def simple_operations(using_gpu): """ Returns a vector of callable classes. YOu can after instance an augmenter class with this vector as a parameter, and you will have a callable augmenter ! Returns A vector of callable augmeters """ if using_gpu: import imgauggpu as iag else: import imgaug.augmenters as iag st = lambda aug: iag.Sometimes(aug, 0.4) oc = lambda aug: iag.Sometimes(aug, 0.3) rl = lambda aug: iag.Sometimes(aug, 0.09) return [ rl(iag.ContrastNormalization((0.5, 1.5), per_channel=0.5)), rl(iag.GaussianBlur((0, 1.5))), rl(iag.Grayscale((0.0, 1))), oc(iag.Add((-20, 20))), oc(iag.Multiply((0.10, 1.5), per_channel=0.2)), # Arithmetic oc(iag.Dropout((0, 0.1), per_channel=0.5)), oc( iag.CoarseDropout((0, 0.1), size_percent=(0.08, 0.2), per_channel=0.5, size_px=(16, 16))) ] # Dropout
def simple_operations(using_gpu): """ Returns a vector of callable classes. YOu can after instance an augmenter class with this vector as a parameter, and you will have a callable augmenter ! Returns A vector of callable augmeters """ if using_gpu: import imgauggpu as iag else: import imgaug.augmenters as iag return [iag.Add((-5, 5)), iag.Multiply((0.9, 1.1)), # Arithmetic iag.Dropout(0.2),# iag.CoarseDropout((0, 0.2), size_px=(16, 16))] # Dropout iag.AdditiveGaussianNoise(0.10*255)] # Gaussian noise
def _process_sensors(self, sensors): iteration = 0 for name, size in g_conf.SENSORS.items(): sensor = sensors[name].data[ g_conf.IMAGE_CUT[0]:g_conf.IMAGE_CUT[1], ...] if sensors[name].type == 'SemanticSegmentation': # TODO: the camera name has to be sincronized with what is in the experiment... sensor = join_classes(sensor) sensor = sensor[:, :, np.newaxis] image_transform = transforms.Compose([ transforms.ToTensor(), transforms.Resize((size[1], size[2]), interpolation=Image.NEAREST), iag.ToGPU(), iag.Multiply((1 / (number_of_seg_classes - 1))) ]) else: image_transform = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((size[1], size[2])), transforms.ToTensor(), transforms.Normalize((0, 0, 0), (255, 255, 255)), iag.ToGPU() ]) sensor = np.swapaxes(sensor, 0, 1) sensor = np.flip(sensor.transpose((2, 0, 1)), axis=0) if iteration == 0: image_input = image_transform(sensor) else: image_input = torch.cat((image_input, sensor), 0) iteration += 1 image_input = image_input.unsqueeze(0) return image_input
def execute(gpu, exp_batch, exp_alias): from time import gmtime, strftime manualSeed = g_conf.SEED torch.cuda.manual_seed(manualSeed) os.environ["CUDA_VISIBLE_DEVICES"] = gpu merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": return full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) real_dataset = g_conf.TARGET_DOMAIN_PATH #main data loader dataset = CoILDataset(full_dataset, real_dataset, transform=transforms.Compose([transforms.ToTensor() ])) sampler = BatchSequenceSampler( splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=6, pin_memory=True) st = lambda aug: iag.Sometimes(aug, 0.4) oc = lambda aug: iag.Sometimes(aug, 0.3) rl = lambda aug: iag.Sometimes(aug, 0.09) augmenter = iag.Augmenter([iag.ToGPU()] + [ rl(iag.GaussianBlur( (0, 1.5))), # blur images with a sigma between 0 and 1.5 rl(iag.AdditiveGaussianNoise(loc=0, scale=( 0.0, 0.05), per_channel=0.5)), # add gaussian noise to images oc(iag.Dropout((0.0, 0.10), per_channel=0.5) ), # randomly remove up to X% of the pixels oc( iag.CoarseDropout( (0.0, 0.10), size_percent=(0.08, 0.2), per_channel=0.5)), # randomly remove up to X% of the pixels oc(iag.Add((-40, 40), per_channel=0.5) ), # change brightness of images (by -X to Y of original value) st(iag.Multiply((0.10, 2), per_channel=0.2) ), # change brightness of images (X-Y% of original value) rl(iag.ContrastNormalization( (0.5, 1.5), per_channel=0.5)), # improve or worsen the contrast rl(iag.Grayscale((0.0, 1))), # put grayscale ] # do all of the above in random order ) l1weight = g_conf.L1_WEIGHT task_adv_weight = g_conf.TASK_ADV_WEIGHT image_size = tuple([88, 200]) print(strftime("%Y-%m-%d %H:%M:%S", gmtime())) print("GPU", gpu) print("Configurations of ", exp_alias) print("GANMODEL_NAME", g_conf.GANMODEL_NAME) print("LOSS_FUNCTION", g_conf.LOSS_FUNCTION) print("LR_G, LR_D, LR", g_conf.LR_G, g_conf.LR_D, g_conf.LEARNING_RATE) print("SKIP", g_conf.SKIP) print("TYPE", g_conf.TYPE) print("L1 WEIGHT", g_conf.L1_WEIGHT) print("TASK ADV WEIGHT", g_conf.TASK_ADV_WEIGHT) print("LAB SMOOTH", g_conf.LABSMOOTH) if g_conf.GANMODEL_NAME == 'LSDcontrol': netD = ganmodels._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels._netG(loss=g_conf.LOSS_FUNCTION, skip=g_conf.SKIP).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch': netD = ganmodels_nopatch._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch._netG(loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch_smaller': netD = ganmodels_nopatch_smaller._netD( loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch_smaller._netG( loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_task': netD_task = ganmodels_task._netD_task(loss=g_conf.LOSS_FUNCTION).cuda() netD_img = ganmodels_task._netD_img(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_task._netG(loss=g_conf.LOSS_FUNCTION).cuda() netF = ganmodels_task._netF(loss=g_conf.LOSS_FUNCTION).cuda() if g_conf.PRETRAINED == 'RECON': netF_statedict = torch.load('netF_GAN_Pretrained.wts') netF.load_state_dict(netF_statedict) elif g_conf.PRETRAINED == 'IL': print("Loading IL") model_IL = torch.load('best_loss_20-06_EpicClearWeather.pth') model_IL_state_dict = model_IL['state_dict'] netF_state_dict = netF.state_dict() print(len(netF_state_dict.keys()), len(model_IL_state_dict.keys())) for i, keys in enumerate( zip(netF_state_dict.keys(), model_IL_state_dict.keys())): newkey, oldkey = keys # if newkey.split('.')