + pic_name + '_{}'.format(
                        i) + '.jpg'
                    Image.fromarray(image_aug).save(datapath + new_img_id)

                    new_fp = writelist(new_fp, new_img_id,
                                       bbs_aug.bounding_boxes)
    def test_many_augmenters(self):
        keypoints = []
        for y in sm.xrange(40 // 5):
            for x in sm.xrange(60 // 5):
                keypoints.append(ia.Keypoint(y=y * 5, x=x * 5))

        keypoints_oi = ia.KeypointsOnImage(keypoints, shape=(40, 60, 3))
        keypoints_oi_empty = ia.KeypointsOnImage([], shape=(40, 60, 3))

        augs = [
            iaa.Add((-5, 5), name="Add"),
            iaa.AddElementwise((-5, 5), name="AddElementwise"),
            iaa.AdditiveGaussianNoise(0.01 * 255,
                                      name="AdditiveGaussianNoise"),
            iaa.Multiply((0.95, 1.05), name="Multiply"),
            iaa.Dropout(0.01, name="Dropout"),
            iaa.CoarseDropout(0.01, size_px=6, name="CoarseDropout"),
            iaa.Invert(0.01, per_channel=True, name="Invert"),
            iaa.GaussianBlur(sigma=(0.95, 1.05), name="GaussianBlur"),
            iaa.AverageBlur((3, 5), name="AverageBlur"),
            iaa.MedianBlur((3, 5), name="MedianBlur"),
            iaa.Sharpen((0.0, 0.1), lightness=(1.0, 1.2), name="Sharpen"),
            iaa.Emboss(alpha=(0.0, 0.1), strength=(0.5, 1.5), name="Emboss"),
            iaa.EdgeDetect(alpha=(0.0, 0.1), name="EdgeDetect"),
            iaa.DirectedEdgeDetect(alpha=(0.0, 0.1),
                                   direction=0,
                                   name="DirectedEdgeDetect"),
            iaa.Fliplr(0.5, name="Fliplr"),
            iaa.Flipud(0.5, name="Flipud"),
            iaa.Affine(translate_px=(-5, 5), name="Affine-translate-px"),
            iaa.Affine(translate_percent=(-0.05, 0.05),
                       name="Affine-translate-percent"),
            iaa.Affine(rotate=(-20, 20), name="Affine-rotate"),
            iaa.Affine(shear=(-20, 20), name="Affine-shear"),
            iaa.Affine(scale=(0.9, 1.1), name="Affine-scale"),
            iaa.PiecewiseAffine(scale=(0.001, 0.005), name="PiecewiseAffine"),
            iaa.ElasticTransformation(alpha=(0.1, 0.2),
                                      sigma=(0.1, 0.2),
                                      name="ElasticTransformation"),
            iaa.BlendAlpha((0.0, 0.1), iaa.Add(10), name="BlendAlpha"),
            iaa.BlendAlphaElementwise((0.0, 0.1),
                                      iaa.Add(10),
                                      name="BlendAlphaElementwise"),
            iaa.BlendAlphaSimplexNoise(iaa.Add(10),
                                       name="BlendAlphaSimplexNoise"),
            iaa.BlendAlphaFrequencyNoise(exponent=(-2, 2),
                                         foreground=iaa.Add(10),
                                         name="BlendAlphaSimplexNoise"),
            iaa.Superpixels(p_replace=0.01, n_segments=64),
            iaa.Resize(0.5, name="Resize"),
            iaa.CropAndPad(px=(-10, 10), name="CropAndPad"),
            iaa.Pad(px=(0, 10), name="Pad"),
            iaa.Crop(px=(0, 10), name="Crop")
        ]

        for aug in augs:
            dss = []
            for i in sm.xrange(10):
                aug_det = aug.to_deterministic()

                kp_fully_empty_aug = aug_det.augment_keypoints([])
                assert kp_fully_empty_aug == []

                kp_first_empty_aug = aug_det.augment_keypoints(
                    keypoints_oi_empty)
                assert len(kp_first_empty_aug.keypoints) == 0

