def test_get_normalized_sequence_lengths(self):
        path = EnvironmentSettings.root_path / "test/tmp/datareports/"
        PathBuilder.build(path)

        rep1 = Repertoire.build_from_sequence_objects(sequence_objects=[
            ReceptorSequence(amino_acid_sequence="AAA", identifier="1"),
            ReceptorSequence(amino_acid_sequence="AAAA", identifier="2"),
            ReceptorSequence(amino_acid_sequence="AAAAA", identifier="3"),
            ReceptorSequence(amino_acid_sequence="AAA", identifier="4")
        ],
                                                      path=path,
                                                      metadata={})
        rep2 = Repertoire.build_from_sequence_objects(sequence_objects=[
            ReceptorSequence(amino_acid_sequence="AAA", identifier="5"),
            ReceptorSequence(amino_acid_sequence="AAAA", identifier="6"),
            ReceptorSequence(amino_acid_sequence="AAAA", identifier="7"),
            ReceptorSequence(amino_acid_sequence="AAA", identifier="8")
        ],
                                                      path=path,
                                                      metadata={})

        dataset = RepertoireDataset(repertoires=[rep1, rep2])

        sld = SequenceLengthDistribution(dataset, 1, path)

        result = sld.generate_report()
        self.assertTrue(os.path.isfile(result.output_figures[0].path))

        shutil.rmtree(path)
Ejemplo n.º 2
0
    def _construct_test_repertoiredataset(self, path, positional):
        receptors1 = ReceptorSequenceList()
        receptors2 = ReceptorSequenceList()

        if positional:
            [receptors1.append(seq) for seq in
             [ReceptorSequence("AAAAAAAAAAAAAAAAA", identifier="1"), ReceptorSequence("AAAAAAAAAAAAAAAAA", identifier="1")]]
            [receptors2.append(seq) for seq in [ReceptorSequence("TTTTTTTTTTTTT", identifier="1")]]
        else:
            [receptors1.append(seq) for seq in
             [ReceptorSequence("AAAA", identifier="1"), ReceptorSequence("ATA", identifier="2"), ReceptorSequence("ATA", identifier='3')]]
            [receptors2.append(seq) for seq in [ReceptorSequence("ATA", identifier="1"), ReceptorSequence("TAA", identifier="2")]]

        rep1 = Repertoire.build_from_sequence_objects(receptors1,
                                                      metadata={"l1": 1, "l2": 2, "subject_id": "1"}, path=path)

        rep2 = Repertoire.build_from_sequence_objects(receptors2,
                                                      metadata={"l1": 0, "l2": 3, "subject_id": "2"}, path=path)

        lc = LabelConfiguration()
        lc.add_label("l1", [1, 2])
        lc.add_label("l2", [0, 3])

        dataset = RepertoireDataset(repertoires=[rep1, rep2])

        return dataset, lc
Ejemplo n.º 3
0
    def test_process(self):
        path = EnvironmentSettings.root_path / "test/tmp/subject_rep_collector"
        PathBuilder.build(path)

        reps = [
            Repertoire.build_from_sequence_objects(
                [ReceptorSequence("AAA", identifier="1")],
                path=path,
                metadata={"subject_id": "patient1"}),
            Repertoire.build_from_sequence_objects(
                [ReceptorSequence("AAC", identifier="2")],
                path=path,
                metadata={"subject_id": "patient1"}),
            Repertoire.build_from_sequence_objects(
                [ReceptorSequence("AAC", identifier="3")],
                path=path,
                metadata={"subject_id": "patient3"})
        ]

        dataset = RepertoireDataset(repertoires=reps)

        dataset2 = SubjectRepertoireCollector.process(
            dataset, {"result_path": path / "result"})

        self.assertEqual(2, len(dataset2.get_data()))
        self.assertEqual(3, len(dataset.get_data()))

        values = [2, 1]
        for index, rep in enumerate(dataset2.get_data()):
            self.assertEqual(values[index], len(rep.sequences))

        shutil.rmtree(path)
Ejemplo n.º 4
0
    def process_repertoire(repertoire: Repertoire, params: dict) -> Repertoire:

        counts = repertoire.get_counts()
        counts = counts if counts is not None else np.full(
            repertoire.get_element_count(), None)
        not_none_indices = counts != None
        counts[not_none_indices] = counts[not_none_indices].astype(np.int)
        indices_to_keep = np.full(repertoire.get_element_count(), False)
        if params["remove_without_count"] and params[
                "low_count_limit"] is not None:
            np.greater_equal(counts,
                             params["low_count_limit"],
                             out=indices_to_keep,
                             where=not_none_indices)
        elif params["remove_without_count"]:
            indices_to_keep = not_none_indices
        elif params["low_count_limit"] is not None:
            indices_to_keep[np.logical_not(not_none_indices)] = True
            np.greater_equal(counts,
                             params["low_count_limit"],
                             out=indices_to_keep,
                             where=not_none_indices)

        processed_repertoire = Repertoire.build_like(
            repertoire,
            indices_to_keep,
            params["result_path"],
            filename_base=f"{repertoire.data_filename.stem}_filtered")

        return processed_repertoire
Ejemplo n.º 5
0
    def process_repertoire(repertoire: Repertoire, params: dict) -> Repertoire:
        data = pd.DataFrame(repertoire.load_data())

        groupby_fields = DuplicateSequenceFilter._prepare_group_by_field(params, data.columns)
        custom_lists = list(set(data.columns) - set(Repertoire.FIELDS))
        agg_dict = DuplicateSequenceFilter._prepare_agg_dict(params, data.columns, custom_lists)