[0] == "branch" and oldkey.split('.')[0] == "branches": # print("No Transfer of ", newkey, " to ", oldkey) # else: print("Transferring ", newkey, " to ", oldkey) netF_state_dict[newkey] = model_IL_state_dict[oldkey] netF.load_state_dict(netF_state_dict) print("IL Model Loaded!") elif g_conf.GANMODEL_NAME == 'LSDcontrol_task_2d': netD_bin = ganmodels_task._netD_task().cuda() netD_img = ganmodels_task._netD_img().cuda() netG = ganmodels_task._netG().cuda() netF = ganmodels_task._netF().cuda() if g_conf.PRETRAINED == 'IL': print("Loading IL") model_IL = torch.load(g_conf.IL_AGENT_PATH) model_IL_state_dict = model_IL['state_dict'] netF_state_dict = netF.state_dict() print(len(netF_state_dict.keys()), len(model_IL_state_dict.keys())) for i, keys in enumerate( zip(netF_state_dict.keys(), model_IL_state_dict.keys())): newkey, oldkey = keys print("Transferring ", newkey, " to ", oldkey) netF_state_dict[newkey] = model_IL_state_dict[oldkey] netF.load_state_dict(netF_state_dict) print("IL Model Loaded!") #### if g_conf.IF_AUG: print("Loading Aug Decoder") model_dec = torch.load(g_conf.DECODER_RECON_PATH) else: print("Loading Decoder") model_dec = torch.load(g_conf.DECODER_RECON_PATH) model_dec_state_dict = model_dec['stateG_dict'] netG_state_dict = netG.state_dict() print(len(netG_state_dict.keys()), len(model_dec_state_dict.keys())) for i, keys in enumerate( zip(netG_state_dict.keys(), model_dec_state_dict.keys())): newkey, oldkey = keys print("Transferring ", newkey, " to ", oldkey) netG_state_dict[newkey] = model_dec_state_dict[oldkey] netG.load_state_dict(netG_state_dict) print("Decoder Model Loaded!") init_weights(netD_bin) init_weights(netD_img) # init_weights(netG) print(netD_bin) print(netF) optimD_bin = torch.optim.Adam(netD_bin.parameters(), lr=g_conf.LR_D, betas=(0.5, 0.999)) optimD_img = torch.optim.Adam(netD_img.parameters(), lr=g_conf.LR_D, betas=(0.5, 0.999)) optimG = torch.optim.Adam(netG.parameters(), lr=g_conf.LR_D, betas=(0.5, 0.999)) if g_conf.TYPE == 'task': optimF = torch.optim.Adam(netF.parameters(), lr=g_conf.LEARNING_RATE) Task_Loss = TaskLoss() if g_conf.GANMODEL_NAME == 'LSDcontrol_task_2d': print("Using cross entropy!") Loss = torch.nn.CrossEntropyLoss().cuda() L1_loss = torch.nn.L1Loss().cuda() iteration = 0 best_loss_iter_F = 0 best_loss_iter_G = 0 best_lossF = 1000000.0 best_lossD = 1000000.0 best_lossG = 1000000.0 accumulated_time = 0 gen_iterations = 0 n_critic = g_conf.N_CRITIC lossF = Variable(torch.Tensor([100.0])) lossG_adv = Variable(torch.Tensor([100.0])) lossG_smooth = Variable(torch.Tensor([100.0])) lossG = Variable(torch.Tensor([100.0])) netD_bin.train() netD_img.train() netG.train() netF.train() capture_time = time.time() if not os.path.exists('./imgs_' + exp_alias): os.mkdir('./imgs_' + exp_alias) #TODO check how C network is optimized in LSDSEG #TODO put family for losses #IMPORTANT WHILE RUNNING THIS, CONV.PY MUST HAVE BATCHNORMS fake_img_pool_src = ImagePool(50) fake_img_pool_tgt = ImagePool(50) for data in data_loader: set_requires_grad(netD_bin, True) set_requires_grad(netD_img, True) set_requires_grad(netG, True) set_requires_grad(netF, True) # print("ITERATION:", iteration) val = 0.0 input_data, float_data, tgt_imgs = data if g_conf.IF_AUG: inputs = augmenter(0, input_data['rgb']) tgt_imgs = augmenter(0, tgt_imgs) else: inputs = input_data['rgb'].cuda() tgt_imgs = tgt_imgs.cuda() inputs = inputs.squeeze(1) inputs = inputs - val #subtracted by 0.5 tgt_imgs = tgt_imgs - val #subtracted by 0.5 controls = float_data[:, dataset.controls_position(), :] src_embed_inputs, src_branches = netF( inputs, dataset.extract_inputs(float_data).cuda()) tgt_embed_inputs = netF(tgt_imgs, None) src_img_fake = netG(src_embed_inputs) tgt_img_fake = netG(tgt_embed_inputs) if iteration % 100 == 0: imgs_to_save = torch.cat( (inputs[:1] + val, src_img_fake[:1] + val, tgt_imgs[:1] + val, tgt_img_fake[:1] + val), 0).cpu().data coil_logger.add_image("Images", imgs_to_save, iteration) imgs_to_save = imgs_to_save.clamp(0.0, 1.0) vutils.save_image(imgs_to_save, './imgs_' + exp_alias + '/' + str(iteration) + '_real_and_fake.png', normalize=False) ##--------------------Discriminator part!!!!!!!!!!-------------------## set_requires_grad(netD_bin, True) set_requires_grad(netD_img, False) set_requires_grad(netG, False) set_requires_grad(netF, False) optimD_bin.zero_grad() outputsD_real_src_bin = netD_bin(src_embed_inputs) outputsD_real_tgt_bin = netD_bin(tgt_embed_inputs) gradient_penalty = calc_gradient_penalty(netD_bin, src_embed_inputs, tgt_embed_inputs) lossD_bin = torch.mean(outputsD_real_tgt_bin - outputsD_real_src_bin) + gradient_penalty lossD_bin.backward(retain_graph=True) optimD_bin.step() coil_logger.add_scalar('Total LossD Bin', lossD_bin.data, iteration) #### Discriminator img update #### set_requires_grad(netD_bin, False) set_requires_grad(netD_img, True) set_requires_grad(netG, False) set_requires_grad(netF, False) optimD_img.zero_grad() outputsD_fake_src_img = netD_img(src_img_fake.detach()) outputsD_fake_tgt_img = netD_img(tgt_img_fake.detach()) outputsD_real_src_img = netD_img(inputs) outputsD_real_tgt_img = netD_img(tgt_imgs) gradient_penalty_src = calc_gradient_penalty(netD_img, inputs, src_img_fake) lossD_img_src = torch.mean( outputsD_fake_src_img - outputsD_real_src_img) + gradient_penalty_src gradient_penalty_tgt = calc_gradient_penalty(netD_img, tgt_imgs, tgt_img_fake) lossD_img_tgt = torch.mean( outputsD_fake_tgt_img - outputsD_real_tgt_img) + gradient_penalty_tgt lossD_img = (lossD_img_src + lossD_img_tgt) * 0.5 lossD_img.backward(retain_graph=True) optimD_img.step() coil_logger.add_scalar('Total LossD img', lossD_img.data, iteration) if ((iteration + 1) % n_critic) == 0: #####Generator updates####### set_requires_grad(netD_bin, False) set_requires_grad(netD_img, False) set_requires_grad(netG, True) set_requires_grad(netF, False) outputsD_fake_src_img = netD_img(src_img_fake) outputsD_real_tgt_img = netD_img(tgt_imgs) outputsD_fake_tgt_img = netD_img(tgt_img_fake) lossG_src_smooth = L1_loss(src_img_fake, inputs) lossG_tgt_smooth = L1_loss(tgt_img_fake, tgt_imgs) lossG_smooth = (lossG_src_smooth + lossG_tgt_smooth) * 0.5 lossG_adv = 0.5 * (-1.0 * outputsD_fake_src_img.mean() - 1.0 * outputsD_fake_tgt_img.mean()) lossG = (lossG_smooth + 0.0 * lossG_adv) lossG.backward(retain_graph=True) optimG.step() coil_logger.add_scalar('Total LossG', lossG.data, iteration) #####Task network updates########################## set_requires_grad(netD_bin, False) set_requires_grad(netD_img, False) set_requires_grad(netG, False) set_requires_grad(netF, True) optimF.zero_grad() src_embed_inputs, src_branches = netF( inputs, dataset.extract_inputs(float_data).cuda()) tgt_embed_inputs = netF(tgt_imgs, None) src_img_fake = netG(src_embed_inputs) tgt_img_fake = netG(tgt_embed_inputs) outputsD_fake_src_img = netD_img(src_img_fake) outputsD_real_tgt_img = netD_img(tgt_imgs) lossF_task = Task_Loss.MSELoss( src_branches, dataset.extract_targets(float_data).cuda(), controls.cuda(), dataset.extract_inputs(float_data).cuda()) lossF_adv_bin = netD_bin(src_embed_inputs).mean() - netD_bin( tgt_embed_inputs).mean() lossF_adv_img = outputsD_fake_src_img.mean( ) - outputsD_real_tgt_img.mean() lossF_adv = 0.5 * (lossF_adv_bin + 0.1 * lossF_adv_img) lossF = (lossF_task + task_adv_weight * lossF_adv) coil_logger.add_scalar('Total Task Loss', lossF.data, iteration) coil_logger.add_scalar('Adv Task Loss', lossF_adv.data, iteration) coil_logger.add_scalar('Only Task Loss', lossF_task.data, iteration) lossF.backward(retain_graph=True) optimF.step() if lossF.data < best_lossF: best_lossF = lossF.data.tolist() best_loss_iter_F = iteration #optimization for one iter done! position = random.randint(0, len(float_data) - 1) accumulated_time += time.time() - capture_time capture_time = time.time() if is_ready_to_save(iteration): state = { 'iteration': iteration, 'stateD_bin_dict': netD_bin.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'total_time': accumulated_time, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) if iteration == best_loss_iter_F and iteration > 10000: state = { 'iteration': iteration, 'stateD_bin_dict': netD_bin.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossF': best_lossF, 'total_time': accumulated_time, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'best_modelF' + '.pth')) iteration += 1
if __name__ == '__main__': #Load an image rat_image = Image.open('quokka.jpg') # ADDING operations add_cpu = iag.AugmenterCPU([ia.augmenters.Add((-20, 20))]) add_gpu = iag.Augmenter([iag.Add((-20, 20))]) plot_images(rat_image, add_cpu, add_gpu) # MULTIPLYING operation. # Plot comparisons # Show a cool example the sometimes usage. sometimes_multiply = iag.Augmenter(iag.Sometimes(iag.Multiply(2.0))) #for i in 10_rats: # sometimes_multiply(rat_image) # plot_the_rat images print (" >>>>>>> RUN THE SPEED TEST TO CHECK THE ADVANTAGES <<<<<<<<<<")
def execute(gpu, exp_batch, exp_alias): from time import gmtime, strftime manualSeed = g_conf.SEED torch.cuda.manual_seed(manualSeed) os.environ["CUDA_VISIBLE_DEVICES"] = gpu merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": return full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) real_dataset = g_conf.TARGET_DOMAIN_PATH # real_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], "FinalRealWorldDataset") #main data loader dataset = CoILDataset(full_dataset, transform=transforms.Compose([transforms.ToTensor() ])) sampler = BatchSequenceSampler( splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=6, pin_memory=True) real_dl = real_dataloader.RealDataset(real_dataset, g_conf.BATCH_SIZE) st = lambda aug: iag.Sometimes(aug, 0.4) oc = lambda aug: iag.Sometimes(aug, 0.3) rl = lambda aug: iag.Sometimes(aug, 0.09) augmenter = iag.Augmenter([iag.ToGPU()] + [ rl(iag.GaussianBlur( (0, 1.5))), # blur images with a sigma between 0 and 1.5 rl(iag.AdditiveGaussianNoise(loc=0, scale=( 0.0, 0.05), per_channel=0.5)), # add gaussian noise to images oc(iag.Dropout((0.0, 0.10), per_channel=0.5) ), # randomly remove up to X% of the pixels oc( iag.CoarseDropout( (0.0, 0.10), size_percent=(0.08, 0.2), per_channel=0.5)), # randomly remove up to X% of the pixels oc(iag.Add((-40, 40), per_channel=0.5) ), # change brightness of images (by -X to Y of original value) st(iag.Multiply((0.10, 2), per_channel=0.2) ), # change brightness of images (X-Y% of original value) rl(iag.ContrastNormalization( (0.5, 1.5), per_channel=0.5)), # improve or worsen the contrast rl(iag.Grayscale((0.0, 1))), # put grayscale ] # do all of the above in random order ) l1weight = g_conf.L1_WEIGHT task_adv_weight = g_conf.TASK_ADV_WEIGHT image_size = tuple([88, 200]) print(strftime("%Y-%m-%d %H:%M:%S", gmtime())) print("Configurations of ", exp_alias) print("GANMODEL_NAME", g_conf.GANMODEL_NAME) print("LOSS_FUNCTION", g_conf.LOSS_FUNCTION) print("LR_G, LR_D, LR", g_conf.LR_G, g_conf.LR_D, g_conf.LEARNING_RATE) print("SKIP", g_conf.SKIP) print("TYPE", g_conf.TYPE) print("L1 WEIGHT", g_conf.L1_WEIGHT) print("TASK ADV WEIGHT", g_conf.TASK_ADV_WEIGHT) print("LAB SMOOTH", g_conf.LABSMOOTH) if g_conf.GANMODEL_NAME == 'LSDcontrol': netD = ganmodels._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels._netG(loss=g_conf.LOSS_FUNCTION, skip=g_conf.SKIP).