                kp_image = keypoints_oi.to_keypoint_image(size=5)
                with assertWarns(self, iaa.SuspiciousSingleImageShapeWarning):
                    kp_image_aug = aug_det.augment_image(kp_image)
                kp_image_aug_rev = ia.KeypointsOnImage.from_keypoint_image(
                    kp_image_aug,
                    if_not_found_coords={
                        "x": -9999,
                        "y": -9999
                    },
                    nb_channels=1)
                kp_aug = aug_det.augment_keypoints([keypoints_oi])[0]
                ds = []
                assert len(kp_image_aug_rev.keypoints) == len(
                    kp_aug.keypoints), (
                        "Lost keypoints for '%s' (%d vs expected %d)" %
                        (aug.name, len(kp_aug.keypoints),
                         len(kp_image_aug_rev.keypoints)))

                gen = zip(kp_aug.keypoints, kp_image_aug_rev.keypoints)
                for kp_pred, kp_pred_img in gen:
                    kp_pred_lost = (kp_pred.x == -9999 and kp_pred.y == -9999)
                    kp_pred_img_lost = (kp_pred_img.x == -9999
                                        and kp_pred_img.y == -9999)

                    if not kp_pred_lost and not kp_pred_img_lost:
                        d = np.sqrt((kp_pred.x - kp_pred_img.x)**2 +
                                    (kp_pred.y - kp_pred_img.y)**2)
                        ds.append(d)
                dss.extend(ds)
                if len(ds) == 0:
                    print("[INFO] No valid keypoints found for '%s' "
                          "in test_keypoint_augmentation()" % (str(aug), ))
            assert np.average(dss) < 5.0, \
                "Average distance too high (%.2f, with ds: %s)" \
                % (np.average(dss), str(dss))
Ejemplo n.º 25
0
 def __init__(self):
     super(ImgAugTransform, self).__init__()
     from imgaug import augmenters as iaa
     from imgaug import parameters as iap
     self.seq = iaa.Sequential(children=[
         iaa.Sequential(children=[
             iaa.Sequential(children=[
                 iaa.OneOf(children=[
                     iaa.Sometimes(
                         p=0.95,
                         then_list=iaa.Affine(scale={
                             "x": (0.9, 1.1),
                             "y": (0.9, 1.1)
                         },
                                              translate_percent={
                                                  "x": (-0.05, 0.05),
                                                  "y": (-0.05, 0.05)
                                              },
                                              rotate=(-30, 30),
                                              shear=(-15, 15),
                                              order=iap.Choice(
                                                  [0, 1, 3],
                                                  p=[0.15, 0.80, 0.05]),
                                              mode="reflect",
                                              name="Affine")),
                     iaa.Sometimes(p=0.05,
                                   then_list=iaa.PerspectiveTransform(
                                       scale=(0.01, 0.1)))
                 ],
                           name="Blur"),
                 iaa.Sometimes(p=0.01,
                               then_list=iaa.PiecewiseAffine(
                                   scale=(0.0, 0.01),
                                   nb_rows=(4, 20),
                                   nb_cols=(4, 20),
                                   order=iap.Choice([0, 1, 3],
                                                    p=[0.15, 0.80, 0.05]),
                                   mode="reflect",
                                   name="PiecewiseAffine"))
             ],
                            random_order=True,
                            name="GeomTransform"),
             iaa.Sequential(children=[
                 iaa.Sometimes(p=0.75,
                               then_list=iaa.Add(value=(-10, 10),
                                                 per_channel=0.5,
                                                 name="Brightness")),
                 iaa.Sometimes(p=0.05,
                               then_list=iaa.Emboss(alpha=(0.0, 0.5),
                                                    strength=(0.5, 1.2),
                                                    name="Emboss")),
                 iaa.Sometimes(p=0.1,
                               then_list=iaa.Sharpen(alpha=(0.0, 0.5),
                                                     lightness=(0.5, 1.2),
                                                     name="Sharpen")),
                 iaa.Sometimes(p=0.25,
                               then_list=iaa.ContrastNormalization(
                                   alpha=(0.5, 1.5),
                                   per_channel=0.5,
                                   name="ContrastNormalization"))
             ],
                            random_order=True,
                            name="ColorTransform"),
             iaa.Sequential(children=[
                 iaa.Sometimes(p=0.5,
                               then_list=iaa.AdditiveGaussianNoise(
                                   loc=0,
                                   scale=(0.0, 10.0),
                                   per_channel=0.5,
                                   name="AdditiveGaussianNoise")),
                 iaa.Sometimes(p=0.1,
                               then_list=iaa.SaltAndPepper(
                                   p=(0, 0.001),
                                   per_channel=0.5,
                                   name="SaltAndPepper"))
             ],
                            random_order=True,
                            name="Noise"),
             iaa.OneOf(children=[
                 iaa.Sometimes(p=0.05,
                               then_list=iaa.MedianBlur(k=3,
                                                        name="MedianBlur")),
                 iaa.Sometimes(p=0.05,
                               then_list=iaa.AverageBlur(
                                   k=(2, 4), name="AverageBlur")),
                 iaa.Sometimes(p=0.5,
                               then_list=iaa.GaussianBlur(
                                   sigma=(0.0, 2.0), name="GaussianBlur"))
             ],
                       name="Blur"),
         ],
                        random_order=True,
                        name="MainProcess")
     ])
def test_unusual_channel_numbers():
    reseed()