        # Chain objects can not be aggregated, convert to strings
        if "chains" in data.columns:
            data["chains"] = [chain.value if isinstance(chain, Chain) else chain for chain in data["chains"]]
        else:
            data["chains"] = None

        no_duplicates = data.groupby(groupby_fields).agg(agg_dict).reset_index()

        processed_repertoire = Repertoire.build(sequence_aas=list(no_duplicates["sequence_aas"]) if "sequence_aas" in no_duplicates.columns else None,
                                                sequences=list(no_duplicates["sequences"]) if "sequences" in no_duplicates.columns else None,
                                                v_genes=list(no_duplicates["v_genes"]) if "v_genes" in no_duplicates.columns else None,
                                                j_genes=list(no_duplicates["j_genes"]) if 'j_genes' in no_duplicates.columns else None,
                                                chains=[Chain(key) for key in list(no_duplicates["chains"])] if "chains" in no_duplicates.columns else None,
                                                counts=list(no_duplicates["counts"]) if "counts" in no_duplicates else None,
                                                region_types=list(no_duplicates["region_types"]) if "region_types" in no_duplicates else None,
                                                custom_lists={key: list(no_duplicates[key]) for key in custom_lists},
                                                sequence_identifiers=list(no_duplicates["sequence_identifiers"]),
                                                metadata=copy.deepcopy(repertoire.metadata),
                                                path=params["result_path"],
                                                filename_base=f"{repertoire.data_filename.stem}_filtered")

        return processed_repertoire
    def test_create_model(self):
        test_path = EnvironmentSettings.root_path / "test/tmp/w2v_test_tmp/"

        PathBuilder.build(test_path)

        sequence1 = ReceptorSequence("CASSVFA")
        sequence2 = ReceptorSequence("CASSCCC")

        metadata1 = {"T1D": "T1D", "subject_id": "1"}
        rep1 = Repertoire.build_from_sequence_objects([sequence1, sequence2],
                                                      test_path, metadata1)

        metadata2 = {"T1D": "CTL", "subject_id": "2"}
        rep2 = Repertoire.build_from_sequence_objects([sequence1], test_path,
                                                      metadata2)

        dataset = RepertoireDataset(repertoires=[rep1, rep2])

        model_creator = KmerPairModelCreator()
        model = model_creator.create_model(dataset=dataset,
                                           k=2,
                                           vector_size=16,
                                           batch_size=1,
                                           model_path=test_path /
                                           "model.model")

        self.assertTrue(isinstance(model, Word2Vec))
        self.assertTrue("CA" in model.wv.vocab)
        self.assertEqual(400, len(model.wv.vocab))

        shutil.rmtree(test_path)
    def _create_dummy_data(self, path, dataset_type):
        PathBuilder.build(path)
        dataset = None

        test_repertoire = Repertoire.build(
            sequence_aas=[
                "DUPDUP", "AILUDGYF", "DFJKHJ", "DIUYUAG", "CTGTCGH"
            ],
            v_genes=["V1-1" for i in range(5)],
            j_genes=["J1-1" for i in range(5)],
            chains=[
                Chain.ALPHA, Chain.BETA, Chain.BETA, Chain.ALPHA, Chain.BETA
            ],
            custom_lists={
                "custom_1": [f"CUST-{i}" for i in range(5)],
                "custom_2":
                [f"CUST-A" for i in range(3)] + [f"CUST-B" for i in range(2)]
            },
            cell_ids=["1", "1", "1", "2", '2'],
            path=path)

        if dataset_type == "receptor":

            dataset = ReceptorDataset.build_from_objects(
                test_repertoire.receptors, 100, path, name="receptor_dataset")
            dataset.identifier = 'receptor_dataset'

        elif dataset_type == "repertoire":
            test_repertoire.identifier = "repertoire_dataset"
            dataset = RepertoireDataset(repertoires=[test_repertoire])

        return dataset
Ejemplo n.º 8
0
    def build(cls, **kwargs):
        ParameterValidator.assert_keys_present(
            list(kwargs.keys()),
            ['metadata_file', 'name', 'repertoire_ids', 'metadata_fields'],
            RepertoireDataset.__name__, "repertoire dataset")
        repertoires = []
        metadata_df = pd.read_csv(kwargs['metadata_file'],
                                  comment=Constants.COMMENT_SIGN)
        for index, row in metadata_df.iterrows():
            filename = Path(kwargs['metadata_file']).parent / row['filename']
            if not filename.is_file() and 'repertoires' in str(filename):
                filename = filename.parent.parent / Path(row['filename']).name
            repertoire = Repertoire(data_filename=filename,
                                    metadata_filename=filename.parent /
                                    f'{filename.stem}_metadata.yaml',
                                    identifier=row['identifier'])
            repertoires.append(repertoire)

        if "repertoire_ids" in kwargs.keys(
        ) and "repertoires" not in kwargs.keys(
        ) and kwargs['repertoire_ids'] is not None:
            assert all(rep.identifier == kwargs['repertoire_ids'][i] for i, rep in enumerate(repertoires)), \
                f"{RepertoireDataset.__name__}: repertoire ids from the iml_dataset file and metadata file don't match for the dataset " \
                f"{kwargs['name']} with identifier {kwargs['identifier']}."

        return RepertoireDataset(**{**kwargs, **{"repertoires": repertoires}})
Ejemplo n.º 9
0
    def create_dummy_repertoire(self, path):
        sequence_objects = [ReceptorSequence(amino_acid_sequence="AAA",
                                             nucleotide_sequence="GCTGCTGCT",
                                             identifier="receptor_1",
                                             metadata=SequenceMetadata(v_gene="TRBV1",
                                                                       j_gene="TRBJ1",
                                                                       chain=Chain.BETA,
                                                                       count=5,
                                                                       region_type="IMGT_CDR3",
                                                                       frame_type="IN",
                                                                       custom_params={"d_call": "TRBD1",
                                                                                      "custom_test": "cust1"})),
                            ReceptorSequence(amino_acid_sequence="GGG",
                                             nucleotide_sequence="GGTGGTGGT",
                                             identifier="receptor_2",
                                             metadata=SequenceMetadata(v_gene="TRAV2", v_allele="TRAV2*01",
                                                                       j_gene="TRAJ2",
                                                                       chain=Chain.ALPHA,
                                                                       count=15,
                                                                       frame_type=None,
                                                                       region_type="IMGT_CDR3",
                                                                       custom_params={"d_call": "TRAD2",
                                                                                      "custom_test": "cust2"}))]