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch': netD = ganmodels_nopatch._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch._netG(loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch_smaller': netD = ganmodels_nopatch_smaller._netD( loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch_smaller._netG( loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_task': netD = ganmodels_task._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_task._netG(loss=g_conf.LOSS_FUNCTION).cuda() netF = ganmodels_task._netF(loss=g_conf.LOSS_FUNCTION).cuda() if g_conf.PRETRAINED == 'RECON': netF_statedict = torch.load('netF_GAN_Pretrained.wts') netF.load_state_dict(netF_statedict) elif g_conf.PRETRAINED == 'IL': print("Loading IL") model_IL = torch.load('best_loss_20-06_EpicClearWeather.pth') model_IL_state_dict = model_IL['state_dict'] netF_state_dict = netF.state_dict() print(len(netF_state_dict.keys()), len(model_IL_state_dict.keys())) for i, keys in enumerate( zip(netF_state_dict.keys(), model_IL_state_dict.keys())): newkey, oldkey = keys # if newkey.split('.')[0] == "branch" and oldkey.split('.')[0] == "branches": # print("No Transfer of ", newkey, " to ", oldkey) # else: print("Transferring ", newkey, " to ", oldkey) netF_state_dict[newkey] = model_IL_state_dict[oldkey] netF.load_state_dict(netF_state_dict) print("IL Model Loaded!") elif g_conf.GANMODEL_NAME == 'LSDcontrol_task_2d': netD = ganmodels_taskAC_shared._netD().cuda() netG = ganmodels_taskAC_shared._netG().cuda() netF = ganmodels_taskAC_shared._netF().cuda() if g_conf.PRETRAINED == 'IL': print("Loading IL") model_IL = torch.load(g_conf.IL_AGENT_PATH) model_IL_state_dict = model_IL['state_dict'] netF_state_dict = netF.state_dict() print(len(netF_state_dict.keys()), len(model_IL_state_dict.keys())) for i, keys in enumerate( zip(netF_state_dict.keys(), model_IL_state_dict.keys())): newkey, oldkey = keys print("Transferring ", newkey, " to ", oldkey) netF_state_dict[newkey] = model_IL_state_dict[oldkey] netF.load_state_dict(netF_state_dict) print("IL Model Loaded!") ##### if g_conf.IF_AUG: print("Loading Aug Decoder") model_dec = torch.load(g_conf.DECODER_RECON_PATH) else: print("Loading Decoder") model_dec = torch.load(g_conf.DECODER_RECON_PATH) model_dec_state_dict = model_dec['stateG_dict'] netG_state_dict = netG.state_dict() print(len(netG_state_dict.keys()), len(model_dec_state_dict.keys())) for i, keys in enumerate( zip(netG_state_dict.keys(), model_dec_state_dict.keys())): newkey, oldkey = keys print("Transferring ", newkey, " to ", oldkey) netG_state_dict[newkey] = model_dec_state_dict[oldkey] netG.load_state_dict(netG_state_dict) print("Decoder Model Loaded!") init_weights(netD) print(netD) print(netF) print(netG) optimD = torch.optim.Adam(netD.parameters(), lr=g_conf.LR_D, betas=(0.5, 0.999)) optimG = torch.optim.Adam(netG.parameters(), lr=g_conf.LR_G, betas=(0.5, 0.999)) if g_conf.TYPE == 'task': optimF = torch.optim.Adam(netF.parameters(), lr=g_conf.LEARNING_RATE) Task_Loss = TaskLoss() if g_conf.GANMODEL_NAME == 'LSDcontrol_task_2d': print("Using cross entropy!") Loss = torch.nn.CrossEntropyLoss().cuda() L1_loss = torch.nn.L1Loss().cuda() iteration = 0 best_loss_iter_F = 0 best_loss_iter_G = 0 best_lossF = 1000000.0 best_lossD = 1000000.0 best_lossG = 1000000.0 accumulated_time = 0 n_critic = g_conf.N_CRITIC lossF = Variable(torch.Tensor([100.0])) lossG_adv = Variable(torch.Tensor([100.0])) lossG_smooth = Variable(torch.Tensor([100.0])) lossG = Variable(torch.Tensor([100.0])) netG.train() netD.train() netF.train() capture_time = time.time() if not os.path.exists('./imgs_' + exp_alias): os.mkdir('./imgs_' + exp_alias) fake_img_pool_src = ImagePool(50) fake_img_pool_tgt = ImagePool(50) for data in data_loader: set_requires_grad(netD, True) set_requires_grad(netF, True) set_requires_grad(netG, True) input_data, float_data = data tgt_imgs = real_dl.get_imgs() if g_conf.IF_AUG: inputs = augmenter(0, input_data['rgb']) else: inputs = input_data['rgb'].cuda() tgt_imgs = tgt_imgs.cuda() inputs = inputs.squeeze(1) inputs = inputs tgt_imgs = tgt_imgs controls = float_data[:, dataset.controls_position(), :] camera_angle = float_data[:, 26, :] camera_angle = camera_angle.cuda() steer = float_data[:, 0, :] steer = steer.cuda() speed = float_data[:, 10, :] speed = speed.cuda() time_use = 1.0 car_length = 3.0 extra_factor = 2.5 threshold = 1.0 pos = camera_angle > 0.0 pos = pos.type(torch.FloatTensor) neg = camera_angle <= 0.0 neg = neg.type(torch.FloatTensor) pos = pos.cuda() neg = neg.cuda() rad_camera_angle = math.pi * (torch.abs(camera_angle)) / 180.0 val = extra_factor * (torch.atan((rad_camera_angle * car_length) / (time_use * speed + 0.05))) / 3.1415 steer -= pos * torch.min(val, torch.Tensor([0.6]).cuda()) steer += neg * torch.min(val, torch.Tensor([0.6]).cuda()) steer = steer.cpu() float_data[:, 0, :] = steer float_data[:, 0, :][float_data[:, 0, :] > 1.0] = 1.0 float_data[:, 0, :][float_data[:, 0, :] < -1.0] = -1.0 src_embed_inputs, src_branches = netF( inputs, dataset.extract_inputs(float_data).cuda()) tgt_embed_inputs = netF(tgt_imgs, None) src_fake_inputs = netG(src_embed_inputs.detach()) tgt_fake_inputs = netG(tgt_embed_inputs.detach()) if iteration % 100 == 0: imgs_to_save = torch.cat((inputs[:1], src_fake_inputs[:1], tgt_imgs[:1], tgt_fake_inputs[:1]), 0).cpu().data coil_logger.add_image("Images", imgs_to_save, iteration) imgs_to_save = imgs_to_save.clamp(0.0, 1.0) vutils.save_image(imgs_to_save, './imgs_' + exp_alias + '/' + str(iteration) + '_real_and_fake.png', normalize=False) ##--------------------Discriminator part!!!!!!!!!!