    images = [(0, create_random_images((4, 16, 16))),
              (1, create_random_images((4, 16, 16, 1))),
              (2, create_random_images((4, 16, 16, 2))),
              (4, create_random_images((4, 16, 16, 4))),
              (5, create_random_images((4, 16, 16, 5))),
              (10, create_random_images((4, 16, 16, 10))),
              (20, create_random_images((4, 16, 16, 20)))]

    augs = [
        iaa.Add((-5, 5), name="Add"),
        iaa.AddElementwise((-5, 5), name="AddElementwise"),
        iaa.AdditiveGaussianNoise(0.01 * 255, name="AdditiveGaussianNoise"),
        iaa.Multiply((0.95, 1.05), name="Multiply"),
        iaa.Dropout(0.01, name="Dropout"),
        iaa.CoarseDropout(0.01, size_px=6, name="CoarseDropout"),
        iaa.Invert(0.01, per_channel=True, name="Invert"),
        iaa.GaussianBlur(sigma=(0.95, 1.05), name="GaussianBlur"),
        iaa.AverageBlur((3, 5), name="AverageBlur"),
        iaa.MedianBlur((3, 5), name="MedianBlur"),
        iaa.Sharpen((0.0, 0.1), lightness=(1.0, 1.2), name="Sharpen"),
        iaa.Emboss(alpha=(0.0, 0.1), strength=(0.5, 1.5), name="Emboss"),
        iaa.EdgeDetect(alpha=(0.0, 0.1), name="EdgeDetect"),
        iaa.DirectedEdgeDetect(alpha=(0.0, 0.1),
                               direction=0,
                               name="DirectedEdgeDetect"),
        iaa.Fliplr(0.5, name="Fliplr"),
        iaa.Flipud(0.5, name="Flipud"),
        iaa.Affine(translate_px=(-5, 5), name="Affine-translate-px"),
        iaa.Affine(translate_percent=(-0.05, 0.05),
                   name="Affine-translate-percent"),
        iaa.Affine(rotate=(-20, 20), name="Affine-rotate"),
        iaa.Affine(shear=(-20, 20), name="Affine-shear"),
        iaa.Affine(scale=(0.9, 1.1), name="Affine-scale"),
        iaa.PiecewiseAffine(scale=(0.001, 0.005), name="PiecewiseAffine"),
        iaa.PerspectiveTransform(scale=(0.01, 0.10),
                                 name="PerspectiveTransform"),
        iaa.ElasticTransformation(alpha=(0.1, 0.2),
                                  sigma=(0.1, 0.2),
                                  name="ElasticTransformation"),
        iaa.Sequential([iaa.Add((-5, 5)),
                        iaa.AddElementwise((-5, 5))]),
        iaa.SomeOf(1, [iaa.Add(
            (-5, 5)), iaa.AddElementwise((-5, 5))]),
        iaa.OneOf([iaa.Add((-5, 5)),
                   iaa.AddElementwise((-5, 5))]),
        iaa.Sometimes(0.5, iaa.Add((-5, 5)), name="Sometimes"),
        iaa.Identity(name="Noop"),
        iaa.BlendAlpha((0.0, 0.1), iaa.Add(10), name="BlendAlpha"),
        iaa.BlendAlphaElementwise((0.0, 0.1),
                                  iaa.Add(10),
                                  name="BlendAlphaElementwise"),
        iaa.BlendAlphaSimplexNoise(iaa.Add(10), name="BlendAlphaSimplexNoise"),
        iaa.BlendAlphaFrequencyNoise(exponent=(-2, 2),
                                     foreground=iaa.Add(10),
                                     name="BlendAlphaSimplexNoise"),
        iaa.Superpixels(p_replace=0.01, n_segments=64),
        iaa.Resize({
            "height": 4,
            "width": 4
        }, name="Resize"),
        iaa.CropAndPad(px=(-10, 10), name="CropAndPad"),
        iaa.Pad(px=(0, 10), name="Pad"),
        iaa.Crop(px=(0, 10), name="Crop")
    ]