        repertoire = Repertoire.build_from_sequence_objects(sequence_objects=sequence_objects, path=path, metadata={"subject_id": "REP1"})
        df = pd.DataFrame({"filename": [f"{repertoire.identifier}_data.npy"], "subject_id": ["1"],
                           "repertoire_identifier": [repertoire.identifier]})
        df.to_csv(path / "metadata.csv", index=False)

        return repertoire, path / "metadata.csv"
    def _create_dummy_data(self, path, dataset_type):
        PathBuilder.build(path)
        dataset = None

        test_repertoire = Repertoire.build(
            sequence_aas=[
                "DUPDUP", "AILUDGYF", "DFJKHJ", "DIUYUAG", "CTGTCGH"
            ],
            v_genes=["V1-1" for i in range(5)],
            j_genes=["J1-1" for i in range(5)],
            chains=[
                Chain.ALPHA, Chain.BETA, Chain.BETA, Chain.ALPHA, Chain.BETA
            ],
            custom_lists={
                "custom_1": [f"CUST-{i}" for i in range(5)],
                "custom_2":
                [f"CUST-A" for i in range(3)] + [f"CUST-B" for i in range(2)]
            },
            cell_ids=[1, 1, 1, 2, 2],
            path=path)

        if dataset_type == "receptor":
            receptordataset_filename = path / "receptors.pkl"
            with open(receptordataset_filename, "wb") as file:
                pickle.dump(test_repertoire.receptors, file)

            dataset = ReceptorDataset(filenames=[receptordataset_filename],
                                      identifier="receptor_dataset")

        elif dataset_type == "repertoire":
            test_repertoire.identifier = "repertoire_dataset"
            dataset = RepertoireDataset(repertoires=[test_repertoire])

        return dataset
    def test_process(self):

        path = EnvironmentSettings.root_path / "test/tmp/chain_filter/"
        PathBuilder.build(path)

        rep1 = Repertoire.build_from_sequence_objects([
            ReceptorSequence(
                "AAA", metadata=SequenceMetadata(chain="A"), identifier="1")
        ],
                                                      path=path,
                                                      metadata={})
        rep2 = Repertoire.build_from_sequence_objects([
            ReceptorSequence(
                "AAC", metadata=SequenceMetadata(chain="B"), identifier="2")
        ],
                                                      path=path,
                                                      metadata={})

        metadata = pd.DataFrame({"CD": [1, 0]})
        metadata.to_csv(path / "metadata.csv")

        dataset = RepertoireDataset(repertoires=[rep1, rep2],
                                    metadata_file=path / "metadata.csv")

        dataset2 = ChainRepertoireFilter.process(
            dataset, {
                "keep_chain": "ALPHA",
                "result_path": path / "results"
            })

        self.assertEqual(1, len(dataset2.get_data()))
        self.assertEqual(2, len(dataset.get_data()))

        metadata_dict = dataset2.get_metadata(["CD"])
        self.assertEqual(1, len(metadata_dict["CD"]))
        self.assertEqual(1, metadata_dict["CD"][0])

        for rep in dataset2.get_data():
            self.assertEqual("AAA", rep.sequences[0].get_sequence())

        self.assertRaises(AssertionError, ChainRepertoireFilter.process,
                          dataset, {
                              "keep_chain": "GAMMA",
                              "result_path": path / "results"
                          })

        shutil.rmtree(path)
Ejemplo n.º 12
0
    def test_run(self):
        path = EnvironmentSettings.root_path / "test/tmp/dataencoder/"
        PathBuilder.build(path)

        rep1 = Repertoire.build_from_sequence_objects(
            [ReceptorSequence("AAA", identifier="1")],
            metadata={
                "l1": 1,
                "l2": 2
            },
            path=path)

        rep2 = Repertoire.build_from_sequence_objects(
            [ReceptorSequence("ATA", identifier="2")],
            metadata={
                "l1": 0,
                "l2": 3
            },
            path=path)

        lc = LabelConfiguration()
        lc.add_label("l1", [1, 2])
        lc.add_label("l2", [0, 3])

        dataset = RepertoireDataset(repertoires=[rep1, rep2])
        encoder = Word2VecEncoder.build_object(
            dataset, **{
                "k": 3,
                "model_type": ModelType.SEQUENCE.name,
                "vector_size": 6
            })

        res = DataEncoder.run(
            DataEncoderParams(dataset=dataset,
                              encoder=encoder,
                              encoder_params=EncoderParams(
                                  model={},
                                  pool_size=2,
                                  label_config=lc,
                                  result_path=path,
                                  filename="dataset.csv"),
                              store_encoded_data=False))

        self.assertTrue(isinstance(res, RepertoireDataset))
        self.assertTrue(res.encoded_data.examples.shape[0] == 2)

        shutil.rmtree(path)
Ejemplo n.º 13
0
    def test_encode(self):

        test_path = EnvironmentSettings.root_path / "test/tmp/w2v/"