-------------------## ##source fake if g_conf.IF_POOL: src_fake_inputs_forD = fake_img_pool_src.query(src_fake_inputs) tgt_fake_inputs_forD = fake_img_pool_tgt.query(tgt_fake_inputs) else: src_fake_inputs_forD = src_fake_inputs tgt_fake_inputs_forD = tgt_fake_inputs set_requires_grad(netD, True) set_requires_grad(netF, False) set_requires_grad(netG, False) optimD.zero_grad() outputsD_fake_src_bin, __ = netD(src_fake_inputs_forD.detach()) outputsD_fake_tgt_bin, __ = netD(tgt_fake_inputs_forD.detach()) outputsD_real_src_bin, __ = netD(inputs) outputsD_real_tgt_bin, __ = netD(tgt_imgs) gradient_penalty_src = calc_gradient_penalty(netD, inputs, src_fake_inputs_forD, "recon") lossD_bin_src = torch.mean( outputsD_fake_src_bin - outputsD_real_src_bin) + gradient_penalty_src gradient_penalty_tgt = calc_gradient_penalty(netD, tgt_imgs, tgt_fake_inputs_forD, "recon") lossD_bin_tgt = torch.mean( outputsD_fake_tgt_bin - outputsD_real_tgt_bin) + gradient_penalty_tgt lossD = (lossD_bin_src + lossD_bin_tgt) * 0.5 lossD.backward(retain_graph=True) optimD.step() coil_logger.add_scalar('Total LossD Bin', lossD.data, iteration) coil_logger.add_scalar('Src LossD Bin', lossD_bin_src.data, iteration) coil_logger.add_scalar('Tgt LossD Bin', lossD_bin_tgt.data, iteration) ##--------------------Generator part!!!!!!!!!!-----------------------## set_requires_grad(netD, False) set_requires_grad(netF, False) set_requires_grad(netG, True) optimG.zero_grad() #fake outputs for bin outputsD_bin_src_fake_forG, __ = netD(src_fake_inputs) outputsD_bin_tgt_fake_forG, __ = netD(tgt_fake_inputs) #Generator updates if ((iteration + 1) % n_critic) == 0: #for netD_bin optimG.zero_grad() outputsD_bin_fake_forG = netD(tgt_imgs) #Generator updates lossG_src_smooth = L1_loss( src_fake_inputs, inputs) # L1 loss with real domain image lossG_tgt_smooth = L1_loss( tgt_fake_inputs, tgt_imgs) # L1 loss with real domain image lossG_src_adv_bin = -1.0 * torch.mean(outputsD_bin_src_fake_forG) lossG_tgt_adv_bin = -1.0 * torch.mean(outputsD_bin_tgt_fake_forG) lossG_adv_bin = 0.5 * (lossG_src_adv_bin + lossG_tgt_adv_bin) lossG_Adv = lossG_adv_bin lossG_L1 = 0.5 * (lossG_src_smooth + lossG_tgt_smooth) lossG = (lossG_Adv + l1weight * lossG_L1) / (1.0 + l1weight) lossG.backward(retain_graph=True) optimG.step() coil_logger.add_scalar('Total LossG', lossG.data, iteration) coil_logger.add_scalar('LossG Adv', lossG_Adv.data, iteration) coil_logger.add_scalar('Adv Bin LossG', lossG_adv_bin.data, iteration) coil_logger.add_scalar('Smooth LossG', lossG_L1.data, iteration) #####Task network updates########################## set_requires_grad(netD, False) set_requires_grad(netF, True) set_requires_grad(netG, False) optimF.zero_grad() lossF_task = Task_Loss.MSELoss( src_branches, dataset.extract_targets(float_data).cuda(), controls.cuda(), dataset.extract_inputs(float_data).cuda()) __, outputsD_fake_src_da = netD(src_fake_inputs_forD.detach()) __, outputsD_real_tgt_da = netD(tgt_imgs) __, outputsD_fake_tgt_da = netD(tgt_fake_inputs_forD.detach()) __, outputsD_real_src_da = netD(inputs) gradient_penalty_da_1 = calc_gradient_penalty( netD, tgt_imgs, src_fake_inputs_forD, "da") lossF_da_1 = torch.mean(outputsD_fake_src_da - outputsD_real_tgt_da ) + gradient_penalty_da_1 gradient_penalty_da_2 = calc_gradient_penalty( netD, inputs, tgt_fake_inputs_forD, "da") lossF_da_2 = torch.mean(outputsD_fake_tgt_da - outputsD_real_src_da ) + gradient_penalty_da_2 lossF_da = 0.5 * (lossF_da_1 + lossF_da_2) lossF = (lossF_task + task_adv_weight * lossF_da) / (1.0 + task_adv_weight) coil_logger.add_scalar('Total Task Loss', lossF.data, iteration) coil_logger.add_scalar('Adv Task Loss', lossF_da.data, iteration) coil_logger.add_scalar('Only Task Loss', lossF_task.data, iteration) lossF.backward(retain_graph=True) optimF.step() if lossG.data < best_lossG: best_lossG = lossG.data.tolist() best_loss_iter_G = iteration if lossF.data < best_lossF: best_lossF = lossF.data.tolist() best_loss_iter_F = iteration #optimization for one iter done! position = random.randint(0, len(float_data) - 1) if lossD.data < best_lossD: best_lossD = lossD.data.tolist() accumulated_time += time.time() - capture_time capture_time = time.time() if is_ready_to_save(iteration): state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter_G': best_loss_iter_G, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Datasets/rohitgan/_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) if iteration == best_loss_iter_F and iteration > 10000: state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'best_lossF': best_lossF, 'total_time': accumulated_time, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Datasets/rohitgan/_logs', exp_batch, exp_alias, 'best_modelF' + '.pth')) iteration += 1