    for aug in augs:
        for (nb_channels, images_c) in images:
            if aug.name != "Resize":
                images_aug = aug.augment_images(images_c)
                assert images_aug.shape == images_c.shape
                image_aug = aug.augment_image(images_c[0])
                assert image_aug.shape == images_c[0].shape
            else:
                images_aug = aug.augment_images(images_c)
                image_aug = aug.augment_image(images_c[0])
                if images_c.ndim == 3:
                    assert images_aug.shape == (4, 4, 4)
                    assert image_aug.shape == (4, 4)
                else:
                    assert images_aug.shape == (4, 4, 4, images_c.shape[3])
                    assert image_aug.shape == (4, 4, images_c.shape[3])
    def data_augmentation(self, sequence):
        """
        square or 16x9
        
        """
        random.seed(self.seed)
        self.inc_seed()

        #square = random.randint(0,1)
        square = 0
        """
        hflip
        
        """
        random.seed(self.seed)
        self.inc_seed()

        hflip = random.randint(0, 1)

        hflip_aug = iaa.Sequential([iaa.Fliplr(1)])
        hflip_det = hflip_aug.to_deterministic()

        zoom_scale_rot_aug = iaa.Sequential([
            iaa.Affine(scale={
                "x": (0.9, 1.1),
                "y": (0.9, 1.1)
            },
                       translate_percent={
                           "x": (-0.1, 0.1),
                           "y": (-0.1, 0.1)
                       },
                       rotate=(-10, 10))
        ],
                                            random_order=True)

        zoom_scale_rot_det = zoom_scale_rot_aug.to_deterministic()

        counter = 0
        for frame in sequence:

            if square:
                """
                square or 16x9
                
                """
                blank_image = np.zeros((256, 256, 3), np.uint8)
                blank_image[:, :] = (79, 225, 7)

                frame = cv2.resize(frame, (144, 144),
                                   interpolation=cv2.INTER_AREA)

                x_offset = y_offset = 56
                blank_image[y_offset:y_offset + frame.shape[0],
                            x_offset:x_offset + frame.shape[1]] = frame

                frame = blank_image

            if hflip:
                """
                hflip
                
                """
                frame = hflip_det.augment_image(frame)
            """
            Zoom & Verschiebung
            """

            #frame = zoom_scale_rot_det.augment_image(frame)
            """
            black Background after rotation to green
            
            """
            #hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

            #sensitivity is a int, typically set to 15 - 20

            #lower_black = np.array([0, 0, 0])
            #upper_black = np.array([180, 255, 10])

            #mask = cv2.inRange(hsv, lower_black, upper_black)