        PathBuilder.build(test_path)

        sequence1 = ReceptorSequence("CASSVFA", identifier="1")
        sequence2 = ReceptorSequence("CASSCCC", identifier="2")

        metadata1 = {"T1D": "T1D", "subject_id": "1"}
        rep1 = Repertoire.build_from_sequence_objects([sequence1, sequence2],
                                                      test_path, metadata1)

        metadata2 = {"T1D": "CTL", "subject_id": "2"}
        rep2 = Repertoire.build_from_sequence_objects([sequence1], test_path,
                                                      metadata2)

        dataset = RepertoireDataset(repertoires=[rep1, rep2])

        label_configuration = LabelConfiguration()
        label_configuration.add_label("T1D", ["T1D", "CTL"])

        config_params = EncoderParams(model={},
                                      learn_model=True,
                                      result_path=test_path,
                                      label_config=label_configuration,
                                      filename="dataset.pkl")

        encoder = Word2VecEncoder.build_object(
            dataset, **{
                "k": 3,
                "model_type": "sequence",
                "vector_size": 16
            })

        encoded_dataset = encoder.encode(dataset=dataset, params=config_params)

        self.assertIsNotNone(encoded_dataset.encoded_data)
        self.assertTrue(encoded_dataset.encoded_data.examples.shape[0] == 2)
        self.assertTrue(encoded_dataset.encoded_data.examples.shape[1] == 16)
        self.assertTrue(len(encoded_dataset.encoded_data.labels["T1D"]) == 2)
        self.assertTrue(encoded_dataset.encoded_data.labels["T1D"][0] == "T1D")
        self.assertTrue(isinstance(encoder, W2VRepertoireEncoder))

        shutil.rmtree(test_path)
Ejemplo n.º 14
0
    def test_match_repertoire(self):

        path = EnvironmentSettings.root_path / "test/tmp/seqmatchrep/"
        PathBuilder.build(path)

        repertoire = Repertoire.build_from_sequence_objects(sequence_objects=[
            ReceptorSequence(amino_acid_sequence="AAAAAA",
                             identifier="1",
                             metadata=SequenceMetadata(chain="A", count=3)),
            ReceptorSequence(amino_acid_sequence="CCCCCC",
                             identifier="2",
                             metadata=SequenceMetadata(chain="A", count=2)),
            ReceptorSequence(amino_acid_sequence="AAAACC",
                             identifier="3",
                             metadata=SequenceMetadata(chain="A", count=1)),
            ReceptorSequence(amino_acid_sequence="TADQVF",
                             identifier="4",
                             metadata=SequenceMetadata(chain="A", count=4))
        ],
                                                            metadata={
                                                                "CD": True
                                                            },
                                                            path=path)

        sequences = [
            ReceptorSequence("AAAACA", metadata=SequenceMetadata(chain="A")),
            ReceptorSequence("TADQV", metadata=SequenceMetadata(chain="A"))
        ]

        matcher = SequenceMatcher()
        result = matcher.match_repertoire(repertoire, 0, sequences, 2,
                                          SequenceMatchingSummaryType.COUNT)

        self.assertTrue("sequences" in result)
        self.assertTrue("repertoire" in result)
        self.assertTrue("repertoire_index" in result)

        self.assertEqual(4, len(result["sequences"]))
        self.assertEqual(1, len(result["sequences"][0]["matching_sequences"]))
        self.assertEqual(0, len(result["sequences"][1]["matching_sequences"]))
        self.assertEqual(1, len(result["sequences"][2]["matching_sequences"]))
        self.assertEqual(1, len(result["sequences"][3]["matching_sequences"]))

        self.assertEqual(
            3,
            len([
                r for r in result["sequences"]
                if len(r["matching_sequences"]) > 0
            ]))
        self.assertTrue(result["metadata"]["CD"])

        result = matcher.match_repertoire(
            repertoire, 0, sequences, 2,
            SequenceMatchingSummaryType.CLONAL_PERCENTAGE)
        self.assertEqual(0.8, result["clonal_percentage"])

        shutil.rmtree(path)
Ejemplo n.º 15
0
    def test_match(self):
        path = EnvironmentSettings.root_path / "test/tmp/seqmatch/"
        PathBuilder.build(path)

        repertoire = Repertoire.build_from_sequence_objects(
            sequence_objects=[
                ReceptorSequence(amino_acid_sequence="AAAAAA",
                                 metadata=SequenceMetadata(chain="A",
                                                           v_gene="V1",
                                                           j_gene="J2"),
                                 identifier="3"),
                ReceptorSequence(amino_acid_sequence="CCCCCC",
                                 metadata=SequenceMetadata(chain="A",
                                                           v_gene="V1",
                                                           j_gene="J2"),
                                 identifier="4"),
                ReceptorSequence(amino_acid_sequence="AAAACC",
                                 metadata=SequenceMetadata(chain="A",
                                                           v_gene="V1",
                                                           j_gene="J2"),
                                 identifier="5"),
                ReceptorSequence(amino_acid_sequence="TADQVF",
                                 metadata=SequenceMetadata(chain="A",
                                                           v_gene="V1",
                                                           j_gene="J3"),
                                 identifier="6")
            ],
            metadata={"CD": True},
            path=path)

        dataset = RepertoireDataset(repertoires=[repertoire])
        sequences = [
            ReceptorSequence("AAAACA",
                             metadata=SequenceMetadata(chain="A",
                                                       v_gene="V1",
                                                       j_gene="J2"),
                             identifier="1"),
            ReceptorSequence("TADQV",
                             metadata=SequenceMetadata(chain="A",
                                                       v_gene="V1",
                                                       j_gene="J3"),
                             identifier="2")
        ]

        matcher = SequenceMatcher()
        result = matcher.match(dataset, sequences, 2,
                               SequenceMatchingSummaryType.PERCENTAGE)

        self.assertTrue("repertoires" in result)
        self.assertEqual(
            1,
            len(result["repertoires"][0]["sequences"][3]
                ["matching_sequences"]))
        self.assertTrue(result["repertoires"][0]["metadata"]["CD"])
        self.assertEqual(1, len(result["repertoires"]))

        shutil.rmtree(path)
Ejemplo n.º 16
0
    def _build_new_repertoire(self, sequences, repertoire_metadata, signal, path: Path) -> Repertoire:
        if repertoire_metadata is not None:
            metadata = copy.deepcopy(repertoire_metadata)
        else:
            metadata = {}