def execute(gpu, exp_batch, exp_alias): os.environ["CUDA_VISIBLE_DEVICES"] = gpu merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": return full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) dataset = CoILDataset(full_dataset, transform=transforms.Compose([transforms.ToTensor() ])) sampler = BatchSequenceSampler( splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=6, pin_memory=True) st = lambda aug: iag.Sometimes(aug, 0.4) oc = lambda aug: iag.Sometimes(aug, 0.3) rl = lambda aug: iag.Sometimes(aug, 0.09) augmenter = iag.Augmenter([iag.ToGPU()] + [ rl(iag.GaussianBlur( (0, 1.5))), # blur images with a sigma between 0 and 1.5 rl(iag.AdditiveGaussianNoise(loc=0, scale=( 0.0, 0.05), per_channel=0.5)), # add gaussian noise to images oc(iag.Dropout((0.0, 0.10), per_channel=0.5) ), # randomly remove up to X% of the pixels oc( iag.CoarseDropout( (0.0, 0.10), size_percent=(0.08, 0.2), per_channel=0.5)), # randomly remove up to X% of the pixels oc(iag.Add((-40, 40), per_channel=0.5) ), # change brightness of images (by -X to Y of original value) st(iag.Multiply((0.10, 2), per_channel=0.2) ), # change brightness of images (X-Y% of original value) rl(iag.ContrastNormalization( (0.5, 1.5), per_channel=0.5)), # improve or worsen the contrast rl(iag.Grayscale((0.0, 1))), # put grayscale ] # do all of the above in random order ) l1weight = g_conf.L1_WEIGHT image_size = tuple([88, 200]) if g_conf.TRAIN_TYPE == 'WGAN': clamp_value = g_conf.CLAMP n_critic = g_conf.N_CRITIC print("Configurations of ", exp_alias) print("GANMODEL_NAME", g_conf.GANMODEL_NAME) print("LOSS_FUNCTION", g_conf.LOSS_FUNCTION) print("LR_G, LR_D, LR", g_conf.LR_G, g_conf.LR_D, g_conf.LEARNING_RATE) print("SKIP", g_conf.SKIP) print("TYPE", g_conf.TYPE) print("L1 WEIGHT", g_conf.L1_WEIGHT) print("LAB SMOOTH", g_conf.LABSMOOTH) if g_conf.GANMODEL_NAME == 'LSDcontrol': netD = ganmodels._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels._netG(loss=g_conf.LOSS_FUNCTION, skip=g_conf.SKIP).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch': netD = ganmodels_nopatch._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch._netG(loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch_smaller': netD = ganmodels_nopatch_smaller._netD( loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch_smaller._netG( loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_task': netD = ganmodels_task._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_task._netG(loss=g_conf.LOSS_FUNCTION).cuda() netF = ganmodels_task._netF(loss=g_conf.LOSS_FUNCTION).cuda() if g_conf.PRETRAINED == 'RECON': netF_statedict = torch.load('netF_GAN_Pretrained.wts') netF.load_state_dict(netF_statedict) elif g_conf.PRETRAINED == 'IL': model_IL = torch.load('best_loss_20-06_EpicClearWeather.pth') model_IL_state_dict = model_IL['state_dict'] netF_state_dict = netF.state_dict() for i, keys in enumerate( zip(netF_state_dict.keys(), model_IL_state_dict.keys())): newkey, oldkey = keys if newkey.split('.')[0] == "branch" and oldkey.split( '.')[0] == "branches": print("No Transfer of ", newkey, " to ", oldkey) else: print("Transferring ", newkey, " to ", oldkey) netF_state_dict[newkey] = model_IL_state_dict[oldkey] netF.load_state_dict(netF_state_dict) init_weights(netD) init_weights(netG) #do init for netF also later but now it is in the model code itself print(netD) print(netF) print(netG) optimD = torch.optim.Adam(netD.parameters(), lr=g_conf.LR_D, betas=(0.5, 0.999)) optimG = torch.optim.Adam(list(netF.parameters()) + list(netG.parameters()), lr=g_conf.LR_G, betas=(0.5, 0.999)) if g_conf.TYPE == 'task': optimF = torch.optim.Adam(netF.parameters(), lr=g_conf.LEARNING_RATE) Task_Loss = TaskLoss() if g_conf.LOSS_FUNCTION == 'LSGAN': Loss = torch.nn.MSELoss().cuda() elif g_conf.LOSS_FUNCTION == 'NORMAL': Loss = torch.nn.BCEWithLogitsLoss().cuda() L1_loss = torch.nn.L1Loss().cuda() iteration = 0 best_loss_iter_F = 0 best_loss_iter_G = 0 best_lossF = 1000000.0 best_lossD = 1000000.0 best_lossG = 1000000.0 accumulated_time = 0 lossF = Variable(torch.Tensor([100.0])) lossG_adv = Variable(torch.Tensor([100.0])) lossG_smooth = Variable(torch.Tensor([100.0])) lossG = Variable(torch.Tensor([100.0])) netG.train() netD.train() netF.train() capture_time = time.time() if not os.path.exists('./imgs_' + exp_alias): os.mkdir('./imgs_' + exp_alias) #TODO put family for losses fake_img_pool = ImagePool(50) for data in data_loader: set_requires_grad(netD, True) set_requires_grad(netF, True) set_requires_grad(netG, True) # print("ITERATION:", iteration) val = 0.0 input_data, float_data = data inputs = augmenter(0, input_data['rgb']) inputs_in = inputs #TODO: make sure the F network does not get optimized by G optim controls = float_data[:, dataset.controls_position(), :] embed, branches = netF(inputs_in, dataset.extract_inputs(float_data).cuda()) print("Branch Outputs:::", branches[0][0]) embed_inputs = embed fake_inputs = netG(embed_inputs) fake_inputs_in = fake_inputs if iteration % 500 == 0: imgs_to_save = torch.cat( (inputs_in[:2] + val, fake_inputs_in[:2] + val), 0).cpu().data vutils.save_image(imgs_to_save, './imgs_' + exp_alias + '/' + str(iteration) + '_real_and_fake.png', normalize=True) coil_logger.add_image("Images", imgs_to_save, iteration) ##--------------------Discriminator part!!!!!!!!!!