            #frame[mask>0]=(79,255,7)
            """
            Background Pic or Color
            
            """

            sequence[counter] = frame
            counter = counter + 1

        sometimes = lambda aug: iaa.Sometimes(0.5, aug)

        seq = iaa.Sequential(
            [

                #
                # Execute 0 to 5 of the following (less important) augmenters per
                # image. Don't execute all of them, as that would often be way too
                # strong.
                #
                iaa.SomeOf(
                    (0, 1),
                    [

                        # Convert some images into their superpixel representation,
                        # sample between 20 and 200 superpixels per image, but do
                        # not replace all superpixels with their average, only
                        # some of them (p_replace).
                        sometimes(
                            iaa.Superpixels(p_replace=(0, 1.0),
                                            n_segments=(20, 200))),

                        # Blur each image with varying strength using
                        # gaussian blur (sigma between 0 and 3.0),
                        # average/uniform blur (kernel size between 2x2 and 7x7)
                        # median blur (kernel size between 3x3 and 11x11).
                        iaa.OneOf([
                            iaa.GaussianBlur((0, 3.0)),
                            iaa.AverageBlur(k=(2, 7)),
                            iaa.MedianBlur(k=(3, 11)),
                        ]),

                        # Sharpen each image, overlay the result with the original
                        # image using an alpha between 0 (no sharpening) and 1
                        # (full sharpening effect).
                        iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),

                        # Same as sharpen, but for an embossing effect.
                        iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),

                        # Search in some images either for all edges or for
                        # directed edges. These edges are then marked in a black
                        # and white image and overlayed with the original image
                        # using an alpha of 0 to 0.7.
                        sometimes(
                            iaa.OneOf([
                                iaa.EdgeDetect(alpha=(0, 0.7)),
                                iaa.DirectedEdgeDetect(alpha=(0, 0.7),
                                                       direction=(0.0, 1.0)),
                            ])),

                        # Add gaussian noise to some images.
                        # In 50% of these cases, the noise is randomly sampled per
                        # channel and pixel.
                        # In the other 50% of all cases it is sampled once per
                        # pixel (i.e. brightness change).
                        iaa.AdditiveGaussianNoise(
                            loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),

                        # Either drop randomly 1 to 10% of all pixels (i.e. set
                        # them to black) or drop them on an image with 2-5% percent
                        # of the original size, leading to large dropped
                        # rectangles.
                        iaa.OneOf([
                            iaa.Dropout((0.01, 0.1), per_channel=0.5),
                            iaa.CoarseDropout((0.03, 0.10),
                                              size_percent=(0.02, 0.03),
                                              per_channel=0.2),
                        ]),
                        iaa.Add((-10, 10), per_channel=0.5),
                        # Change brightness of images (50-150% of original value).
                        iaa.Multiply((0.5, 1.5), per_channel=0.5),

                        # Improve or worsen the contrast of images.
                        iaa.LinearContrast((0.5, 2.0), per_channel=0.5),

                        # Convert each image to grayscale and then overlay the
                        # result with the original with random alpha. I.e. remove
                        # colors with varying strengths.
                        iaa.Grayscale(alpha=(0.0, 1.0)),

                        #sometimes(
                        #    iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)
                        #),

                        # In some images distort local areas with varying strength.
                        sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05)))
                    ],
                    # do all of the above augmentations in random order
                    random_order=True)
            ],
            # do all of the above augmentations in random order
            random_order=True)
        sequence = seq(images=sequence)
        return sequence
def test_determinism():
    reseed()

    images = [
        ia.quokka(size=(128, 128)),
        ia.quokka(size=(64, 64)),
        ia.imresize_single_image(skimage.data.astronaut(), (128, 256))
    ]
    images.extend([ia.quokka(size=(16, 16))] * 20)

    keypoints = [
        ia.KeypointsOnImage([
            ia.Keypoint(x=20, y=10),
            ia.Keypoint(x=5, y=5),
            ia.Keypoint(x=10, y=43)
        ],
                            shape=(50, 60, 3))
    ] * 20