        # when adding implant to a repertoire, only signal id is stored:
        # more detailed information is available in each receptor_sequence
        # (specific motif and motif instance)
        metadata[signal.id] = True
        repertoire = Repertoire.build_from_sequence_objects(sequences, path, metadata)

        return repertoire
Ejemplo n.º 17
0
    def test_implant_in_repertoire(self):
        path = PathBuilder.build(EnvironmentSettings.tmp_test_path / "full_seq_implanting/")
        signal = Signal("sig1", [Motif("motif1", GappedKmerInstantiation(max_gap=0), "AAAA")], FullSequenceImplanting())

        repertoire = Repertoire.build(["CCCC", "CCCC", "CCCC"], path=path)

        new_repertoire = signal.implant_to_repertoire(repertoire, 0.33, path)

        self.assertEqual(len(repertoire.sequences), len(new_repertoire.sequences))
        self.assertEqual(1, len([seq for seq in new_repertoire.sequences if seq.amino_acid_sequence == "AAAA"]))
        self.assertEqual(2, len([seq for seq in new_repertoire.sequences if seq.amino_acid_sequence == "CCCC"]))

        shutil.rmtree(path)
Ejemplo n.º 18
0
    def test_create_sentences_from_repertoire(self):

        path = EnvironmentSettings.tmp_test_path / "kmer/"
        PathBuilder.build(path)

        rep = Repertoire.build_from_sequence_objects([ReceptorSequence(amino_acid_sequence="AACT"),
                                                      ReceptorSequence(amino_acid_sequence="ACCT"),
                                                      ReceptorSequence(amino_acid_sequence="AACT")], path, {})

        sentences = KmerHelper.create_sentences_from_repertoire(rep, 3, sequence_type=SequenceType.AMINO_ACID)

        self.assertEqual(3, len(sentences))
        self.assertTrue(len(sentences[0]) == 2 and "AAC" in sentences[0] and "ACT" in sentences[0])

        shutil.rmtree(path)
Ejemplo n.º 19
0
    def build(sequences: list, path: Path, labels: dict = None, seq_metadata: list = None, subject_ids: list = None):

        if subject_ids is not None:
            assert len(subject_ids) == len(sequences)

        if seq_metadata is not None:
            assert len(sequences) == len(seq_metadata)
            for index, sequence_list in enumerate(sequences):
                assert len(sequence_list) == len(seq_metadata[index])

        PathBuilder.build(path)
        rep_path = PathBuilder.build(path / "repertoires")

        repertoires = []
        if subject_ids is None:
            subject_ids = []

        for rep_index, sequence_list in enumerate(sequences):
            rep_sequences = ReceptorSequenceList()
            if len(subject_ids) < len(sequences):
                subject_ids.append("rep_" + str(rep_index))
            for seq_index, sequence in enumerate(sequence_list):
                if seq_metadata is None:
                    m = SequenceMetadata(v_subgroup="TRBV1", v_gene="TRBV1-1", v_allele="TRBV1-1*01", j_subgroup="TRBJ1", j_gene="TRBJ1-1", j_allele="TRBJ1-1*01", count=1, chain="TRB", region_type="IMGT_CDR3")
                else:
                    m = SequenceMetadata(**seq_metadata[rep_index][seq_index])

                s = ReceptorSequence(amino_acid_sequence=sequence, metadata=m, identifier=str(seq_index))
                rep_sequences.append(s)

            if labels is not None:
                metadata = {key: labels[key][rep_index] for key in labels.keys()}
            else:
                metadata = {}

            metadata = {**metadata, **{"subject_id": subject_ids[rep_index]}}

            repertoire = Repertoire.build_from_sequence_objects(rep_sequences, rep_path, metadata, filename_base=f"rep_{rep_index}")
            repertoires.append(repertoire)

        df = pd.DataFrame({**{"filename": [repertoire.data_filename for repertoire in repertoires],
                              "subject_id": subject_ids,
                              "repertoire_identifier": [repertoire.identifier for repertoire in repertoires]},
                           **(labels if labels is not None else {})})
        df.to_csv(path / "metadata.csv", index=False)

        return repertoires, path / "metadata.csv"
Ejemplo n.º 20
0
    def _process_repertoire(index, repertoire, current_implanting,
                            simulation_state) -> Repertoire:
        if current_implanting is not None:

            return SignalImplanter._implant_in_repertoire(
                index, repertoire, current_implanting, simulation_state)

        else:
            new_repertoire = Repertoire.build_from_sequence_objects(
                repertoire.sequences,
                simulation_state.result_path / "repertoires",
                repertoire.metadata)

            for signal in simulation_state.signals:
                new_repertoire.metadata[f"signal_{signal.id}"] = False

            return new_repertoire
Ejemplo n.º 21
0
    def implant_in_repertoire(self, repertoire: Repertoire,
                              repertoire_implanting_rate: float, signal,
                              path: Path):

        assert all("/" not in motif.seed for motif in signal.motifs), \
            f'FullSequenceImplanting: motifs cannot include gaps. Check motifs {[motif.identifier for motif in signal.motifs]}.'

        sequences = repertoire.sequences
        new_sequence_count = math.ceil(
            len(sequences) * repertoire_implanting_rate)
        assert new_sequence_count > 0, \
            f"FullSequenceImplanting: there are too few sequences ({len(sequences)}) in the repertoire with identifier {repertoire.identifier} " \
            f"to have the given repertoire implanting rate ({repertoire_implanting_rate}). Please consider increasing the repertoire implanting rate."
        new_sequences = self._create_new_sequences(sequences,
                                                   new_sequence_count, signal)
        metadata = copy.deepcopy(repertoire.metadata)
        metadata[f"signal_{signal.id}"] = True

        return Repertoire.build_from_sequence_objects(new_sequences, path,
                                                      metadata)
Ejemplo n.º 22
0
    def load_repertoire_as_object(import_class, metadata_row, params: DatasetImportParams):
        try:
            alternative_load_func = getattr(import_class, "alternative_load_func", None)

            filename = params.path / f"{metadata_row['filename']}"