-------------------## set_requires_grad(netD, True) set_requires_grad(netF, False) set_requires_grad(netG, False) optimD.zero_grad() ##fake # fake_inputs_forD = fake_img_pool.query(fake_inputs) outputsD_fake_forD = netD(fake_inputs) labsize = outputsD_fake_forD.size() labels_fake = torch.zeros(labsize) #Fake labels label_fake_noise = torch.rand( labels_fake.size()) * 0.1 #Label smoothing if g_conf.LABSMOOTH == 1: labels_fake = labels_fake + label_fake_noise labels_fake = Variable(labels_fake).cuda() lossD_fake = torch.mean( outputsD_fake_forD) #Loss(outputsD_fake_forD, labels_fake) ##real outputsD_real = netD(inputs_in) labsize = outputsD_real.size() labels_real = torch.ones(labsize) #Real labels label_real_noise = torch.rand( labels_real.size()) * 0.1 #Label smoothing if g_conf.LABSMOOTH == 1: labels_real = labels_real - label_real_noise labels_real = Variable(labels_real).cuda() lossD_real = -1.0 * torch.mean( outputsD_real) #Loss(outputsD_real, labels_real) ### Gradient Penalty ### gradient_penalty = calc_gradient_penalty(netD, inputs, fake_inputs) # alpha = torch.rand((g_conf.BATCH_SIZE, 1, 1, 1)) # alpha = alpha.cuda() # # x_hat = alpha * inputs.data + (1 - alpha) * fake_inputs.data # x_hat.requires_grad = True # # pred_hat = netD(x_hat) # gradients = grad(outputs=pred_hat, inputs=x_hat, grad_outputs=torch.ones(pred_hat.size()).cuda(), # create_graph=True, retain_graph=True, only_inputs=True)[0] # # gradient_penalty = 10 * ((gradients.view(gradients.size()[0], -1).norm(2, 1) - 1) ** 2).mean() #Discriminator updates lossD = torch.mean( outputsD_fake_forD - outputsD_real) + gradient_penalty #(lossD_real + lossD_fake) * 0.5 # lossD /= len(inputs) print("Loss d", lossD) lossD.backward(retain_graph=True) optimD.step() # if g_conf.TRAIN_TYPE == 'WGAN': # for p in netD.parameters(): # p.data.clamp_(-clamp_value, clamp_value) coil_logger.add_scalar('Total LossD', lossD.data, iteration) coil_logger.add_scalar('Real LossD', lossD_real.data, iteration) coil_logger.add_scalar('Fake LossD', lossD_fake.data, iteration) ##--------------------Generator part!!!!!!!!!!-----------------------## set_requires_grad(netD, False) set_requires_grad(netF, True) set_requires_grad(netG, True) if ((iteration + 1) % n_critic) == 0: optimG.zero_grad() outputsD_fake_forG = netD(fake_inputs) #Generator updates lossG_adv = -1.0 * torch.mean( outputsD_fake_forG) #Loss(outputsD_fake_forG, labels_real) lossG_smooth = L1_loss(fake_inputs, inputs) lossG = (lossG_adv + l1weight * lossG_smooth) / (1.0 + l1weight) # lossG /= len(inputs) print(lossG) lossG.backward(retain_graph=True) optimG.step() #####Task network updates########################## set_requires_grad(netD, False) set_requires_grad(netF, True) set_requires_grad(netG, False) # optimF.zero_grad() # lossF = Variable(torch.Tensor()) # lossF = Task_Loss.MSELoss(branches, dataset.extract_targets(float_data).cuda(), # controls.cuda(), dataset.extract_inputs(float_data).cuda()) coil_logger.add_scalar('Task Loss', lossF.data, iteration) # lossF.backward() # optimF.step() coil_logger.add_scalar('Total LossG', lossG.data, iteration) coil_logger.add_scalar('Adv LossG', lossG_adv.data, iteration) coil_logger.add_scalar('Smooth LossG', lossG_smooth.data, iteration) #optimization for one iter done! position = random.randint(0, len(float_data) - 1) if lossD.data < best_lossD: best_lossD = lossD.data.tolist() # print (lossG.item(), best_lossG) if lossG.item() < best_lossG: best_lossG = lossG.item() best_loss_iter_G = iteration if lossF.item() < best_lossF: best_lossF = lossF.item() best_loss_iter_F = iteration accumulated_time += time.time() - capture_time capture_time = time.time() print("LossD", lossD.data.tolist(), "LossG", lossG.data.tolist(), "BestLossD", best_lossD, "BestLossG", best_lossG, "LossF", lossF, "BestLossF", best_lossF, "Iteration", iteration, "Best Loss Iteration G", best_loss_iter_G, "Best Loss Iteration F", best_loss_iter_F) coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'LossD': lossD.data.tolist(), 'LossG': lossG.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLossD': best_lossD, 'BestLossG': best_lossG, 'BestLossIterationG': best_loss_iter_G, 'BestLossF': best_lossF, 'BestLossIterationF': best_loss_iter_F, 'GroundTruth': dataset.extract_targets(float_data)[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist() }, iteration) if is_ready_to_save(iteration): state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter_G': best_loss_iter_G, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) if iteration == best_loss_iter_G and iteration > 10000: state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter_G': best_loss_iter_G } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'best_modelG' + '.pth')) if iteration == best_loss_iter_F and iteration > 10000: state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'best_lossF': best_lossF, 'total_time': accumulated_time, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'best_modelF' + '.pth')) iteration += 1
def execute(gpu, exp_batch, exp_alias): # We set the visible cuda devices try: os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": # TODO: print some cool summary or not ? return #Define the dataset. This structure is has the __get_item__ redefined in a way #that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) #augmenter_cpu = iag.AugmenterCPU(g_conf.AUGMENTATION_SUITE_CPU) dataset = CoILDataset(full_dataset, transform=transforms.Compose( [transforms.ToTensor()])) # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. sampler = BatchSequenceSampler( splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. # TODO: batch size an number of workers go to some configuration file data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=12, pin_memory=False) # By instanciating the augmenter we get a callable that augment images and transform them # into tensors. st = lambda aug: iag.Sometimes(aug, 0.4) oc = lambda aug: iag.Sometimes(aug, 0.3) rl = lambda aug: iag.Sometimes(aug, 0.09) augmenter = iag.Augmenter([iag.ToGPU()] + [ rl(iag.GaussianBlur( (0, 1.5))), # blur images with a sigma between 0 and 1.5 rl( iag.AdditiveGaussianNoise( loc=0, scale=(0.0, 0.05), per_channel=0.5)), # add gaussian noise to images oc(iag.Dropout((0.0, 0.10), per_channel=0.5) ), # randomly remove up to