    augs = [
        iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.SomeOf(1, [iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.OneOf([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.Sometimes(0.5, iaa.Fliplr(1.0)),
        iaa.WithColorspace("HSV", children=iaa.Add((-50, 50))),
        iaa.Resize((0.5, 0.9)),
        iaa.CropAndPad(px=(-50, 50)),
        iaa.Pad(px=(1, 50)),
        iaa.Crop(px=(1, 50)),
        iaa.Fliplr(0.5),
        iaa.Flipud(0.5),
        iaa.Superpixels(p_replace=(0.25, 1.0), n_segments=(16, 128)),
        iaa.Grayscale(alpha=(0.1, 1.0)),
        iaa.GaussianBlur((0.1, 3.0)),
        iaa.AverageBlur((3, 11)),
        iaa.MedianBlur((3, 11)),
        iaa.Sharpen(alpha=(0.1, 1.0), lightness=(0.8, 1.2)),
        iaa.Emboss(alpha=(0.1, 1.0), strength=(0.8, 1.2)),
        iaa.EdgeDetect(alpha=(0.1, 1.0)),
        iaa.DirectedEdgeDetect(alpha=(0.1, 1.0), direction=(0.0, 1.0)),
        iaa.Add((-50, 50)),
        iaa.AddElementwise((-50, 50)),
        iaa.AdditiveGaussianNoise(scale=(0.1, 1.0)),
        iaa.Multiply((0.6, 1.4)),
        iaa.MultiplyElementwise((0.6, 1.4)),
        iaa.Dropout((0.3, 0.5)),
        iaa.CoarseDropout((0.3, 0.5), size_percent=(0.05, 0.2)),
        iaa.Invert(0.5),
        iaa.Affine(scale=(0.7, 1.3),
                   translate_percent=(-0.1, 0.1),
                   rotate=(-20, 20),
                   shear=(-20, 20),
                   order=ia.ALL,
                   mode=ia.ALL,
                   cval=(0, 255)),
        iaa.PiecewiseAffine(scale=(0.1, 0.3)),
        iaa.ElasticTransformation(alpha=0.5)
    ]

    augs_affect_geometry = [
        iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.SomeOf(1, [iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.OneOf([iaa.Fliplr(0.5), iaa.Flipud(0.5)]),
        iaa.Sometimes(0.5, iaa.Fliplr(1.0)),
        iaa.Resize((0.5, 0.9)),
        iaa.CropAndPad(px=(-50, 50)),
        iaa.Pad(px=(1, 50)),
        iaa.Crop(px=(1, 50)),
        iaa.Fliplr(0.5),
        iaa.Flipud(0.5),
        iaa.Affine(scale=(0.7, 1.3),
                   translate_percent=(-0.1, 0.1),
                   rotate=(-20, 20),
                   shear=(-20, 20),
                   order=ia.ALL,
                   mode=ia.ALL,
                   cval=(0, 255)),
        iaa.PiecewiseAffine(scale=(0.1, 0.3)),
        iaa.ElasticTransformation(alpha=(5, 100), sigma=(3, 5))
    ]

    for aug in augs:
        aug_det = aug.to_deterministic()
        images_aug1 = aug_det.augment_images(images)
        images_aug2 = aug_det.augment_images(images)

        aug_det = aug.to_deterministic()
        images_aug3 = aug_det.augment_images(images)
        images_aug4 = aug_det.augment_images(images)

        assert array_equal_lists(images_aug1, images_aug2), \
            "Images (1, 2) expected to be identical for %s" % (aug.name,)

        assert array_equal_lists(images_aug3, images_aug4), \
            "Images (3, 4) expected to be identical for %s" % (aug.name,)

        assert not array_equal_lists(images_aug1, images_aug3), \
            "Images (1, 3) expected to be different for %s" % (aug.name,)

    for aug in augs_affect_geometry:
        aug_det = aug.to_deterministic()
        kps_aug1 = aug_det.augment_keypoints(keypoints)
        kps_aug2 = aug_det.augment_keypoints(keypoints)

        aug_det = aug.to_deterministic()
        kps_aug3 = aug_det.augment_keypoints(keypoints)
        kps_aug4 = aug_det.augment_keypoints(keypoints)