            dataframe = ImportHelper.load_sequence_dataframe(filename, params, alternative_load_func)
            dataframe = import_class.preprocess_dataframe(dataframe, params)
            sequence_lists = {field: dataframe[field].values.tolist() for field in Repertoire.FIELDS if field in dataframe.columns}
            sequence_lists["custom_lists"] = {field: dataframe[field].values.tolist()
                                              for field in list(set(dataframe.columns) - set(Repertoire.FIELDS))}

            repertoire_inputs = {**{"metadata": metadata_row.to_dict(),
                                    "path": params.result_path / "repertoires/",
                                    "filename_base": filename.stem}, **sequence_lists}
            repertoire = Repertoire.build(**repertoire_inputs)

            return repertoire
        except Exception as exception:
            raise RuntimeError(f"{ImportHelper.__name__}: error when importing file {metadata_row['filename']}.") from exception
Ejemplo n.º 23
0
    def _repertoire_to_dataframe(repertoire: Repertoire, region_type):
        # get all fields (including custom fields)
        df = pd.DataFrame(repertoire.load_data())

        for column in ['v_alleles', 'j_alleles', 'v_genes', 'j_genes']:
            if column not in df.columns:
                df.loc[:, column] = ''

        AIRRExporter.update_gene_columns(df, 'alleles', 'genes')

        # rename mandatory fields for airr-compliance
        mapper = {
            "sequence_identifiers": "sequence_id",
            "v_alleles": "v_call",
            "j_alleles": "j_call",
            "chains": "locus",
            "counts": "duplicate_count",
            "sequences": AIRRExporter.get_sequence_field(region_type),
            "sequence_aas": AIRRExporter.get_sequence_aa_field(region_type)
        }

        df = df.rename(mapper=mapper, axis="columns")
        return df
Ejemplo n.º 24
0
    def _process_repertoire(index,
                            repertoire,
                            current_implanting,
                            simulation_state,
                            output_path: Path = None) -> Repertoire:
        if current_implanting is not None:

            new_repertoire = SignalImplanter._implant_in_repertoire(
                index, repertoire, current_implanting, simulation_state)

        else:
            new_metadata = {
                **repertoire.metadata,
                **{
                    f"{signal.id}": False
                    for signal in simulation_state.signals
                }
            }
            new_repertoire = Repertoire.build_from_sequence_objects(
                repertoire.sequences,
                simulation_state.result_path / "repertoires",
                metadata=new_metadata)

        return new_repertoire
Ejemplo n.º 25
0
    def test_encode(self):
        path = EnvironmentSettings.root_path / "test/tmp/kmerfreqenc/"

        PathBuilder.build(path)

        rep1 = Repertoire.build_from_sequence_objects([
            ReceptorSequence("AAA", identifier="1"),
            ReceptorSequence("ATA", identifier="2"),
            ReceptorSequence("ATA", identifier='3')
        ],
                                                      metadata={
                                                          "l1": 1,
                                                          "l2": 2,
                                                          "subject_id": "1"
                                                      },
                                                      path=path)

        rep2 = Repertoire.build_from_sequence_objects([
            ReceptorSequence("ATA", identifier="1"),
            ReceptorSequence("TAA", identifier="2"),
            ReceptorSequence("AAC", identifier="3")
        ],
                                                      metadata={
                                                          "l1": 0,
                                                          "l2": 3,
                                                          "subject_id": "2"
                                                      },
                                                      path=path)

        lc = LabelConfiguration()
        lc.add_label("l1", [1, 2])
        lc.add_label("l2", [0, 3])

        dataset = RepertoireDataset(repertoires=[rep1, rep2])

        encoder = KmerFrequencyEncoder.build_object(
            dataset, **{
                "normalization_type":
                NormalizationType.RELATIVE_FREQUENCY.name,
                "reads": ReadsType.UNIQUE.name,
                "sequence_encoding": SequenceEncodingType.IDENTITY.name,
                "k": 3
            })

        d1 = encoder.encode(
            dataset,
            EncoderParams(result_path=path / "1/",
                          label_config=lc,
                          learn_model=True,
                          model={},
                          filename="dataset.pkl"))

        encoder = KmerFrequencyEncoder.build_object(
            dataset, **{
                "normalization_type":
                NormalizationType.RELATIVE_FREQUENCY.name,
                "reads": ReadsType.UNIQUE.name,
                "sequence_encoding": SequenceEncodingType.CONTINUOUS_KMER.name,
                "k": 3
            })

        d2 = encoder.encode(
            dataset,
            EncoderParams(result_path=path / "2/",
                          label_config=lc,
                          pool_size=2,
                          learn_model=True,
                          model={},
                          filename="dataset.csv"))

        encoder3 = KmerFrequencyEncoder.build_object(
            dataset, **{
                "normalization_type": NormalizationType.BINARY.name,
                "reads": ReadsType.UNIQUE.name,
                "sequence_encoding": SequenceEncodingType.CONTINUOUS_KMER.name,
                "k": 3
            })

        d3 = encoder3.encode(
            dataset,
            EncoderParams(result_path=path / "3/",
                          label_config=lc,
                          learn_model=True,
                          model={},
                          filename="dataset.pkl"))

        shutil.rmtree(path)

        self.assertTrue(isinstance(d1, RepertoireDataset))
        self.assertTrue(isinstance(d2, RepertoireDataset))
        self.assertEqual(0.67, np.round(d2.encoded_data.examples[0, 2], 2))
        self.assertEqual(0.0, np.round(d3.encoded_data.examples[0, 1], 2))
        self.assertTrue(isinstance(encoder, KmerFrequencyEncoder))
Ejemplo n.º 26
0
 def _store_repertoire(self, repertoire, sequences):
     new_repertoire = Repertoire.build_from_sequence_objects(
         sequence_objects=sequences,
         path=self.result_path,
         metadata=repertoire.metadata)
     return new_repertoire
Ejemplo n.º 27
0
    def test_run(self):