X% of the pixels oc( iag.CoarseDropout( (0.0, 0.10), size_percent=(0.08, 0.2), per_channel=0.5) ), # randomly remove up to X% of the pixels oc(iag.Add((-40, 40), per_channel=0.5) ), # change brightness of images (by -X to Y of original value) st(iag.Multiply((0.10, 2), per_channel=0.2) ), # change brightness of images (X-Y% of original value) rl(iag.ContrastNormalization(( 0.5, 1.5), per_channel=0.5)), # improve or worsen the contrast rl(iag.Grayscale((0.0, 1))), # put grayscale ] # do all of the above in random order ) # augmenter = iag.Augmenter(g_conf.AUGMENTATION_SUITE) # TODO: here there is clearly a posibility to make a cool "conditioning" system. model = CoILModel(g_conf.MODEL_NAME) model.cuda() print(model) criterion = Loss() # TODO: DATASET SIZE SEEMS WEIRD optimizer = optim.Adam(model.parameters(), lr=0.0002) checkpoint_file = get_latest_saved_checkpoint() if checkpoint_file != None: checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(get_latest_saved_checkpoint()))) iteration = checkpoint['iteration'] accumulated_time = checkpoint['total_time'] best_loss = checkpoint['best_loss'] best_loss_iter = checkpoint['best_loss_iter'] else: iteration = 0 best_loss = 10000.0 accumulated_time = 0 # We accumulate iteration time and keep the average speed best_loss_iter = 0 # TODO: The checkpoint will continue, so it should erase everything up to the iteration best_loss_save = 10000.0 best_loss_save_iter = 0 curr_loss_save = 0.0 print(dataset.meta_data) print(model) capture_time = time.time() model.train() for data in data_loader: input_data, float_data = data #TODO, ADD ITERATION SCHEDULE input_rgb_data = augmenter(0, input_data['rgb']) augment_for_controls = 1 adjustlr = 1 if augment_for_controls: #and self._config.targets_names[j] == "Steer": camera_angle = float_data[:, 26, :] camera_angle = camera_angle.cuda( ) #self._config.variable_names.index('Angle'),i] print("Camera angle", camera_angle[0]) steer = float_data[:, 0, :] # print("Original", steer[0]) steer = steer.cuda() speed = float_data[:, 10, :] speed = speed.cuda() # print (steer) time_use = 1.0 car_length = 3.0 extra_factor = 2.5 threshold = 1.0 pos = camera_angle > 0.0 pos = pos.type(torch.FloatTensor) neg = camera_angle <= 0.0 neg = neg.type(torch.FloatTensor) pos = pos.cuda() neg = neg.cuda() rad_camera_angle = math.pi * (torch.abs(camera_angle)) / 180.0 val = extra_factor * (torch.atan( (rad_camera_angle * car_length) / (time_use * speed + 0.05))) / 3.1415 # print(val) steer -= pos * torch.min(val, torch.tensor([0.6]).cuda()) steer += neg * torch.min(val, torch.tensor([0.6]).cuda()) print("val", val[0]) print("speed", speed[0]) steer = steer.cpu() float_data[:, 0, :] = steer float_data[:, 0, :][float_data[:, 0, :] > 1.0] = 1.0 float_data[:, 0, :][float_data[:, 0, :] < -1.0] = -1.0 #coil_logger.add_images(input_rgb_data) # get the control commands from float_data, size = [120,1] controls = float_data[:, dataset.controls_position(), :] # print(" CONTROLS ", controls.shape) # The output(branches) is a list of 5 branches results, each branch is with size [120,3] model.zero_grad() # print ( 'INPUTS', dataset.extract_inputs(float_data).shape ) branches = model(input_rgb_data, dataset.extract_inputs(float_data).cuda()) #print ("len ",len(branches)) #targets = torch.cat([steer_gt, gas_gt, brake_gt], 1) # print ("Extracted targets ", dataset.extract_targets(float_data).shape[0]) loss = criterion.MSELoss( branches, dataset.extract_targets(float_data).cuda(), controls.cuda(), dataset.extract_inputs(float_data).cuda()) # TODO: All these logging things could go out to clean up the main if loss.data < best_loss: best_loss = loss.data.tolist() best_loss_iter = iteration curr_loss_save += loss.data # Log a random position position = random.randint(0, len(float_data) - 1) output = model.extract_branch(torch.stack(branches[0:4]), controls) error = torch.abs(output - dataset.extract_targets(float_data).cuda()) # TODO: For now we are computing the error for just the correct branch, it could be multi- branch, coil_logger.add_scalar('Loss', loss.data, iteration) loss.backward() optimizer.step() accumulated_time += time.time() - capture_time capture_time = time.time() # TODO: Get only the float_data that are actually generating output # TODO: itearation is repeating , and that is dumb coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'Loss': loss.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLoss': best_loss, 'BestLossIteration': best_loss_iter, 'BestLossSave': best_loss_save, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets( float_data)[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist() }, iteration) # TODO: For now we are computing the error for just the correct branch, it could be multi-branch, # TODO: save also the optimizer state dictionary if is_ready_to_save(iteration): state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) print("before best save") if iteration % 5 == 0 and iteration > 4: curr_loss_save /= 5000.0 if curr_loss_save < best_loss_save: best_loss_save = curr_loss_save curr_loss_save = 0 state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss_save, 'total_time': accumulated_time, 'best_loss_iter': best_loss_save_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'best_loss_save' + '.pth')) print("after best save") if iteration == best_loss_iter: state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'best_loss' + '.pth')) iteration += 1 if adjustlr and iteration % 1000: adjust_learning_rate(optimizer, iteration) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})