        assert keypoints_equal(kps_aug1, kps_aug2), \
            "Keypoints (1, 2) expected to be identical for %s" % (aug.name,)

        assert keypoints_equal(kps_aug3, kps_aug4), \
            "Keypoints (3, 4) expected to be identical for %s" % (aug.name,)

        assert not keypoints_equal(kps_aug1, kps_aug3), \
            "Keypoints (1, 3) expected to be different for %s" % (aug.name,)
Ejemplo n.º 29
0
def _load_augmentation_aug_all():
    """ Load image augmentation model """
    def sometimes(aug):
        return iaa.Sometimes(0.5, aug)

    return iaa.Sequential(
        [
            # apply the following augmenters to most images
            iaa.Fliplr(0.5),  # horizontally flip 50% of all images
            iaa.Flipud(0.2),  # vertically flip 20% of all images
            # crop images by -5% to 10% of their height/width
            sometimes(
                iaa.CropAndPad(percent=(-0.05, 0.1),
                               pad_mode='constant',
                               pad_cval=(0, 255))),
            sometimes(
                iaa.Affine(
                    # scale images to 80-120% of their size, individually per axis
                    scale={
                        "x": (0.8, 1.2),
                        "y": (0.8, 1.2)
                    },
                    # translate by -20 to +20 percent (per axis)
                    translate_percent={
                        "x": (-0.2, 0.2),
                        "y": (-0.2, 0.2)
                    },
                    rotate=(-45, 45),  # rotate by -45 to +45 degrees
                    shear=(-16, 16),  # shear by -16 to +16 degrees
                    # use nearest neighbour or bilinear interpolation (fast)
                    order=[0, 1],
                    # if mode is constant, use a cval between 0 and 255
                    cval=(0, 255),
                    # use any of scikit-image's warping modes
                    # (see 2nd image from the top for examples)
                    mode='constant')),
            # execute 0 to 5 of the following (less important) augmenters per
            # image don't execute all of them, as that would often be way too
            # strong
            iaa.SomeOf(
                (0, 5),
                [
                    # convert images into their superpixel representation
                    sometimes(
                        iaa.Superpixels(p_replace=(0, 1.0),
                                        n_segments=(20, 200))),
                    iaa.OneOf([
                        # blur images with a sigma between 0 and 3.0
                        iaa.GaussianBlur((0, 3.0)),
                        # blur image using local means with kernel sizes
                        # between 2 and 7
                        iaa.AverageBlur(k=(2, 7)),
                        # blur image using local medians with kernel sizes
                        # between 2 and 7
                        iaa.MedianBlur(k=(3, 11)),
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0),
                                lightness=(0.75, 1.5)),  # sharpen images
                    iaa.Emboss(alpha=(0, 1.0),
                               strength=(0, 2.0)),  # emboss images
                    # search either for all edges or for directed edges,
                    # blend the result with the original image using a blobby mask
                    iaa.BlendAlphaSimplexNoise(
                        iaa.OneOf([
                            iaa.EdgeDetect(alpha=(0.5, 1.0)),
                            iaa.DirectedEdgeDetect(alpha=(0.5, 1.0),
                                                   direction=(0.0, 1.0)),
                        ])),
                    # add gaussian noise to images
                    iaa.AdditiveGaussianNoise(
                        loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5),
                    iaa.OneOf([
                        # randomly remove up to 10% of the pixels
                        iaa.Dropout((0.01, 0.1), per_channel=0.5),
                        iaa.CoarseDropout((0.03, 0.15),
                                          size_percent=(0.02, 0.05),
                                          per_channel=0.2),
                    ]),
                    # invert color channels
                    iaa.Invert(0.05, per_channel=True),
                    # change brightness of images (by -10 to 10 of original value)
                    iaa.Add((-10, 10), per_channel=0.5),
                    # change hue and saturation
                    iaa.AddToHueAndSaturation((-20, 20)),
                    # either change the brightness of the whole image (sometimes
                    # per channel) or change the brightness of subareas
                    iaa.OneOf([
                        iaa.Multiply((0.5, 1.5), per_channel=0.5),
                        iaa.BlendAlphaFrequencyNoise(
                            exponent=(-4, 0),