        r = []

        path = EnvironmentSettings.tmp_test_path / "signalImplanter/"

        if not os.path.isdir(path):
            os.makedirs(path)

        sequences = [
            ReceptorSequence("ACDEFG", identifier="1"),
            ReceptorSequence("ACDEFG", identifier="2"),
            ReceptorSequence("ACDEFG", identifier="3"),
            ReceptorSequence("ACDEFG", identifier="4")
        ]

        for i in range(10):
            rep = Repertoire.build_from_sequence_objects(
                sequence_objects=sequences, path=path, metadata={})
            r.append(rep)

        dataset = RepertoireDataset(repertoires=r)

        m1 = Motif(identifier="m1",
                   instantiation=GappedKmerInstantiation(),
                   seed="CAS")
        m2 = Motif(identifier="m2",
                   instantiation=GappedKmerInstantiation(),
                   seed="CCC")
        s1 = Signal(identifier="s1",
                    motifs=[m1],
                    implanting_strategy=HealthySequenceImplanting(
                        GappedMotifImplanting(),
                        implanting_computation=ImplantingComputation.ROUND))
        s2 = Signal(identifier="s2",
                    motifs=[m1, m2],
                    implanting_strategy=HealthySequenceImplanting(
                        GappedMotifImplanting(),
                        implanting_computation=ImplantingComputation.ROUND))

        simulation = Simulation([
            Implanting(dataset_implanting_rate=0.2,
                       repertoire_implanting_rate=0.5,
                       signals=[s1, s2],
                       name="i1"),
            Implanting(dataset_implanting_rate=0.2,
                       repertoire_implanting_rate=0.5,
                       signals=[s2],
                       name="i2")
        ])

        input_params = SimulationState(dataset=dataset,
                                       result_path=path,
                                       simulation=simulation,
                                       signals=[s1, s2],
                                       formats=["ImmuneML"])

        new_dataset = SignalImplanter.run(input_params)
        reps_with_s2 = sum([
            rep.metadata[s2.id] is True
            for rep in new_dataset.get_data(batch_size=10)
        ])
        reps_with_s1 = sum([
            rep.metadata[s1.id] is True
            for rep in new_dataset.get_data(batch_size=10)
        ])
        self.assertEqual(10, len(new_dataset.get_example_ids()))
        self.assertTrue(
            all([
                s1.id in rep.metadata.keys()
                for rep in new_dataset.get_data(batch_size=10)
            ]))
        self.assertTrue(
            all([
                s2.id in rep.metadata.keys()
                for rep in new_dataset.get_data(batch_size=10)
            ]))
        self.assertTrue(reps_with_s2 == 4)
        self.assertTrue(reps_with_s1 == 2)

        self.assertEqual(10, len(new_dataset.get_example_ids()))

        metadata_filenames = [
            filename.name for filename in new_dataset.get_filenames()
        ]
        self.assertTrue(
            all([
                repertoire.data_filename.name in metadata_filenames
                for repertoire in new_dataset.repertoires
            ]))

        shutil.rmtree(path)
Ejemplo n.º 28
0
 def store_repertoire(path, repertoire, sequences):
     new_repertoire = Repertoire.build_from_sequence_objects(sequences, path, repertoire.metadata)
     return new_repertoire
    def test_process(self):
        path = EnvironmentSettings.root_path / "test/tmp/duplicatesequencefilter/"
        PathBuilder.build(path)

        dataset = RepertoireDataset(repertoires=[
            Repertoire.build(
                sequence_aas=["AAA", "AAA", "CCC", "AAA", "CCC", "CCC", "CCC"],
                sequences=[
                    "ntAAA", "ntBBB", "ntCCC", "ntAAA", "ntCCC", "ntCCC",
                    "ntDDD"
                ],
                v_genes=["v1", "v1", "v1", "v1", "v1", "v1", "v1"],
                j_genes=["j1", "j1", "j1", "j1", "j1", "j1", "j1"],
                chains=[
                    Chain.ALPHA, Chain.ALPHA, Chain.ALPHA, Chain.ALPHA,
                    Chain.ALPHA, Chain.ALPHA, Chain.BETA
                ],
                counts=[10, 20, 30, 5, 20, None, 40],
                region_types=[
                    "IMGT_CDR3", "IMGT_CDR3", "IMGT_CDR3", "IMGT_CDR3",
                    "IMGT_CDR3", "IMGT_CDR3", "IMGT_CDR3"
                ],
                custom_lists={
                    "custom1": ["yes", "yes", "yes", "no", "no", "no", "no"],
                    "custom2": ["yes", "yes", "yes", "no", "no", "no", "no"]
                },
                sequence_identifiers=[1, 2, 3, 4, 5, 6, 7],
                path=path)
        ])

        # collapse by amino acids & use sum counts
        dupfilter = DuplicateSequenceFilter(
            filter_sequence_type=SequenceType.AMINO_ACID,
            count_agg=CountAggregationFunction.SUM,
            batch_size=1)

        reduced_repertoire = dupfilter.process_dataset(
            dataset=dataset, result_path=path).repertoires[0]

        attr = reduced_repertoire.get_attributes([
            "sequence_identifiers", "sequence_aas", "sequences", "counts",
            "chains"
        ])

        self.assertEqual(3, len(reduced_repertoire.get_sequence_identifiers()))
        self.assertListEqual(["AAA", "CCC", "CCC"], list(attr["sequence_aas"]))
        self.assertListEqual(["ntAAA", "ntCCC", "ntDDD"],
                             list(attr["sequences"]))
        self.assertListEqual([35, 50, 40], list(attr["counts"]))
        self.assertListEqual([1, 3, 7], list(attr["sequence_identifiers"]))
        self.assertListEqual(['ALPHA', 'ALPHA', 'BETA'], list(attr["chains"]))

        # collapse by nucleotides & use min counts
        dupfilter = DuplicateSequenceFilter(
            filter_sequence_type=SequenceType.NUCLEOTIDE,
            count_agg=CountAggregationFunction.MIN,
            batch_size=4)

        reduced_repertoire = dupfilter.process_dataset(
            dataset=dataset, result_path=path).repertoires[0]

        attr = reduced_repertoire.get_attributes(
            ["sequence_identifiers", "sequence_aas", "sequences", "counts"])

        self.assertEqual(4, len(reduced_repertoire.get_sequence_identifiers()))
        self.assertListEqual([1, 2, 3, 7], list(attr["sequence_identifiers"]))
        self.assertListEqual(["AAA", "AAA", "CCC", "CCC"],
                             list(attr["sequence_aas"]))
        self.assertListEqual(["ntAAA", "ntBBB", "ntCCC", "ntDDD"],
                             list(attr["sequences"]))
        self.assertListEqual([5, 20, 20, 40], list(attr["counts"]))

        shutil.rmtree(path)
Ejemplo n.º 30
0
    def test_run(self):
        dataset = RepertoireDataset(repertoires=[
            Repertoire(Path("0.npy"), None, "0"),
            Repertoire(Path("0.npy"), None, "8"),
            Repertoire(Path("0.npy"), None, "1"),
            Repertoire(Path("0.npy"), None, "9"),
            Repertoire(Path("0.npy"), None, "2"),
            Repertoire(Path("0.npy"), None, "10"),
            Repertoire(Path("0.npy"), None, "3"),
            Repertoire(Path("0.npy"), None, "11"),
            Repertoire(Path("0.npy"), None, "4"),
            Repertoire(Path("0.npy"), None, "12"),
            Repertoire(Path("0.npy"), None, "5"),
            Repertoire(Path("0.npy"), None, "13"),
            Repertoire(Path("0.npy"), None, "6"),
            Repertoire(Path("0.npy"), None, "14"),
            Repertoire(Path("0.npy"), None, "7")
        ])

        paths = [
            EnvironmentSettings.root_path /
            "test/tmp/datasplitter/split_{}".format(i) for i in range(5)
        ]
        for path in paths:
            PathBuilder.build(path)

        df = pd.DataFrame(
            data={
                "key1": [0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1],
                "filename": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
            })
        df.to_csv(EnvironmentSettings.root_path /
                  "test/tmp/datasplitter/metadata.csv")

        dataset.metadata_file = EnvironmentSettings.root_path / "test/tmp/datasplitter/metadata.csv"

        training_percentage = 0.7

        trains, tests = DataSplitter.run(
            DataSplitterParams(dataset=dataset,
                               training_percentage=training_percentage,
                               split_strategy=SplitType.RANDOM,
                               split_count=5,
                               paths=paths))

        self.assertTrue(isinstance(trains[0], RepertoireDataset))
        self.assertTrue(isinstance(tests[0], RepertoireDataset))
        self.assertEqual(10, len(trains[0].get_data()))
        self.assertEqual(5, len(tests[0].get_data()))
        self.assertEqual(5, len(trains))
        self.assertEqual(5, len(tests))
        self.assertEqual(10, len(trains[0].repertoires))

        trains2, tests2 = DataSplitter.run(
            DataSplitterParams(dataset=dataset,
                               training_percentage=training_percentage,
                               split_strategy=SplitType.RANDOM,
                               split_count=5,
                               paths=paths))

        self.assertEqual(trains[0].get_repertoire_ids(),
                         trains2[0].get_repertoire_ids())

        paths = [
            EnvironmentSettings.root_path /
            "test/tmp/datasplitter/split_{}".format(i)
            for i in range(dataset.get_example_count())
        ]
        for path in paths:
            PathBuilder.build(path)

        trains, tests = DataSplitter.run(
            DataSplitterParams(dataset=dataset,
                               split_strategy=SplitType.LOOCV,
                               split_count=-1,
                               training_percentage=-1,
                               paths=paths))

        self.assertTrue(isinstance(trains[0], RepertoireDataset))
        self.assertTrue(isinstance(tests[0], RepertoireDataset))
        self.assertEqual(14, len(trains[0].get_data()))
        self.assertEqual(1, len(tests[0].get_data()))
        self.assertEqual(15, len(trains))
        self.assertEqual(15, len(tests))

        paths = [
            EnvironmentSettings.root_path /
            "test/tmp/datasplitter/split_{}".format(i) for i in range(5)
        ]
        for path in paths:
            PathBuilder.build(path)

        trains, tests = DataSplitter.run(
            DataSplitterParams(dataset=dataset,
                               split_strategy=SplitType.K_FOLD,
                               split_count=5,
                               training_percentage=-1,
                               paths=paths))

        self.assertTrue(isinstance(trains[0], RepertoireDataset))
        self.assertTrue(isinstance(tests[0], RepertoireDataset))
        self.assertEqual(len(trains[0].get_data()), 12)
        self.assertEqual(len(tests[0].get_data()), 3)
        self.assertEqual(5, len(trains))
        self.assertEqual(5, len(tests))

        trains, tests = DataSplitter.run(
            DataSplitterParams(dataset=dataset,
                               split_strategy=SplitType.STRATIFIED_K_FOLD,
                               split_count=3,
                               training_percentage=-1,
                               paths=paths,
                               label_config=LabelConfiguration(
                                   [Label("key1", [0, 1, 2])])))

        self.assertEqual(len(trains[0].get_data()), 10)
        self.assertEqual(len(tests[0].get_data()), 5)
        self.assertEqual(3, len(trains))
        self.assertEqual(3, len(tests))
        for train in trains:
            self.assertTrue(
                all(cls in train.get_metadata(["key1"])["key1"]
                    for cls in [0, 1, 2]))
        for test in tests:
            self.assertTrue(
                all(cls in test.get_metadata(["key1"])["key1"]
                    for cls in [0, 1, 2]))

        shutil.rmtree(EnvironmentSettings.root_path / "test/tmp/datasplitter/")