                            foreground=iaa.Multiply(
                                (0.5, 1.5), per_channel=True),
                            background=iaa.contrast.LinearContrast((0.5, 2.0)))
                    ]),
                    # improve or worsen the contrast
                    iaa.contrast.LinearContrast((0.5, 2.0), per_channel=0.5),
                    iaa.Grayscale(alpha=(0.0, 1.0)),
                    # move pixels locally around (with random strengths)
                    sometimes(
                        iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)
                    ),
                    # sometimes move parts of the image around
                    sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))),
                    sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1)))
                ],
                random_order=True)
        ],
        random_order=True)
Ejemplo n.º 30
0
def Augmentors(orgimage, bbs):
    sometimes = lambda aug: iaa.Sometimes(0.3, aug)
    seq = iaa.Sequential(
        [
            # apply the following augmenters to most images
            # sometimes(iaa.Affine(
            # scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
            # rotate=(-5, 5), # rotate by -45 to +45 degrees
            # shear=(5, 5), # shear by -16 to +16 degrees
            # order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
            # cval=(0, 255), # if mode is constant, use a cval between 0 and 255
            # mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            # )),
            # #execute 0 to 5 of the following (less important) augmenters per image
            #don't execute all of them, as that would often be way too strong
            iaa.SomeOf(
                1,
                [
                    sometimes(
                        iaa.Superpixels(p_replace=(0, 1.0),
                                        n_segments=(20, 200))
                    ),  # convert images into their superpixel representation
                    iaa.OneOf([
                        iaa.GaussianBlur(
                            (0, 1.5
                             )),  # blur images with a sigma between 0 and 3.0
                        iaa.AverageBlur(
                            k=(2, 4)
                        ),  # blur image using local means with kernel sizes between 2 and 7
                        iaa.MedianBlur(
                            k=(3, 7)
                        ),  # blur image using local medians with kernel sizes between 2 and 7
                    ]),
                    iaa.Sharpen(alpha=(0, 0.5),
                                lightness=(0.15, 1.5)),  # sharpen images
                    iaa.Emboss(alpha=(0, 0.5),
                               strength=(0, 0.5)),  # emboss images
                    # search either for all edges or for directed edges,
                    # blend the result with the original image using a blobby mask
                    iaa.SimplexNoiseAlpha(
                        iaa.OneOf([
                            iaa.EdgeDetect(alpha=(0.5, 1.0)),
                            iaa.DirectedEdgeDetect(alpha=(0.5, 1.0),
                                                   direction=(0.0, 1.0))
                        ])),
                    iaa.AdditiveGaussianNoise(
                        loc=0, scale=(0.0, 0.05 * 255),
                        per_channel=0.5),  # add gaussian noise to images
                    #iaa.Invert(0.05, per_channel=True), # invert color channels
                    iaa.Add(
                        (-5, 5), per_channel=0.5
                    ),  # change brightness of images (by -10 to 10 of original value)
                    iaa.AddToHueAndSaturation(
                        (-5, 5)),  # change hue and saturation
                    # either change the brightness of the whole image (sometimes
                    # per channel) or change the brightness of subareas
                    iaa.OneOf([
                        #iaa.Multiply((0.5, 1.5), per_channel=0.5),
                        iaa.FrequencyNoiseAlpha(
                            exponent=(-4, 0),
                            first=iaa.Multiply((0.5, 1.5), per_channel=True),
                            second=iaa.ContrastNormalization((0.5, 2.0)))
                    ]),
                    iaa.ContrastNormalization(
                        (0.5, 2.0),
                        per_channel=0.5),  # improve or worsen the contrast
                    iaa.Grayscale(alpha=(0.0, 1.0)),
                    sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1)))
                ],
                random_order=True)
        ],
        random_order=True)

    try:
        image_aug, bbs_aug = seq(image=orgimage, bounding_boxes=bbs)
        return image_aug, bbs_aug
    except:
        print("caught")
        return "caught", "caught"